
D8: Final Specification of Case Study Systems

Copyright  2000-2003 FAIN Consortium May 2003

Project Number: IST-1999-10561-FAIN
Project Title: Future Active IP Networks

D8: Final Specification of Case Study Systems

Editor: Alvin Tan / Marcin Solarski
Document No: D8

Contribution File Name: D8.doc
Version: 2.0

Company: UCL/FHG
Date: Tuesday, 13 May 2003

Distribution: WP4
Dissemination: CO

Copyright  2000-2003 FAIN Consortium

The FAIN Consortium consists of:

Partner Status Country
UCL Partner United Kingdom
JSIS Associate Partner to UCL Slovenia

NTUA Associate Partner to UCL Greece
UPC Associate Partner to UCL Spain
DT Partner Germany
FT Partner France

KPN Partner Netherlands
HEL Partner United Kingdom
HIT Partner Japan
SAG Partner Germany
ETH Partner Switzerland

FHG/FOKUS Partner Germany
IKV Associate Partner to GMD Germany
INT Associate Partner to GMD Spain

UPEN Partner USA

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 2

Project Management

Alex Galis
University College London
Department of Electronic and Electrical Engineering,
Torrington Place
London WC1E 7JE
United Kingdom
Tel +44 (0) 207 458 5738
Fax +44 (0) 207 388 9325
E-mail: a.galis@ee.ucl.ac.uk

Authors

Alvin Tan (UCL) – Contributor/Editor (Management)
Marcin Solarski (FHG) – Contributor/Editor (ASP)
Celestin Brou (FHG) - Contributor
Epifanio Salamanca (UPC) - Contributor
Edgar Magaña (UPC) - Contributor
Julio Vivero (UPC) - Contributor
Juan Luis Mañas (INT) – Contributor
Christos Tsarouchis (HEL) – Contributor
Chiho Kitahara (HIT) - Contributor
Yiannis Nikolakis (NTUA) – Contributor
Eun-Mok Lee (FHG) – Contributor
Matthias Bossardt (ETH) – Contributor
Yannick Carlinet (FT) – Contributor
Bertrand Mathieu (FT) – Contributor
Richard Lewis (UCL) – Contributor
Alex Galis (UCL) - Contributor

Change History

Version Data Authors Comments

0.0 17/03/03 Epi Salamanca (UPC) Initial TOC of the Management Part for D8

0.1 30/04/03 Epi, Edgar Magaña (UPC)

Christos Tsarouchis(Hit)

Overall re-editing and structure

Delegation PDP and PEPs

PBNM general description

0.2 30/04/03 Alvin Tan (UCL) UCL Contribution

Reformatting style

0.3 30/04/03 Epì Contribution from UPC- Epi – API for NMS.

0.4 02/05/03 Alvin IDM APIs, further formatting

0.5 06/05/03 Alvin, Epi, Edgar,

Juan-Luis Manas (INT)

EMS API Section

New Figures for EMS and NMS components

Modified PDP Manager Section

Enhancement of the Core and EMS Section.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 3

Monitoring component updated.

0.6 07/05/03 Christos, Chiho, Juan-Luis,
Alvin

Del PDP updates, EMS/NMS monitoring
enhancement

Comments on material

1.0 08/05/03 Yiannis Nikolakis (NTUA)

Julio Vivero (UPC)

Epi, Juan-Luis

Alvin

RM section inserted

Informal review

Policy parser, policy editor sections included

First complete version contains all the material
required for the deliverable.

1.1 08/05/03 Alvin Tan ASP and MS merge

1.2 09/05/03 Marcin Solarski ASP component structure update

1.3 09/05/03 Alvin Tan

Edgar Magana

QoS PDP at NL updated.

Further corrections

1.4 10/05/03 Marcin Solarski

Eun-Mok Lee

Better structure for 3.5.1 (each component in
separate section)

Updated ASP architecture (sec 3.1)

Updated Network ASP (sec 3.5.1)

Updated Node ASP (sec 3.5.2)

1.5 10/05/03 Richard Lewis Overall review

1.6 11/05/03 Celestin Brou Introduction

1.7 12/05/03 Alex Galis Overview

Overall review

2.0 13/05/03 Epi

Alvin / Marcin

Use cases at element and network level

Final version

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 4

TABLE OF CONTENTS

1. OVERVIEW AND INTRODUCTION .. 7
1.1. FAIN PBNM MANAGEMENT ARCHITECTURE .. 9
1.2. FAIN ACTIVE SERVICE PROVISIONING ARCHITECTURE ... 11

2. POLICY-BASED NETWORK MANAGEMENT SYSTEM .. 16
2.1. INTRODUCTION .. 16
2.2. COMMON COMPONENTS .. 16

2.2.1 Common Use Cases ... 16
2.2.1.1 Provision Policy ... 17
2.2.1.2 Deploy Management Functionality.. 18
2.2.1.3 Enhance PDP’s Policy Knowledge .. 18

2.2.2 Common Components Description .. 19
2.2.2.1 ANSP Proxy... 19
2.2.2.2 PDP Manager ... 21
2.2.2.3 PDP .. 26
2.2.2.4 Monitoring System... 28
2.2.2.5 Policy Parser .. 29
2.2.2.6 Policy Repository... 33

2.3. NETWORK-LEVEL MANAGEMENT SYSTEM (NMS).. 36
2.3.1 Use cases ... 36
2.3.2 Application Programming Interfaces (API)... 38
2.3.3 NMS Components .. 40

2.3.3.1 Policy Editor .. 40
2.3.3.2 Service Manager (SM)... 41
2.3.3.3 Inter Domain Manager... 42
2.3.3.4 Resource Manager ... 46
2.3.3.5 Monitoring System... 48
2.3.3.6 Quality of Service (QoS) PDP ... 49
2.3.3.7 Quality of Service (QoS) PEP.. 53
2.3.3.8 Delegation of Access Rights PDP.. 54
2.3.3.9 Delegation of Access Rights PEP .. 55

2.4. ELEMENT-LEVEL MANAGEMENT SYSTEM (EMS) ... 58
2.4.1 Use cases ... 58

2.4.1.1 Automatic Reconfigure after fault ... 59
2.4.1.2 Provisioning Policy contained in Active Packet .. 60
2.4.1.3 Request Decision through Signalling... 60

2.4.2 Application Programming Interfaces (API)... 60
2.4.3 EMS Components... 63

2.4.3.1 Quality of Service (QoS) PDP ... 63
2.4.3.2 Quality of Service (QoS) PEP.. 64
2.4.3.3 Delegation of Access Rights PDP.. 66
2.4.3.4 Delegation of Access Rights PEP .. 68
2.4.3.5 Monitoring System... 69

3. ACTIVE SERVICE PROVISIONING.. 75
3.1. ASP FINAL ARCHITECTURE... 76
3.2. ASP FUNCTIONALITIES.. 78

3.2.1 Actors... 78
3.2.2 Use Case Diagrams ... 78

3.2.2.1 Releasing a service / Updating a service.. 80

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 5

3.2.2.2 Deploying a service.. 81
3.2.2.3 Reconfiguring a service ... 82
3.2.2.4 Removing a service.. 85
3.2.2.5 Withdrawing a service ... 86

3.3. APPLICATION PROGRAMMING INTERFACE .. 87
3.3.1 Service Inquiry Interface ... 87
3.3.2 Service Management Interface .. 88

3.4. SERVICE DESCRIPTION... 91
3.4.1 Basic Concepts... 92
3.4.2 Network-level Service Descriptor .. 93
3.4.3 Node Level Service Descriptor .. 94

3.5. ASP COMPONENTS .. 95
3.5.1 Network ASP.. 95

3.5.1.1 Network ASP Manager .. 96
3.5.1.2 Service Registry ... 106
3.5.1.3 Service Repository ... 109

3.5.2 Node ASP ... 109
3.5.2.1 Node ASP Manager ... 110
3.5.2.2 Code Manager.. 111
3.5.2.3 Local Service registry .. 115
3.5.2.4 Local Service Repository... 117
3.5.2.5 Service Creation Engine .. 119

4. CONCLUSIONS AND FUTURE WORK... 123
5. REFERENCES .. 125

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 6

TABLE OF MAIN ACRONYMS

ANSP Active Network Service Provider
ASP Active Service Provisioning
CM Code Manager
CORBA Common Object Request Broker Architecture
IDM Inter-Domain Manager
MbD Management by Delegation
NIP Network Infrastructure Provider
PBNM Policy-Based Network Management
PCIM Policy Core Information Model
PDP Policy Decision Point
PEP Policy Enforcement Point
RCF Resource Control Framework
RM Resource Manager
SCE Service Creation Engine
SLA Service Level Agreement
SM Service Manager
SP Service Provider
VAN Virtual Active Network
VE Virtual Environment
VEM Virtual Environment Manager
XML Extensible Mark-up Language

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 7

1. OVERVIEW AND INTRODUCTION

In this deliverable, we described a hierarchically distributed policy-based network management
architecture (Chapter 2) and an Active Service Provisioning architecture (Chapter 3), which are
important results of the FAIN project. Conclusions and further work is presented in Chapter 4. These
architectural components are depicted Figure 1.

Figure 1. Overview of FAIN Active Nodes and Management Nodes

Each of these architectural components is provided by one of the two sub-systems that constitute
the FAIN Management System, briefly described below.

The policy-based management system, with appropriate policies, performs fine grain
management of the FAIN active node resources and delegates management capability to third-parties,
according to the Fain Business Model service chain. Thus the Active Network Service Provider
(ANSP) delegates management functionality to its registered Service Providers (SP) that in turn
delegates particular management tasks to their customers. Security and isolation of resource usage are
assured by mechanisms developed by the FAIN Project and deployed in the FAIN Active Node. The
Uniform API offered by The FAIN Node allows the deployment of a manufacturer independent
network-wide solution.

The ASP system provides the mechanisms necessary to organise registered service components in
accordance with their run-time environment constraints, composes them on-demand into a given
service, and deploys the service over the FAIN network. Thus ASP constitutes an important FAIN
architectural component, which demonstrates activeness by deploying components that program
network nodes as a way of provisioning new services for a given purpose.

FAIN Active Node

Node OS

FAIN Management Node

Privileged VE

SEC RCF

Active Network Test Bed

VEM

DMUX PBNM

ASP

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 8

Together the ASP and PBNM provide all the facilities required to create a tailored Virtual Access
Network (VAN), operating over the FAIN Active Network. Realisation of these systems is based on
the architecture developed earlier in the project, which encompasses the local node (network element),
the individual management domains in isolation and, latterly, the inter-domain management issues.
Within the architecture, the complexity of the system being developed is managed by decomposing the
system into sub-systems that collaborate to achieve the global FAIN management goals: the Active
Node level sub-systems (node-ASP and EMS), and the network level sub-systems (Network Level
Management System and Network level ASP), all of which are further decomposed.

Further analysis of the NMS identified generic policy-based management functionality at Element
(node) level and Network level to be specialised into both levels with their semantically particularities.
These generic functionalities are designed and developed in a component named “CORE sub-system”
in the Policy-Based Network Management chapter. The figure below represents this view of FAIN
Management System Architecture.

Figure 2. Use case view of the management system in FAIN

We have applied policies as a way of managing active networks and we have used active
technologies and mechanisms to extend the management architecture by dynamically deploying
additional PDPs and PEPs.

Although PDPs and PEPs can be deployed on demand, they must comply with the expected
(standardised) interface and be registered in the ASP system. Also, our management architecture
supports an extension mechanism of a finer granularity by dynamically adding new functionality
(policy action and condition interpreters) into already existing PDPs/PEPs.

We have used different types of PDP and PEP as a means of differentiating groups of policies and
facilitating policy decision-making according to a specific context.

Based on a new Business Model that advocates the deployment of virtual networks on top of the
same network infrastructure, we have extended the concept of management by delegation by allowing
multiple management architectures to be instantiated and to function independently of each other. This
was enabled by the use of the FAIN active node and its open interface.

ASP

PBANM
<<sub-system>>

<<Generic>>
2-tiersPBA

PBNEM
<<sub-system>>

ASP-NL
<<sub-system>>

ASP-EL
<<sub-system>>

NMS

FAIN AN

SP,
ANSP,

User

FAIN Management system
Network Level

Node Level

ASP

PBANM
<<sub-system>>

PBANM
<<sub-system>>

<<Generic>>
2-tiersPBA

<<Generic>>
2-tiersPBA

PBNEM
<<sub-system>>

PBNEM
<<sub-system>>

ASP-NL
<<sub-system>>

ASP-NL
<<sub-system>>

ASP-EL
<<sub-system>>

ASP-EL
<<sub-system>>

NMS

FAIN AN

SP,
ANSP,

User

FAIN Management system
Network Level

Node Level

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 9

Finally, we have mostly focused on implementing and experimenting with the configuration
model for policy control. We consider the outsourcing model to be equally important. According to
this model, control protocols must be policy-aware in order to convey policy information that is
necessary for the PDPs to make a decision. In addition, the PDPs need to interact with the PEPs,
therefore additional semantics must be built into the protocol to enable communication with a
particular PEP. Building protocols with these properties is also one of the aims of our next stage of
research.

1.1. FAIN PBNM Management Architecture

The FAIN PBNM management architecture is designed as a hierarchically distributed architecture,
consisting of two levels (two-tiered architecture): the network management level, which encompasses
the Network Management System (NMS) and the element management level, which encompasses the
Element Management System (EMS).

Furthermore, the defined policies have been categorised according to the semantics of
management operations, which may range from QoS operations to service-specific operations.
Accordingly, policies that belong to a specific category are processed by dedicated Policy Decision
Points (PDPs) and Policy Enforcement Points (PEPs).

The NMS is the entry point of the management architecture. It is the recipient of policies, which
may have been the result of network operator management decisions or of service level agreements
(SLA) between ANSP & SP, or SP & C. These SLAs require reconfiguration of the network, which is
automated by means of policies sent to the NMS.

Network-level policies are processed by the NMS PDPs, which decide when policies can be
enforced. When enforced, they are delivered to the NMS PEPs that map them to element level
policies, which are, in turn, sent to the EMSs. EMS PDPs perform similar processes at the element
level. Finally, the AN node PEPs execute the enforcement actions at the NE.

NMS

PEP

REP

PDP

AN
NodeVE

PEP

EMS

PDP REP

EMS

PDP REP

AN
NodeVE

PEP

NMS

PEPPEP

REP

PDPPDP

AN
NodeVE

PEP

AN
NodeVE

PEP
VE

PEPPEP

EMS

PDP REPPDPPDP REP

EMS

PDP REPPDPPDP REP

AN
NodeVE

PEP

AN
NodeVE

PEP
VE

PEPPEP

Figure 3. A hierarchical view of the FAIN Management Architecture

The use of this “policy control configuration model” [8] and its use in a hierarchically distributed
management architecture combines the benefits of management automation with reduction of
management traffic and distribution of tasks.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 10

As the FAIN management architecture is based on the FAIN Business Model, the relationship
among the three main actors, namely, ANSP, SP, and C, is projected directly onto the architecture.
Accordingly, each one of these actors may request and get his own (virtual) management architecture
through which he is enabled to manage the resources allocated to the Virtual Environments (VE) of his
Virtual Network.

In this way, each actor is free to select and deploy his own model of managing the resources,
namely his own management architecture, which can be centralized, hierarchical, policy or non-policy
based. The complexity of the virtual network and the types of service that are deployed in it, dictate
the particular choice of management architecture by its owner. In addition, different management
architectures simultaneously coexist in the same physical network infrastructure as they may be
deployed by different actors. To this end, we create an environment that is capable of accommodating
opposing requirements, an accomplishment that is beyond the capabilities of the traditional approach
of monolithic architectures.

Our model extends the Tempest approach [9] to the management plane, which was the first to
advocate the simultaneous support of (virtual) control architectures for ATM networks.

It also extends the scope of Management by Delegation (MbD) [10] as it allows delegation of the
network management responsibility to a third party, e.g. an SP, which can be deployed and hosted in a
separate physical location from the NMS of the owner of the network, e.g. the ANSP.

Figure 4 illustrates the aforementioned discussion. Starting with the management architecture of
the network operator, namely the ANSP, it instantiates and registers a new Management Instance
(MI), which is delegated to one of his customers, i.e. the SP. This management instance will host the
SP’s management architecture. The SP has the option to buy from the ANSP an instance of the
ANSP’s architecture, in our case a policy-based one. To this end, the network management
architecture developed by the ANSP is not only used for managing the Network Elements (NEs) but it
becomes a commodity, thus creating another important source of income for the ANSP.

Furthermore, the ability of the ANSP to generate and support multiple management domains may
create additional business opportunities. For example, the ANSP may build an OSS hosting facility for
SPs to instantiate their own management architectures. In this way, the ANSP may sell both his
expertise in running and operating an OSS as well as the architecture and its corresponding
implementation.

In contrast, the SP does not need to build his management architecture from scratch but can
customise an existing one according to the services he intends to run. Alternatively, the SP may deploy
his own management architecture using the OSS hosting facility provided by the ANSP, so reducing
the cost of managing the network.

In FAIN we have focused and experimented with the automated instantiation of management
architectures using as a blueprint the PBNM system of the ANSP to instantiate another management
system for the SP. Note also that this instantiation relationship can be recursive in the sense that the SP
may further delegate his own instances to a Consumer.

Finally, the architecture of the MI used by the ANSP has been designed in such a way that it is
dynamically extensible in terms of its functionality, as a result of using active networks technology.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 11

The ANSP’s management architecture can be extended in two distinct ways: a) deployment of a
whole new pair of PDP/PEPs that implement new management functionality, or b) extension of the
inner functionality of existing PDP/PEPs. The former is triggered by the PDP Manager whereas the
latter is achieved by the PDPs themselves. The execution of the extension, namely fetching and
deploying the requested functionality, is the responsibility of FAIN’s Active Service Provisioning
(ASP) system [1].

ANSP Management Instance

Monitoring
system

PDP
Manager

Access Rights
Delegation

PDP

QoS
PDP

ANSP
proxy

PEP PEP

Other SP
Management
Instances

Resource
Manager

Delegation of
Management
Architectures

Policy Editor

Service
Specific

PDP

REP

PEP

Inter-PDP
Conflict
Check

ASP

Figure 4. FAIN Management Instances and their Components

One important assumption underlying the previously described virtual management architectures
is that well-established open interfaces and protocols have to be provided by the NEs. This may seem
from the outset to be a demanding condition but there is convincing evidence that there exists a strong
push towards ubiquitous open interfaces. Initiatives like the IEEE P1520 and lately the IETF ForCES
working group serve as a proof for such claims. Furthermore, the programmable and active networks
paradigm also relies on similar assumptions [12].

The FAIN prototype implementation is deployed on the pan-European FAIN testbed, an overlay
network connecting ten different sites. Initial trials have focused mainly on functional evaluation of
our management system, and in particular on the creation and usage of MIs and their extensibility
features.

1.2. FAIN Active Service Provisioning Architecture
Active Service Provisioning (ASP) is understood in the context of the FAIN project as system

aiming at deploying active services in the FAIN network. In general, active service deployment is
considered as a process of making a service available in the active network so that the service user can
use it. The deployment process is usually seen as a number of preparatory activities before the phase
of the service operation. The typical activities include releasing the service code, distributing the
service code to the target location, installing it and activating it.

Since the mid nineteen-nineties many efforts have been made to develop Active Networks
technology to enable more flexibility in provisioning services in networks. By defining an open
environment on network nodes this technology allows to rapidly deploy new services which otherwise
may need a long time and adoption of hardware.

The FAIN project follows an approach in which a number of existing and emerging active
network technologies are integrated. With regard to deployment, it proposes a novel approach to
deploying services in heterogeneous active networks. In particular, the FAIN approach to deployment
is characterised by the following:

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 12

• On-demand service deployment support. The ASP supports deploying a service whenever it is
needed. A service deployment may be explicitly requested by a service provider or by another
service already deployed or a management component.

• Component-based approach. Deploying and managing high-level services requires an
appropriate service model. While fully-fledged component-based service models are an integral
part of many enterprise computing architectures (e.g. Enterprise JAVA Beans, CORBA
Component Model, Microsoft’s.NET), it is not the case in many approaches developed by the
active networking community. The FAIN deployment framework is designed on top of a
component-based service model similar to the CORBA Component Model. The service model is
hierarchical in that service components may recursively include sub-components. This allows for
a fine-grained service description and composition.

• Network and node level architecture. To deal with complexity of deployment issues in active
networks, the Active Service Provisioning has been designed according with rule of separation
of concerns. The network-level ASP copes with network issues that include finding the nodes of
the target environment for a given service considering topological service requirements as well
as network link QoS requirements, for instance bandwidth. The node-level ASP, on the other
hand, is concerned with node specific requirements, including technology and other service
dependencies.

• Integrated Service Deployment and Management. The FAIN approach to service deployment is
tightly integrated to FAIN service and network management. On one hand, the ASP depends on
the service management framework implementing EE-specific deployment mechanisms,
including installation and instantiation. On the other hand, the target environment in which the
service is to be deployed are co-determined by the Network Management System The target
environment is defined to be a Virtual Active Network which is established by the FAIN
Network Management System. The VAN is created by the management system according to the
service requirements.

• Selective code deployment. The service code distribution is done by selective downloading
selected code modules from a code repository. The decision as to which code modules are
needed is made at the ASP components at the target active nodes.

• Support for heterogeneous services and networks. The ASP has been designed to enable service
deployment in heterogeneous networks. This is achieved by specifying an unified interface to the
node capabilities and a unified notation for describing service specification and the
implementation requirements. Whereas the CORBA technology is used to define the unified API
to the node, the XML technology is used to define the unified service description.

The main actors communicating with the ASP system are:

• Service Provider, or SP for short, composes services that include active components and
deploys these components in the network via the Active Service Provisioning, and offers the
resulting service to Consumers. The service provider is responsible for releasing and
withdrawing a service which includes a service version update or a complete remove of the
service from specific nodes or from the complete active network respectively. Furthermore, the
SP may be represented by the FAIN Network Management System with regard to initiation of
service deployment or service reconfiguration.

• Active Network Service Provider, or ANSP for short, provides facilities for the deployment
and operation of the active components into the network. Such facilities come in the form of an
active middleware, support of new technologies. ANSP is represented by Active Nodes which
are the target environment in context of deployment, which means that services may be deployed
in these nodes and use the node resources made available to them by the ANSP.

These roles are described in the FAIN Enterprise Model in more detail in Deliverable D1. The
main use cases of the ASP system are:

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 13

• Releasing a service. The Service Provider who decides to offer his service in the active network
has to release it in the active network. The service is released by making the service meta-
information and service code modules available to the ASP system.

• Deploying a service. After the service is released in the network, the Service Provider may want
to deploy his service so that it can be used by a given service user. It means finding a target
nodes that are most suitable for the given service installation, determining a mapping of the
service components to the available Execution Environments of the target node, downloading the
appropriate code modules, and finally installing and activating them.

• Reconfigure Service. The Service Provider or Network Management System on his behalf may
request changing the current configuration of the service. It may include modifying component
bindings, deploying additional service components or redeploying components that have been
already deployed.

• Removing a service. The Service Provider may request to remove a deployed service from the
environment it was deployed in. The ASP identifies the installed service components and
removes them from the EEs of the target environment.

• Withdrawing a service. A service released in the active network may be withdrawn so that is no
longer available to be deployed. The ASP removes the service meta-information and discards the
service code modules.

The FAIN ASP system has a two-layered architecture: the network level and node level. The
network level functionality is concerned with finding the target nodes for the service to deploy,
coordination of the deployment process at the node level, and providing a service code retrieval
infrastructure. At the node level, necessary service components are identified through code
dependency resolution as well as the deployment mechanisms, including service installation,
activation and pre-configuration are controlled.

The network level ASP system consists of three components: Network ASP manager, Service
Registry and Service Repository.

The Network ASP Manager serves as an access component to the ASP system. In order to initiate
the deployment of an particular service, a Service Provider contacts the Network ASP Manager and
requests a service to be deployed as specified by the service descriptor.

The Service Registry is used to manage service descriptors. Service descriptors are stored on it,
when a service component is released in the network. Network ASP Manager and the Service Creation
Engine (described below) may contact the Service Registry to fetch service descriptors. Finally,
service descriptors are deleted from the Service Registry, if a service is withdrawn from the network.
In figure 3 only one Service Registry is shown in the network. Of course, several instances with
possibly different content could be deployed in a network.

The Service Repository is a server for code modules. A code module is stored on the Service
Repository, when a service descriptor referencing the particular code module is released in the
network. The Code Manager, which is part of the node level ASP system and is described below, may
fetch code modules from the Service Repository. A code module is deleted, if a service descriptor
referencing the particular code module is withdrawn. As is the case for the Service Registry, several
Service Repositories may coexist in a big network.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 14

Deployment
Agent

Network
Service
Registry

Network
Service

Repository

Service
Provider

NMS

Network ASP
Manager

Active Nodes

Agency
Stationary
Agent

Mobile
Agent

Code
Manager

Service Creation
Engine

Local Service
Registry

Local Service
Repository

Node ASP

Node
ASP

Manager

Figure 5. FAIN Active Service Provisioning

Node Level ASP Design. On the node level, the following components make up the ASP system
as shown in the node ASP block: Node ASP manager, Service creation engine and Code Manager.

The Node ASP Manager is the peer component to the network ASP manager on the node level.
The network ASP manager communicates with the node ASP manager in order to request the
deployment, upgrading and removal of service components. The requests are dispatched to the service
creation engine, or the code manager, respectively, which implement corresponding methods.

The Service Creation Engine plays a major role in the node level deployment of service
components. Its main task is to select appropriate code modules to be installed on the node in order to
perform the requested service functionality. The service creation engine matches service component
requirements against node capabilities and performs the necessary dependency resolution. Since the
service creation engine is implemented on each active node, active node manufacturers are enabled to
optimise the mapping process for their particular node. In this way it is possible to exploit proprietary,
advanced features of an active node.

The selection of service components is based on service descriptors that are retrieved from the
service registry. As a result information about code modules that are to be installed on the particular
node (a so-called service tree) is passed to the Code Manager.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 15

The Code Manager performs the execution environment independent part of service component
management. During the deployment phase, it fetches code modules identified by the service tree from
the service repository. It also communicates with Node Management to perform EE-specific part of
installation and instantiation of code modules. The Code Manager maintains a database containing
information about installed code modules and their association with service components. If a particular
service component needs to be removed this database is consulted in order to find out which code
modules are associated with the component and, as a consequence, must be removed as well.

Please note that information fetched from service registry and repository is locally stored in their
respective cache (local service registry, local service repository) in order to optimise recurrent service
deployment requests.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 16

2. POLICY-BASED NETWORK MANAGEMENT SYSTEM

2.1. Introduction
This chapter describes the network management system that was developed in FAIN. Together

with the Active Service Provisioning (ASP) system, the FAIN network management system, namely
the network-level management system and the element-level management system, constitutes the
FAIN management system. Within the network and element management systems, we identify
common ‘core’ components that represent the novelty of our policy-based approach. We first describe
these core components before proceeding to explain how the network and element-level
implementations inherit from the common features particularising them in order to cope with the
expected functionalities at each level.

2.2. Common Components
The following section introduces, through a set of use cases, the basic functionalities of this core

policy-based management sub-system. The next section describes all the components that form this
core.

2.2.1 Common Use Cases
This section describes the main common use cases of the core management system, which are

shown in the use case diagram in Figure 6.

Figure 6. Use Case Diagram for Common Components

All the functionalities represented by these use cases are supported by the core policy-based
management framework, and therefore by both the network-level and element-level management
systems which extend from it.

NIP, ANSP, SP or
Consumer

provision policy

<<communicate>>

Deploy Management
Functionality

<<extend>>

Enhance PDPs
Policy Knowledge

<<extend>>

ASP

<<communicate>>

<<communicate>>

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 17

2.2.1.1 Provision Policy
This is probably the most important use case for a policy-based management system. It represents

the basic policy processing functionality. That is, the ‘provision policy’ use case encompasses all
functionalities realised in our management framework each time a policy is introduced in the system.
The activity diagram in Figure 7 shows the main functionality within the provisioning use case.

Figure 7. Activity Diagram for Core PDP Component

First, the pre-processing functionality, which is realised outside any management instance1 checks
the identity through its credentials, of the actor that intends to use the management system and
demultiplexes the policy to the corresponding management instance.

1 A management instance can be seen as a sandbox where all components running have the same owner.

Each management instance has, at least, one component: the PDP Manager. For the ANSP it is formed by a PDP
Manager, a QoS PDP/PEP and a Delegation of Access Rights PDP/PEP. All these components will be described
in more detail later on.

check
identity

wait for
policies

forward to
management instance

success

fail

check access
rights

fail

check if needed Functional
Domain is installed

success

Deploy Functional
Domain

no

make
decisions

send events

register
events

event
processing

enforce
decisions

store
policies

Check if needed PDPs Policy
Knowledge is installed

yes

Enhance PDPs
Policy Knowledge

yes

no

check
identity

wait for
policies

forward to
management instance

success

fail

check access
rights

fail

check if needed Functional
Domain is installed

success

Deploy Functional
Domain

no

make
decisions

send events

register
events

event
processing

enforce
decisions

store
policies

Check if needed PDPs Policy
Knowledge is installed

yes

Enhance PDPs
Policy Knowledge

yes

no

Actor Owner
Management Instance

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 18

Once the policy is dispatched to a particular management instance the steps that will be followed
are as follows:

• Check the actor rights within the management instance. Each management instance has an
associated profile. Here, we define what the actor is allowed to do and the maximum amount of
resources that can be allocated. This profile has been implemented as an XML schema used to
validate the incoming request in the form of XML policies.

• Extend the management functionality through the download of new components to correctly
process the policy. This feature is explained by the use case called ‘Deploy Management
Functionality’.

• Where necessary, extend the management functionality of the PDP by upgrading the action and
condition interpreters. The ‘Enhance PDP’s Policy Knowledge’ use case further explains this
functionality.

• Execute the core policy functionality (the list below identifies the most common functionality in
a policy-based system):

o check policy syntax and semantic conflicts

o store policy in the repository

o make decisions about when a policy should be enforced based on events received
through the event processing functionality

o enforce decisions

2.2.1.2 Deploy Management Functionality
Another basic feature of an Active Networks management system is its ability to extend itself with

functionality, unforeseen at development time. For this reason, it requires an appropriate mechanism to
add new functionality a run-time.

Once the management system detects that it must be extended, it requests the ASP framework to
deploy the required functional domain2. Henceforth, the functionality to forward the request begins.

2.2.1.3 Enhance PDP’s Policy Knowledge
This use case is an enhancement from the previous one. The management system is able to accept

new policies from an already existing functional domain by triggering the deployment of new
action/condition interpreters.

The Fain Policy Rules are PCIM3-compliant. The system extracts the appropriate fields to
determine which class is responsible for interpreting the condition and action fields included in the
incoming policy request. If the system detects that the required class this is not located in the local
system it issues a request to the ASP to transport the corresponding code package from the network
code repository to the local code repository. Henceforth the functionality for processing the request is
resumed.

2 Functional domain must be understood as all required components needed for processing policies that have

conditions and actions that conceptually address a common management goal i.e. QoS, Delegation of Access
Rights, and performance.

3 The Policy Core Information Model (PCIM) describes the generic policy entities (policy groups, rules,
conditions and actions) and their relationships in a domain-independent manner. Appropriate extensions are
required in order to apply the PCIM to specific domains, such as QoS or security

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 19

2.2.2 Common Components Description
This section introduces the core components, depicted in Figure 8, that form part of the core

policy-based management system. The core components are used at both management levels, together
with level-specific components which might extend the core functionality and so realise level specific
functionality.

Figure 8. Architectural Model for Core System

In the following sub-section we will describe, these common components and their main
capabilities.

2.2.2.1 ANSP Proxy
Policies originating from the policy editor are sent to the Network level ANSP proxy. The proxy

has been introduced to enhance the security of the ANSP and/or of its customers, the SPs. It provides
authentication of the incoming requests (policies) and forwards the policies to the correct management
instances (MIs). Additionally, the element-level ANSP proxy receives policies from the network-level
PEPs and forwards them to the PDP Manager at the element-level.

The ANSProxy can accept policies coming from both the ANSP and the SP, even directly from
customers (end-users). The figures below show the case where policies are introduced into the ANSP
proxy through the Policy editor, however the users may be allowed to use their own facilities to create
policies and send them to the ANSP proxy directly. The NL PDP Manager always sends a report to the
ANSP proxy, that contains the policy deployment status. The ANSProxy forwards this report to the
Policy Editor. The use case diagram of the NL ANSPproxy is shown in Figure 9.

A n s p P r o x y

P D P M a n a g e r

P D P

i _ r e p o r t

i _ P d p M g r

i _ p d p
i _ r e p o r t

i _ r e p o r t

i _ A N S P r o x y

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 20

Figure 9. Use case diagram of the NL ANSProxy

A simplified class diagram of the NL ANSProxy is shown in Figure 10.

Figure 10. Simplified class diagram of the NL ANSProxy

The sequence diagram for the ANSProxy is shown in Figure 11.

NL PDP Manager

(from Use Case View)

Policy Editor

(from Use Case View)

ANSProxyImpl

forwardPolicy()
authenticateUser()
setReport()

(from Use Case View)

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 21

Figure 11. Sequence diagram of the NL ANSProxy

2.2.2.2 PDP Manager

Policy Editor :
i_PolicyEditor

NLANSProxy :
ANSProxyImpl

NLPDPManager :
i_PdpMgr

forwardPolicy()

authenticateUser()

setPolicies()

setReport()
setReport()

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 22

Figure 12. An Architectural Model for PDPManager

The PDP Manager is responsible for forwarding received policies to the appropriate Policy
Decision Point (PDP). If the corresponding PDP is not installed, the PDP Manager requests the ASP
system to download and install it, thereby extending the management functionality of the system as
required. The sequence diagram in Figure 13 illustrates how the aforementioned extension is achieved.

Figure 13. Dynamic Installation of a PDP

FwC

i_PdpMgr

PdpMgr

i_core

Repository
i_repository

DMgr
i_domainManager

PDPLC

i_pdpLifeCycle

PDPUI
i_pdpUnInstaller

i_report

i_ListenSchedEvent

[1]
[2]

[3]

[4]

ASP

[5]

PDP Manager

PDPs

[6]

ARC
i_arc

[7]

 : Customer ANSP
Proxy

PDP
Manager

Domain
Manager : ASP

PDP

1: dispatchPolicy()

2: forwardPolicy()

3: setPDP()
4: downloadCode()

6: createPDP

7: setPolicies()

5:

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 23

The Domain Manager (DMgr), a sub-component of the PDP Manager, is responsible for
interacting with the ASP and instantiating the new PDP. Once the new PDP is deployed, the PDP
Manager forwards the policy to it.

The PDP Manager also acts as a control point, as it has all the necessary information to understand
the policy processing state. As an example, imagine that two different policies must be deployed but
the second is only deployed if the first is successfully enforced. In this case, the PDP Manager keeps
the second one in a halt state, until it receives notification of the first policy’s successful enforcement.

Such a situation occurs, for instance when an SP requests the instantiation of a new virtual
network and its corresponding Management Instance (MI). In this case, the PDP Manager receives two
different types of policy, the QoS policy and the Access Rights Delegation policy. Following the
described procedure it then installs the QoS policy (an action that requires admission control) and only
when there are sufficient available resources (it receives the success notification) does it attempt to
install the delegation policy. Only when both installations are completed successfully, does it
instantiate the new MI and hand it over to the SP. Again, the entity responsible for the instantiation of
the new MI is the Domain Manager.

Figure 14 shows the main components that form the PDP Manager and how they are inter-
connected. The numbers show the flow that an incoming request follows.

When a policy is received: The ForwardController (FwC) (1) stores it in the repository before
forwarding (2) it to the PDPMgr component. The latter will: first ask (3) the ARC component to check
the access rights of the actor that sent the request; secondly, it requests (4) from the Domain Manager
(DMgr) the reference of the PDP responsible for processing the policy. As we have mentioned above,
the Domain Manager checks if this PDP is already running in the system and if not, it will perform the
requisite installation. If the code required is not found locally, the Domain Manager contacts (5) the
ASP to download it into the local cache. The installation procedure is then resumed. Once the new
PDP is up and running, its reference is stored and returned back to the PDPMgr, who will use it to
dispatch (6) the policy to the referenced PDP.

The PDP uses (7) the “i_report” interface to report the policy enforcement status of the policies
dispatched to it. Then, the FwC component locally updates the status of the policy and checks whether
there are more policies belonging to the same policy group waiting to be deployed. If so, then it
restarts the process and notifies the PDP.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 24

Figure 14. Use Cases for PDP Manager

Figure 14 illustrates the main use cases of the PDP Manager component. The mapping of these use
cases with sub-components is:

The “Forward Controller” (FwC) component implements the functionality of the “control of
forwarding of policy sets” use case. When a policy arrives, it checks if it is single policy or a policy
set. In the case of a policy set FwC splits the set into individual policies, obtains the set forwarding
mode and forwards the individual policies accordingly.

 The “PdpMgr” sub-component co-ordinates the core behaviour of PDP Manager. It uses the
Domain Manager component (DMgr) to realise the “findPDP” use case and, if the PDP is not found, it
requests its installation to the DomainManager. The PdpMgr sub-component is also responsible for
forwarding the policy to the PDP once it is installed. Then, it realises the register caducity use case
using the Policy Lifecycle (PDPLC) sub-component.

The “Policy Lifecycle” (PDPLC) sub-component implements the functionality of the “check PDP
Life Cycle” use case. It periodically checks if a PDP has expired. If so, it contacts the “PDP
Uninstaller” in order to remove it, so fulfilling the “uninstall PDP” use case.

The DomainManager sub-component implements the functionality of the “findPDP”,”Control
LifeCycle Functional Domain”, “Deploy Functional Domain” and “Release Functional” use cases.
The DomainManager sub-component allows the management framework to dynamically upgrade
itself with new management capabilities. That is, it allows the management system to extend itself by
downloading and creating an instance of a new functional domain.

The uses cases realized by this component are:

ANSP Proxy

Control of Forwarding
 of Policy Sets

<<communicate>>

PDP

Forward Policy

<<communicate>>

Uinstall PDPRegister Caducity

Find PDP

Deploy
Functional Domain

Check
PDPLifeCycle

Control Life Cycle
Functional Domain

<<include>> <<include>>

<<include>>

<<include>>

<<extend>>

Release
Functional Domain

<<include>>

<<extend>>

ASP<<communicate>>

<<communicate>>

Instant iate
Functional Domain

<<include>>

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 25

Find PDP: As previously described, when “PDP Manager” wants to retrieve the reference of a
specific PDP, which belongs to a particular functional domain, it asks the DomainManager for this
reference. Then the DomainManager looks in the local cache to see if the PDP is running on the
system. If so, it returns its reference (IOR of the PDP), otherwise, it tries to create a new instance. If
the code is already downloaded into the “classpath” then it returns a reference to the new instance, but
if it does not have this code (it is not in the “classpath”), then it requests the ASP to initiate
deployment of the code that implements the functional domain requested. Once the ASP has
downloaded the code requested, it notifies the DomainManager which then creates a new instance and
returns the reference of the newly instantiated PDP to the PDP Manager.

Control lifecycle Functional Domain: The DomainManager is responsible for triggering
deployment of functional domains using “Deploy Functional Domain”. It also maintains the references
of the currently instantiated functional domains, and provides these references to surrounding
components, which use them to access the different components that comprise the functional domain
(PDP/PEP).

Instantiate Functional Domain: A functional domain can be composed of more than one
component, e.g. it can be composed of two components a PDP and a PEP., Currently the PDP is
instantiated inside the management station (NMS, EMS). The PEP could be instantiated in the
management station or in a VE inside a FAIN Active Node. When in the Active Node, the ASP system
is responsible for instantiating the component.

Deploy Functional Domain: As already explained, when a PDP or PEP is not found locally, the
DomainManager obtains from the ASP system the corresponding code. The policy has enough
information to identify the functional domain responsible for processing the incoming request. This
information is used to determine if the particular functional domain components are already running in
the system or instead, they are stored locally in the management station.

Release Functional Domain: When a functional domain will not be used anymore it needs to be
removed. The DomainManager is responsible for doing that. It will deactivate all those components
that compose the functional domain. It requests the removal of PDPs and PEPs instantiated in the
management system by contacting the “PDPLC” sub-component. If a PEP is located on a FAIN
Active Node, it contacts the ASP to remove it.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 26

2.2.2.3 PDP

Figure 15. Architectural Computational Model for PDP

The FAIN management architecture accommodates different types of PDP, each one making
decisions that apply to a specific functional domain, namely QoS PDP, Delegation of Access Rights
PDP and Service-specific PDPs. They all perform conflict checks that are meaningful within their
decision context (intra-PDP). In order to reach a decision, they also interact with other components
that assist the PDPs in making a decision, e.g. a Resource Manager for admission control.

PDP is the main component in policy-based management architecture. Its main functionality is to
check for possible syntactic and semantics conflicts in policies (sometimes, even try to solve these
conflicts). Another role of the PDP is to decide when a policy should be enforced, for which purpose
the PDP needs to receive information from the monitoring system. The third important function is to
forward decisions to PEP components for enforcement.

Figure 16 illustrates the main use cases of a PDP component. The darker use cases should be
extended and specialized for each management level.

Notification Channel

Core

Conflict
Checker

Evaluation

Condition
Interpreter Action

Interpreter

Scheduler

Register
Event

Monitoring
System

ASP

i_pdp

i_report

i_evaluate

i_reevaluate

i_interpret
i_interpret

i_regEvent

i_scheduler

PEPs

i_pep

i_confcheck

i_subscribe

[1]

[3]

[4]

[8]
5

[10]

[2]

[9]

PDP

Event
Interpreter

[5] [6]

[7]

i_interpret

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 27

Figure 16. Use Case Diagram for Core PDP

The numbers shown in Figure 16 illustrate the processing logic associated with the deployment of
a policy inside the PDP. All new incoming requests are received by the Core component, which is
responsible for (1) checking if the enforcement of the policy will conflict with policies already
enforced and running in the system. If there are no conflicts (2) the Core component sends the policy
to be evaluated. The Evaluation engine analyses the policy, asking (3) the Condition Interpreter if the
policy must be enforced immediately or whether it must wait until all the conditions evaluate as
“true”. In the case that some additional information is needed in order to take the decision, the
Condition Interpreter (5) will either configure the Scheduler (if it is a time condition) or the Event
Register (in case monitoring information is needed) and the Evaluation component will store the
policy in the database. The Event Interpreter (6) receives all registered events either from the
Notification Channel or from the Scheduler and contacts the Evaluation component (7) to re-evaluate
the affected policies, and the whole process starts again. When all conditions are met, the Evaluation
Engine initiates enforcement of the appropriate policies by requesting (8) the Action Interpreter
Component to execute them and by sending the decision (10) to the corresponding PEP so that they
are enforced.

Each PDP contains at least two types of component: the condition and action interpreters. These
components provide action and condition processing logic for those policy types that are handled by
the PDP. Each PDP has at least one instance of each type but they can be dynamically extended to
accommodate more interpreters capable of processing new actions and conditions conveyed by the
policies. The generic Condition and Action Interpreter make use of a particular field, inside the policy,
to decide which particular action and condition interpreter should be used to process it. This particular
processing logic is specific for each policy and hence for each functional domain and for each
management level, i.e. there are condition/action interpreters specific to the element and network
levels.

Syntactic
Checking

Semantic
Checking

PDP
Manager

Check Conflicts

<<include>>
<<include>>

Process Policy

<<communicate>>

<<include>>

Monitoring
System

Scheduler

Enfoce Decision PEP

<<communicate>>

Make Decision

<<include>> <<communicate>>

<<communicate>>

<<include>>

DB

<<communicate>>

Syntactic
Checking

Semantic
Checking

PDP
Manager

Check Conflicts

<<include>>
<<include>>

Process Policy

<<communicate>>

<<include>>

Monitoring
System

Scheduler

Enfoce Decision PEP

<<communicate>>

Make Decision

<<include>> <<communicate>>

<<communicate>>

<<include>>

DB

<<communicate>>

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 28

Figure 17 illustrates the sequence of events that take place when a new action interpreter is
deployed. A generic Action Interpreter, acting as manager, becomes the recipient of all action requests
carried by the policy. If there is an appropriate action interpreter already deployed in the PDP, the
generic Action Interpreter forwards the request for further processing. Otherwise, it contacts the ASP
in order to retrieve the action interpreter capable of processing the particular request.

 : ASPPDP
Manager

PDP Action
Interpreter

Class
Loader

QoSAlloc
Action : ActionInterpreter

1: setPolicies()
2: Evaluation()

3: interpretAction()

4: getInstance()
5: downloadCode()

6:
7: createInstance()

8: execute()

Figure 17. Dynamic Installation of an Action Interpreter

2.2.2.4 Monitoring System
Policy decisions rely on both local and global network status information. While PEPs are

unsurpassable sources of device-specific data, a monitoring system is required to provide an overall
picture of the network state. Obtaining such a picture in an Active Network, where new modules,
service components and resource abstractions are constantly incorporated, is a challenge in terms of
extensibility, scalability and efficiency.

These properties are architecturally addressed within the monitoring system in various sub-
systems on both the network and element-levels. Indeed, grouping these trends in terms of
responsibility led to the adoption of a layered architecture as shown in Figure 18. The three layers
reflect the different aspects of the monitoring activity: while the acquisition layer gathers and
processes data coming from network entities (offered by the active nodes through resource abstraction
interfaces), the distribution layer permits an efficient delivery of such information to the PDPs through
an extended notification channel; thirdly, the policy-based control layer aims to make decisions
affecting the way the monitoring operations are carried out.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 29

Figure 18. The FAIN Monitoring System Architecture

Altogether, these layers apply a set of strategies that guarantee an immediate response either to the
appearance of new network elements or the need for new information processing methods, making the
monitoring system inherently extensible. Such strategies roughly pertain either to the group of
interface decoupling techniques or the application of the building block concept.

The first of these strategies, applied within the acquisition layer, relies on dynamically discovering
the interfaces of the target to be monitored and analysing how to access them. Then, a set of
parameters contained within runtime information (provisioned by the PDPs) is used to set up the
monitoring operation. Even external metering blocks are subjected to this type of configuration. This
approach makes it feasible to access components that were not initially foreseen and immediately
extends the policy-based configuration mechanisms to virtually any measurement element.

Dynamic analysis techniques are also applied to the events produced by event sources. Their
structures are traversed and the information they contain is reorganized for its automatic adaptation
and delivery as structured events, since their fields thus become capable of further filtering evaluation
within the notification channel.

In higher abstraction layers, the use of an event channel as the only means to interchange both
events and configuration orders (embedded in filtering constraints) guarantees interface independence
between the PDPs and the monitoring system.

Extensibility is also pursued by applying the building block concept to design the data processing
elements. Firstly, a set of basic and generic data manipulation blocks have been defined (threshold
surveillance, statistics blocks, etc). Secondly, appropriate rules for connecting such blocks into
manipulation chains have been specified. Finally, the configuration of the manipulation chains is
flexibly defined in monitoring policies. Altogether, these techniques are used to create new data
processing functionalities.

Flexibility is achieved through special features of the distribution layer. Through the use of a
notification channel, this layer decouples the PDPs from the network entities that generate the events.
Furthermore, the distribution layer ensures that events remain within limits. This feature and the
hierarchical arrangement of notification channels within the FAIN network promote scalability by
preventing unsolicited element-level events from reaching the network-level management PDPs.

2.2.2.5 Policy Parser
The policy parser converts XML encoded policies into their Java component counterparts. It

provides mechanisms for ensuring policy correctness and enables automatic generation of the XML
code corresponding to the different policy elements. The parser design distinguishes a set of structural
classes and a set of classes actually holding the information. The former provide the connection points
between the diverse information elements whereas the latter offer those fields defined in the XML
policy schemas, through their respective interfaces.

Mon

PDP

Sensor

Registry

PDP

ExtendedExtended

LDAP

EMS

1.- filter

2.- filter

3.- request

4.- policy

5.- response

MON PIB

COPS

Control

Distribution

Acquisition

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 30

One of the major features of this design is its extensibility. The structural classes contain
unmarshalling methods, which allow dynamic population of the policy structures with information
classes not even foreseen at design time. The information class lookup is performed based on the data
held in the XML policy itself, and is therefore a self-sufficient mechanism. Extensibility is also
improved by the fact that each class holds its own marshalling and unmarshalling code, so that each
new class embodies an “ad hoc” parser, able to interpret the corresponding XML document.

In order to keep the design sufficiently simple and robust, only two main API subsets have been
defined: those accessor methods for retrieving and storing the policy information and those methods
for realizing the marshalling and unmarshalling procedures.

Nevertheless, after analysing the API from the user perspective, it has been found useful to
provide an additional interface for performing the direct parsing of a complete XML document,
making use of the methods offered by the rest of policy classes. This entry point facilitates the correct
use of the API, completely isolating the applications from the XML document management.

Figure 19. Parser facade class diagram

The parser provides an additional easy-to-use method for validating the XML policy against a
specified schema. Simplifying the use of the parser has been a major design goal that led to the
definition of an API which reproduces the fields defined in the XML schema. The use of accessor
methods and the implementation of the serializable interface favour the dynamic discovery of the
policy properties using introspection mechanisms.

Figure 20 displays the main relationships between the classes involved in supporting the policy
information. Each policy holds a list of ConditionReferences and ActionReferences as well as the set
of attributes defined in the IETF specifications. The ConditionReferences and ActionReferences point
to PolicyConditions and PolicyActions respectively, thus acting as general containers. Each policy
class maintains a JDOM eElement as a private attribute, which is joined to the particular part of the
main XML document associated to the policy.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 31

Figure 20. Policy Components Class Diagram

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 32

The policy parser maintains an updated copy of the XML document, minimizing the amount of
memory required to hold the data field values. This strategy also benefits the overall performance in
two ways: firstly, the unmarshalling operations are delayed until the moment the information is
actually required;. secondly, the marshalling procedures are carried out as soon as the information is
available which decreases the time required to provide the complete XML document once requested.

Finally, the parser classes implement the storable interface defined as part of the database
package. Through this interface, the classes hierarchical relationship information is provided to the
policy database controller in a flexible way.

Different types of policy conditions are represented as sub-classes of the PolicyCondition, as
shown in Figure 21. The creation of complex policy conditions is automatically managed by the
CompoundFilterConditions, which finally store the resulting set of ConditionsReferences. An actual
implementation of conditions is provided by the SimplePolicyConditions, which maintain the
relationship between PolicyVariables and a PolicyValues.

Figure 21. Policy Condition Class Diagram

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 33

PolicyActions follow a similar approach. Actions that are specific to different technology domains
extend the fainSimplePolicyAction, which includes basic code for storing and manipulating the JDOM
eElement. The following figure is a simplified diagram of the classes involved in supporting policy
action operations.

Figure 22. Policy Action Class Diagram

2.2.2.6 Policy Repository
The policy repository is supported on a LDAP directory, which provides content-based policy

searches and distribution transparency. These features make it suitable for providing scalable storage
solutions in network wide systems, such as the fain management system.

In general, accessing LDAP directories from Java applications is enabled through the use of the
JNDI (Java Naming and Directory Interface) API. JNDI offers an abstract view of the LDAP
directory, hiding the LDAP specific operations under a standardised interface suitable for interacting
with different storage services that follow a similar approach. The following diagram illustrates the
basic blocks building the repository.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 34

Figure 23. Policy Repository Access Interface Structure

The LDAP directory might be accessed directly from the PDP internal components or through an
intermediate cache that would improve the overall efficiency.

A reduced set of requirements have determined the policy repository design, namely:

• Access to the repository shall be technology transparent. Neither LDAP nor JNDI specific issues
shall be exposed to the outside components visiting the policy database.

• A centralized component (controller) shall organise the directory look-ups.

• The policy directory shall provide searching mechanisms based on policy, condition or action
specific attributes.

As a design decision to enhance performance, only essential look-up attributes are stored in the
directory. Since only java applications are intended to access the directory, the impact of such decision
on interoperability is limited.

The policy directory basically consists of a database access controller and a series of state factories
and object factories appropriate for the different policy classes. As stated in [1], the database access
controller provides a simple query interface for efficient database searching operations. The main
responsibility of the controller is to “locate the requested policies, retrieve them and return them in an
appropriate format”. The controller is also in charge of directing the storage process according to the
specified hierarchical relationships.

The state factories and objects factories are merely format translators that convert java objects into
LDAP entries and vice versa, respectively.

Policy Repository
Interface

JNDI API

Name Manager

drivers

LDAP DNS

Policy Repository
Interface

JNDI API

Name Manager

drivers

LDAP DNS

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 35

Figure 24. Policy Repository Class Diagram

Each class that may be stored in the repository must implement the Storable interface that contains
operations for providing the hierarchical information not contained in the schema, and its identifier (a
distinguished name that must be obtained so that there is no collision when storing the entry in the
directory).

The policy schema defines the type of policy classes that can be stored in the LDAP database and
the valid attributes for each of them. The hierarchical relationships existing between the classes is not
reflected in the schema but maintained on the directory structure itself (as in the case of a filesystem).

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 36

2.3. Network-level Management System (NMS)
Three additional components make the NMS distinct from the element-level management system:

the Service Manager (SM), the Resource Manager (RM) and the Inter-Domain Manager (IDM) which
support service deployment, decision-making with regards to resources control, and inter-domain
communication respectively. The roles of these components deal with network-wide issues. The SM
is responsible for setting up a VAN for a particular service used by a specific SP. Furthermore the SM
is responsible for initiating the deployment of the service on the created VAN.

The RM component provides to PDPs the best domain wide route according to resource status.
The inter-domain component is responsible for furnishing the mechanisms for communication with
other domains. In the PBNM system, the inter-domain component is responsible for conveying and
managing requests over FAIN domains. Figure 25 illustrates the management system’s components
and how SM, IDM and RM are integrated within the NMS.

Figure 25. Architectural Model for NMS

2.3.1 Use cases
This section describes the main use cases, which are more closely related with the network level

than with the element level. The use cases, which will be covered, are the delegate management
functionality, the manage service, the inter-domain management, the use management instance and the
signalling.

ANSP Management Instance

Monitoring
system

PDP
Manager

Access Rights
Delegation

PDP

QoS
PDP

ANSP

proxy

PEP PEP

Other SP
Management
Instances

Resource
Manager

Delegation
Manageme
Architectur

Policy Editor

REP

ASP

Service
Manager

Inter Domain
Manager

Access
Rights
Check

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 37

Figure 26. Use Cases for PBNM

Delegate Management Functionality: The delegate Management functionality use case is
conceptually almost identical to the provision policy use case explained in the core use cases section.
The only difference is that, in this case, the provisioning actions are the creation and activation of a
Virtual Active Network (VAN) and a management instance for a new actor with certain access rights.

As previously described, most of the functions are the same as those defined for the provision
policy use case. For this reason we will not repeat them here, but will simply.highlight the main
features of the delegation of management functionality use case. As stated in the diagram, this use case
can only be realised by the NIP, ANSP or SP actors, and not by the Consumer since it cannot delegate
management functionality to any other actor.

Manage Service: A new function included within the FAIN management framework is reflected
in the “Manage Service” use case. As stated in the use cases diagram NIP, ANSP and SP can in theory
realise this use case each time the SP wants to deploy a service the Service Manager (this component
will be describe later). SM will coordinate the creation of a VAN for deploying a given service as
follows:

• Retrieve from ASP all topological requirements associated to the given service.

• Generate the appropriate policies for allocating resources along the VAN path to be created

• Generate the appropriate policies for delegating management functionality on the appropriate
Virtual Environment nodes that constitutes the VAN.

• Communicate with ASP to trigger deployment of the given service within the already
created/activated VAN.

Inter Domain Management: This is a new feature included within the FAIN management
framework. It is mainly used to allow a FAIN ANSP to manage requests over FAIN domains. This
happens when an SP wants to deploy a service over different administrative domains. For instance it
allows the Resource Manager to provide the best route across different domains.

NIP, ANSP, SP

provision policy

Create VAN Activate VAN

delegate mana gement
functionality

<<extend>>

SP,Consumer

Use Management
Instance

<<include>>

<<communicate>>

<<communicate>>

EMS

Request Decision
Through Signalling

<<include>>

calculate VAN

<<include>>

<<include>>
<<include>>

Manage Service<<include>>

<<communicate>>

ASP

<<communicate>>

<<communicate>>

Inter Domain
Management

<<include>>

IDM, SM peer
domain

<<communicate>>

PBANMS

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 38

Use Management Instance: As stated in the use case diagram the SP and authorised Consumers
can make use of the functionality described by the “provisioning policy” use case to manage the
allocate resource and services.

Request decision through signalling: The signalling approach is another basic feature of a
policy-based system; where the managed device (AN) requests through the policy enforcement point
(EMS) a set of resources to the decision point (NMS). Depending on the available resources, and on
the policies available in the system, the policy decision point decides whether this request should be
accepted, and thus whether the resources are allocated or rejected.

2.3.2 Application Programming Interfaces (API)
We describe the main interfaces offered by the NMS to external sub-systems.

Figure 27. Interfaces offered by an NMS

i_ServiceManager: The SM component presents this interface to Consumers and SPs or their
NMS, enabling them to initiate deployment of particular services within an administrative domain.

This is the IDL description of this interface:

EMS

ASP NMS

SP
Consumeri_ANSPProxy

i_ setReport

EMSs

i_ ANSPProxy

i_ ServiceManager

i_ InterDomainManager

NMS

i_ InterDomainManager

Administrative
Domain B

Administrative
Domain A

/** Service Deployment Wizard Interface.*/
interface ServiceDeploymentWizard:editor::ReportConsumer{

/** Triggers the creation of a VAN to afterwards deploy the service
given.*/

network::asp::ServiceReferenceInfos deployService (
in network::asp::ServiceName serviceName,
in network::VANNodes userNodes,
in tCredential credential

) raises((
network::asp::ServiceNotFound,

VANAllocationFailed,
network::asp::InstantiationFailed,
network::asp::ServiceComponentNotFound

);
….
};

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 39

Where:

Argument Name Argument Type Description

ServiceName String The name of the Service
to deploy.

UserNodes VANNodes Array of VANNode.
VANNode is a structure that
contains the attributes of the
sites to be interconnected. IDL
type defined as follows:

struct VANNode {
VANNodeID nodeID;
Properties props;

};

Credential tCredential Structure that contains the
attributes of the SP that
request the action. IDL type
defined as follows:

struct tCredential {
string name;
tOctetList key;

};

Returns ServiceReferenceInfos

Structure that contains handlers needed for accessing
to the service deployed.IDL structure defined as
follows:

typedef string ServiceComponentID;
typedef string ServiceReference;
struct ServiceReferenceInfo {

ServiceComponentID componentID;
ServiceReference serviceReference;

};

Exceptions Description

Network::asp::ServiceNotFound Raised when the Service Requested cannot be
found on the net Service Registry.

VANAllocationFailed, Raised when the VAN cannot be
created/activated due to a lack of resources.

Network::asp::InstantiationFailed Raised when there are any problems during the
Instantiation of any component that forms the
service.

Network::asp::ServiceComponentNotFound Raised when a service component

 i_ANSProxy: This interfaces is offered by the ANSProxy Component an is the initial access
point for to SP, ANSP, Policy Editor, and SM. ANSProxy receives a request in form of a policy and
then processes it.

This is the IDL description for the interface:

/** AnspProxy Interface.*/
interface iANSProxy {

oneway void forwardPolicy((in string policy));

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 40

Where:

Argument Name Argument Type Description

policy String String containing the
incoming policy. The policy is
defined following the PCIM
Information Model

Returns Nothing. It is an asynchronous call. A one-way
CORBA communication type.

Exceptions

i_setReport: This interface is offered by all the PEPs and is used for the EMSs to send a report
about the actual policy enforcement status.

This is the IDL description for the interface:

Where:

Argument Name Argument Type Description

Report t_Report Structure that contains attributes to show the actual policy
status enforcement. IDL type defined as follows:

enum t_policyStatus { INPROGRESS, DONE, FAILED
};

struct t_Report {
string owner;
string pdpName;
string policyRef;
t_policyStatus status;
string details;

};

Returns Nothing. It is an asynchronous call. A one-way CORBA communication type.

Exceptions

2.3.3 NMS Components

2.3.3.1 Policy Editor
The policy editor permits creation and modification of management policies in a graphically

assisted environment, as well as supervising the deployment of such policies within the network. To
enhance the manipulation of the policy information, it incorporates interpreters enabling the
translation of the XML structures into graphical elements that represent each of the policy
components. Such graphical elements are then hierarchically arranged in a tree panel, providing the
view of the policy layout.

interface i_setReport {
oneway void setReport(in t_Report report);

};

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 41

In the policy view (Figure 28) it is possible to conductfine-grain operations: for example, selection
of a tree element causes its associated attributes to be displayed in a property sheet, so that they can be
viewed or changed. In the tree view, new elements may be added directly into the policy structure.
This process is easily performed by selecting one of the available policy components (rule, condition
or action) in the toolbar and subsequently clicking on the desired point in the tree.

Once the policy is considered to be complete, deployment is initiated from the policy editor menu.
A validation process is automatically carried out before actually deploying the policy, and the user is
informed of any problems. The policy editor then contacts the ANSProxy and forwards the resulting
XML document through the i_ANSProxy interface.

During deployment, the editor gathers and displays the reports sent by the different entities
involved in the enforcement chain, which allows detection and location of any fault or conflict that
may arise, and facilitates its solution.

Figure 28 shows a snapshot of the policy editor with the main areas that have been formerly
described.

Figure 28. Snapshot of the FAIN Policy Editor

2.3.3.2 Service Manager (SM)
The service manager (SM) is responsible for setting up a VAN for a particular SP and service. It

receives (as input) the SLA (agreed between ANSP and SP) and sites to interconnect, as well as the
services to deploy. We refer to the first input as a static requirement, while the second and third are
known as context information, which are essentially dynamic requirements. The SM uses this
information together with the topological service requirements, imposed by the service (if relevant),
which are retrieved from the NetASP, to generate the appropriated set of NL QoS and Delegation of
Access Rights policies. As a result of the enforcement of these policies a VAN is created and SM
contacts with NetASP to trigger the deployment of the service on the VAN created.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 42

The figure below illustrates the sequence of events explained above.

Figure 29. Setup of a VAN for Deploying a Particular Service

2.3.3.3 Inter Domain Manager

2.3.3.3.1 Objective

To implement end-to-end negotiation as a service across the Internet, it is inevitable that the traffic
flow for the service must propagate across different domains. We define a domain as a collection of
nodes by a single administrative entity where security and management policies are uniformly applied.
The different administrative domains under discussion are owned by separate organisations.

The network management system must abstract the service request of an end-user within its
domain to present it to the target domain. For this reason, we assume that both source and destination
domains use the FAIN PBNM; and as such, will understand the service parameters for a particular
request.

2.3.3.3.2 Relation to previous work

In the WebTV scenario, the role of this component is highlighted for reservation of computational
and communicational resources for service deployment, particularly as requests occur between
different administrative entities. We note that even in the case of this simple scenario, we are
effectively propagating the video traffic across domain boundaries.

In our previous milestone (M5), we did not address how the administrator of Domain 1, i.e., its
ANSP, made sure that the administrator of Domain 2 would adequately provision the VE resource
parameters on the active node in Domain 2 to allow the transcoder to run. Domain 2 is, in fact, an ISP
to the group of customers, and nothing more.

SP ANSP Service
Manager

NetASP NMS

Negotiate SLA
Register Services

Deploy Service

Retrieve SLA Retrive Service
Topological

Requirements

Merge
Requirements

Generate
QoS & Del

Policies

Deployment of Policies

Report about Deployment

Deploy Service

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 43

 Domain 1

Domain 2

EMS
EMS

EMS
EMS

EMS

EMS

1. Initiation
2. Negotiation
3. Agreement
4. Enforcement

NMS

Inter-
domain

Manager

NMS

Inter-
domain

Manager

Edge
(egress)

router

Edge
(ingress)

router

Figure 30. An abstract depiction of the inter-domain manager

2.3.3.3.3 Relation to enterprise model

We suggest two options for the SP to propagate its reservation sequence throughout the Internet
domains in which it wants to set up a VE.

• An SP could separately negotiate with each ANSP the parameters for resource reservation per
domain via the ANSP’s network-level management system; or

• An SP could set out its requirements to a single ANSP, which would, in turn, negotiate the
desired VE parameters with its neighbouring domains, in order to satisfy the ‘least common
denominator’ for an agreement between their respective local policies

The end result for both options is a VAN established for the SP that encompasses multiple
administrative domains, achieved by means of an inter-domain management property within the FAIN
PBNM system.

As an example, when a WebTV client, say, at Domain 2 requests a service from the portal located
in Domain 1, the view of separate domains is transparent to the client as well as the SP, which is the
WebTV provider. An SP can request anything it wants, it is up to the ANSP to consider its
capabilities, by further negotiating with other ANSPs.

The IDM comes in when ANSPs need to negotiate with each other. The Resource Manager will
determine if this customer is in another domain. In IDM negotiation, if, for instance Domain 2 cannot
fulfil Domain 1’s requirement, it could offer a lower value. A successful negotiation will lead to a
request to create a VAN from AN1 (ETH) to C1, this new branch will be added to the existent SP
VAN.

As such, ANSPs need to derive contracts with other ANSPs to encompass the geographical spread
of their targeted client base. For example, the administrator in Domain 1 needs to establish a
relationship with Domain 2 in order to reach its customers.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 44

2.3.3.3.4 IDM design and relationship to other components within the NMS

Each element management system (EMS) only manages a single active node. A network-level
management (NMS) oversees these EMSs and the IDM is located within the NMS. We adopt the Java
Remote Method Invocation (RMI) as the communication channel for the distributed system.

In our design we established a repository that maps a destination address to an IDM, i.e., a ‘many-
to-one’ relationship. As such, an ANSP must register a list of destination addresses within its domain
on a repository that has a well-known address, so that this repository can provide a discovery
mechanism for mapping destination addresses to their respective IDM.

Within an NMS, the IDM interfaces with two other key components, i.e., the Resource Manager
(RM) and the Service Manager (SM) (see §§ 2.3.3.4and 2.3.3.2).

Negotiator RepositoryServerRequestorServerRequestorClient ServiceManagerResourceManager

setLocation()

relay()

getLocation()

trade() bargain()

reserve()
deployService()

Figure 31. Sequence diagram for the Inter-domain Manager

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 45

Aegress Bingress

EMS

EMS

NMS

EMS

EMS

NMS

Domain A
(ANSP A)

Domain B
(ANSP B)

Bdestination

Bintermediate

Asource Aintermediate

Figure 32. Simplest form of inter-domain interaction

The effect of considering an inter-domain view is as follows. The Resource Manager will invoke
the relay (Context, ServiceDescriptor) method on the IDM in Domain A. Context represents
the ingress IP and the destination IP of the reserved route. For ServiceDescriptor, it would be
sufficient to input the service component name. The RM should have no problem extracting this
information from the VANPath information that it has. The intra-domain process is stalled at this
point.

At the other end, the IDM in Domain A will request the IDM in Domain B to extend the VAN in
the neighbouring domain. The SM’s deployService (ServiceName, VANNode[], Credential)
method will be invoked by the IDM in Domain B. The VANNode array is a pair of ingress-destination
IP address abstracted form the context information obtained from the RM.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 46

This is the IDL description for the NMS interface is as follows:

2.3.3.4 Resource Manager
The Resource Manager (RM) is a component of the FAIN Network-Level Management

Architecture, which maintains a global view of the connectivity and the availability of resources in one
managed domain. The RM is used during the creation of a new virtual active network, for the
establishment of an end-to-end path for the installation of an active service. During these processes,
the RM has to communicate with both the QoS PDP and the ASP Network Manager.

First of all, the RM has to maintain the connectivity information of the active network. For this
reason it stores information about all the nodes and the links of the system. For each node, the
available properties are its public IP address, the private address, which the node may have inside the
FAIN testbed, the types of Virtual Environments, which are supported by the particular node, the links
attached to the node and finally the address of the Element Manager, which is responsible for this
node. For each link, the available properties are the IP addresses of the start and end nodes, the total
capacity of the link and the currently available bandwidth of the link.

#ifndef _idm_IDL_
#define _idm_IDL_
#include <netasp.idl>
#pragma prefix "ist_fain.org"

module nms {
module idm {

typedef string IPAdd;
typedef string QOSParameters;
struct Context { //information extracted from network-level QoS

policies forming the context
IPAdd ingress;
IPAdd destination;

};
struct QoS {

QOSParameters bandwidth;
QOSParameters cpu;
QOSParameters memory;

};
// Provides method for inter-domain reservation
interface Requestor {

exception InvalidRequest {};
void reserve((in

org::ist_fain::network::netasp::ServiceDescriptor descriptor,
in Context c)) raises ((InvalidRequest));

String trade((in QoS q)) raises ((InvalidRequest)); //
IDM negotiates with peer.

};

/** Gets (from a repository) the correct IP address of the
NMS and port

* that the peer IDM is listening to. Repository maps an
active node to an NMS.

*/
interface Repository {

exception MappingNotFound {};
IPAdd getLocation((in IPadd destination)) raises

((MappingNotFound));
void setLocation((in IPadd destination));

};

};
};

#endif // _idm_IDL_

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 47

Additionally, the RM stores a list of the Virtual Active Networks, which have been established in
the system. Each VAN is associated with a unique identifier.

Figure 33. Resource Manager Use Cases

2.3.3.4.1 Interface and operations

The interface offered by the RM is displayed below:
interface ResourceManager {

org::ist_fain::apbm::t_Parameter getPath(
in string ServiceName,
in string ActionMode,
in org::ist_fain::apbm::t_Parameter param);

emsList getEMS(in string VANid);

void vanStatus(in string VANid, in string status);

org::ist_fain::network::VANPath getVANPath(in string VANid);
};

The operations included in the Resource Manager interface is as follows:

org::ist_fain::apbm::t_Parameter getPath(
in string ServiceName,
in string ActionMode,
in org::ist_fain::apbm::t_Parameter param);

This operation is called by the QoS PDP, for the creation or the extension of a VAN. The
ServiceName input parameter is a string, which identifies the requested service. The ActionMode
parameter specifies whether the current operation requests the creation of a new Virtual Active
Network, or a modification to an existing one. The last input parameter, named param, contains a
sequence of name-value pairs, describing the topological requirements for the Virtual Active Network.

Set VAN status

Network ASP
Manager

NL Dlg. PDP

Get EMS

Calculate Paths

Get Path

Store VAN

NL QoS PDP

Get VAN

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 48

The return parameter of the operation also contains a sequence of name-value pairs, specifying the
created VAN.

emsList getEMS(in string VANid);

This operation is called by the Delegation PDP and returns a list containing the IP addresses of the
EMS nodes, which are responsible for managing all the nodes that belong to the particular VAN,
identified by its VANid.

void vanStatus(in string VANid, in string status);

This operation can set the status of a particular VAN. It is mainly used by the QoS PDP to remove
associated information from the Resource Manager when the establishment of a VAN fails for some
reason.

org::ist_fain::network::VANPath getVANPath(in string VANid);

This operation returns information about the nodes and links that belong to a particular VAN.

2.3.3.4.2 Functionality

The main role of the RM is to determine a suitable path for the installation of an end-to-end
service. The procedure is triggered by the QoS PDP, which calls the getPath operation, providing all
the resource and topological requirements of the service.

Looking at its internal database, the RM tries to find suitable paths in the network, which satisfy
the requirements given by the QoS PDP. If the search is not limited by other constraints, e.g. choose
shortest path, a set of different paths will result. All of these paths are candidates for the creation of the
new VAN, which will accommodate the service.

The selected paths fulfil the resource and topological requirements of the service. However, a
service can have additional requirements, which can be extracted from the service descriptor. The
Resource Manager does not have access to such information, as this lies within the domain of the
ASP, so the ASP Network Manager makes the final decision.

The Resource Manager sends the list of the valid paths, to the ASP Network Manager, via the
calculateBestCandidates operation and gets as output the most suitable path. For each path, the
Resource Manager also includes information about the properties of its nodes and links, based on
which the ASP Network Manager will be able to perform its requirements matching and identify the
most suitable path.

When the final path is returned by the ASP Network Manager, the Resource Manager stores the
new VAN and updates all related information, to reflect the establishment of the new VAN. Finally
the information about the new VAN is sent back to the QoS PDP, which will enforce the necessary
actions for the establishment of the VAN. If for some reason the new VAN cannot be successfully
setup, the QoS PDP can rollback the process by setting the status of this VAN to “FAILED”, which
leads to the removal of all information associated with it.

The Resource Manager also supports extension of an existing VAN, e.g. in the case where a
Service Provider has already obtained a VAN, but wishes to install additional service components to
offer his service to new customers. VAN extension follows the same procedure as VAN creation,
except that existing nodes are also taken into consideration.

2.3.3.5 Monitoring System

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 49

The monitoring system at the network-level is connected to the diverse notification channels at the
element-level, as any other consumer, providing the event correlation capabilities required to obtain a
precise picture of the active network status. The definition and design of appropriate filters avoids
event-flooding and provides the necessary degree of scalability. The monitoring policies at the
network-level define the composite events as a set of simple events produced in a specified order.
From the monitoring policy, appropriate filters are generated by a composite event controller and sent
to the EMS event channels. At the same time, appropriate components are configured in the NMS in
order to detect the appearance of a succession of events coming from either the same or different EMS
stations.

Figure 34. The Main NMS Monitoring System Components

The composite event controller generates composite event instances that become event consumers
subscribed to receive the events it is composed of. The configuration of the composite event leads to
the definition of an event matrix. Whenever an event is received by the composite event instance, it
checks the order of appearance (relative to the other events) and stores it in the event matrix. When the
event matrix is completed, a composite event is raised and appropriate alarms are generated in the
network level. The NMS monitoring system may also act as a server that simply gathers all the events
following a certain pattern or being associated to a given technology domain.

2.3.3.6 Quality of Service (QoS) PDP
The Quality of Service Policy Decision Point (QoS PDP) is a particularisation for QoS

configuration of the core PDP. That is, policies processed by this PDP are oriented to the
differentiation of certain flows, or groups of flows, with an enhanced quality of service. At the
network level this PDP component plays a fundamental role within policy-based management
architecture.

To develop all these capacities the QoS PDP needs to interchange information with monitoring
system and resource manager components and make proper decisions based on policy conditions and
network or node status. Besides, QoS PDP contains two types of components: the condition and action
interpreters. They provide action and condition processing logic for those policy types, which are
handled by this PDP. The QoS PDP can be dynamically extended by contacting the ASP system to
accommodate additional interpreters capable of processing new actions and conditions conveyed by
the policies. The more important interactions of the component are showed in Figure 35.

NMS

Extended

EMS

3.- FILTER

Extended

EMS EMS

Mon

PDP

Composite
Event

Controller

1.- PIB

2.- FILTER

composite

4.- EVENT

NMS

ExtendedExtended

EMSEMS

3.- FILTER

ExtendedExtended

EMSEMS EMSEMS

Mon

PDP

Composite
Event

Controller

1.- PIB

2.- FILTER

composite

4.- EVENT

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 50

Figure 35. Policy process by QoS PDP

As a part of our management system design, we have split the VAN specification into three main
branches: QoS Parameters, Computational QoS Parameters and Specific Service Requirements. When
QoS PDP receives a policy, only information relative to QoS Parameters like bandwidth and priority
are used, as previously mentioned this data are obtained from SLA between ANSP and SP. The
corresponding information of the other two branches is obtained from resource manager through the
monitoring system and ASP (details of this interaction are explained in RM sub-chapter).

The Action Interpreter contains the functionality to interact with the resource manager and
monitoring system components in order to request from them the path of actives nodes that will be
part of the VAN, as well as the information relating to computational QoS parameters and service
requirements, in which case this request needs to have additional service information, mainly the name
of the service, Virtual Network ID (VNID) and action mode (i.e. active, remove, modify, etc).

Once the resource manager sends back the chosen path, the QoS PDP adds this information to the
rest of VAN requirements and integrates them in a structure that is forwarded to the QoS PEP in order
to generate and distribute element level policies. The next section shows the information model
interchange between RM and QoS PDP.

6: calculateBestRoute()

QoS
PDP

Action
Interpreter

fainQoSAllocAction
1: setPolicies()

3: interpretAction()

4: executeAction()

5: getPath()

Resource
Manager

2: Evaluation()

: ASP: PDP Manager

6: calculateBestRoute()

QoS
PDP

Action
Interpreter

fainQoSAllocAction
1: setPolicies()

3: interpretAction()

4: executeAction()

5: getPath()

Resource
Manager

2: Evaluation()

: ASP: PDP Manager

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 51

2.3.3.6.1 RM – QOS PDP interaction information model

 We have two basic information structures, these are: “VAN Information” and “Topological
Information” within RM - QoS PDP interface as shown in Figure 36. The first structure contains the
information relating to VAN resource reservation while the second contains the information relating to
VAN user requirements. Below we have referenced the complete description of each structure.

Figure 36. Architectural Model for QoS PDP – RM Interface

2.3.3.6.2 Topological Information

Name: LinkConditions (This is the structure reference name)
Value:

Name: IngressLink
Value:

Name: QoSClass
Value: xxxxxxxx
Name: RequestBW
Value: xxxxxxxx

Name: EgressLink
Value:

Name: QoSClass
Value: xxxxxxxx
Name: RequestBW
Value: xxxxxxxx

Name: IngressIP
Value: xxxxxxxx

Name: EgressIP
Value: xxxxxxxx

The structure above is almost fixed compared with those following, due the fact that for each
service to deploy a VAN is necessary and this always has an Ingress and Egress IP, whose values for
our case are IP network address and mask (i.e. 10.0.0.1/32). The links element of the structure
contains, for example, information relating to the level of QoS and amount of bandwidth requested by
the user , both of which are integer numbers.

In order to activate a VAN the resource manager sends back a structure with information about the
target nodes, computational QoS parameters and service requirements. We show this structure below.
In the first part of the structure there are two values, firstly the ActionMode corresponding to the kind
of action that is requested from QoS PDP such as “activation” or “modify”, secondly VNId refers to
the identification of the VAN that is assigned by QoS PDP and is returned because is the case of VAN
extension we need to know this value from RM.

Resource Manager (RM)

i_getPath

QoS PDP

i_ setPolicies

Resource Manager (RM)

i_getPath

QoS PDP

i_ setPolicies

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 52

In the second part we have designed a sub-structure that contains the information relating to
Active Node (AN), as a special characteristic this sub-structure will be the same for all the ANs
involved in the VAN, with just the internal values being different. The meaning of each value is as
follows:

IPAddress: The network IP address with mask of the Active Node

EMS: The network IP address with mask of the EMS in charge of manage the AN

CPUPriority: An integer that indicates the range of policy importance or urgency

maxDiskSpace: The amount of hard disk space

maxMemory: The amount of memory

EEId: The kind of Execution Environment (EE) needed in the AN

As a general rule, if an AN is part of a VAN but no resources need to be reserved, then all the
fields involved remain blank.

Name: TargetNodes
Value:
Name: ActionMode
Value: xxxxxxxx

Name: VNId
Value: xxxxxxxx
Name: AN1
Value:

Name: IPAddress
Value: xxxxxxxx

Name: EMS
Value: xxxxxxxx
Name: CPUPriority
Value: xxxxxxxx
Name: maxDiskSpace
Value: xxxxxxxx
Name: maxMemory
Value: xxxxxxxx
Name: EEId
Value: xxxxxxxx (or empty, it depends on ASP information)

In the case of VAN Extension we have an additional structure, shown below. The main difference
from the last one is the name of the ANs involved, as we include only those nodes that are new in the
VAN, while the rest of the fields remain the same.

2.3.3.6.3 VAN Extension

Name: TargetNodes
Value:
Name: ActionMode
Value: 4 (Because 4 is the number for “modify” action)
Name: VNId

Value:
Name: Extended_AN1
Value:

Name: IPAddress
Value: xxxxxxxx
Name: EMS
Value: xxxxxxxx
Name: CPUPriority
Value: xxxxxxxx
Name: maxDiskSpace
Value: xxxxxxxx
Name: maxMemory
Value: xxxxxxxx
Name: EEId
Value: xxxxxxxx (or empty, it’s depends of ASP information)

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 53

2.3.3.7 Quality of Service (QoS) PEP
The Quality of Service Policy Enforcement Point (QoS PEP) component at the network-level has,

from the conceptual point of view, the same functionality as that at the element-level, except that
signalling support is not provided at the network level, for reasons given in the common components
section. However, the actual processes needed to realise the functionality (i.e. translation of policy
decisions into commands that are understandable by the target) vary significantly since these processes
at the network-level are policy translations from network to element-level policies. This fact is
reflected in the use case diagram shown in Figure 37.

The particularities of the network level QoS PEP in relation to the previously described element-
level QoS PEP are:

• Support for integration of computational service requirements, together with the topology and
quality of service requirements, concerning so that element-level policies can be generated.

• Distribution of policies to different EMSs in different systems from the target active node. In the
past it was necessary that the target node and EMS resided in the same machine in order for NL
QoS PEP to distribute policies to the EMSs.

• Previously the distribution of policies did not include any status control. One of the most
important changes in our design is policy status support, by which, for instance, the QoS PEP
receives several status reports from each of the element-level management stations that received
a policy to process.

• One important addition to this component is the ability to process several policies at the same
time, in order to enhance the performance of the policy distribution to EMSs. With this facility
our management system is able to deploy many VANs within the ANSP domain in parallel.

Figure 37. NL QoS PEP Use Cases

EMS

demux policies to EMSs

<<communicate>>

map action to interface

enforce decision

PDP

<<communicate>>

<<include>><<include>>

Parser Component translateToXML

<<extend>>

<<<<requests>>>

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 54

2.3.3.8 Delegation of Access Rights PDP
The Access Rights Delegation PDP is used to process Delegation of Access Rights policies. These

policies specify to what extent an actor is permitted to access network resources through the control
interfaces provided. In this way, by controlling access to resources, the operations on them are also
controlled, eventually restricting the capabilities of services that are deployed. In FAIN, the
Delegation PDP is used by the ANSP to determine what operations the SP’s services are allowed to
carry out on those network resources assigned to the SP as part of his virtual network creation.
Delegation of access rights policies involves the (re)configuration of the security components of those
nodes that form the topology of the SP virtual network. Every request to use a particular interface is
checked by the security component. Access is only granted to authorised entities.

At the Element Level, the Delegation PDP extracts the necessary security information from the
Delegation policy and then passes them to the Delegation PEP for enforcement.

The scope of the Network-level Delegation of Access Rights PDP is the same as in the Element-level
Delegation PDP (section 2.4.3.3). The only difference in the network-level, is that the functionality of
the Delegation PDP is more limited and after syntax checking the NL Delegation policy, it sends it to
the NL Delegation PEP for further processing. The use case diagram is shown below:

Figure 38. Use case diagram of the NL Access Rights Delegation PDP

The sequence diagram that shows the main interactions of the NL Delegation PDP is the
following:

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 55

Figure 39. Sequence diagram of the NL Access Rights Delegation PDP

2.3.3.9 Delegation of Access Rights PEP

The NL Delegation PEP, after receiving the Delegation policy from the NL Delegation PDP,
extracts certain parameters from it, and creates the Element Level delegation policies. It contacts the
Resource Manager to retrieve the Ids of the nodes on which the policies should be enforced, and then
sends the EL Delegation policies to the EL ANSP Proxy. Two types of Policy are created: the first
type describes the Access Rights that will be eventually be assigned to a component in a node, and is
called the Access Rights policy; the second type describes the components that will be instantiated in a
new domain, and. is called the Delegation of Management Functionality policy.

The Deleml1gen class shown in the diagrams below will generate the Access Rights policy
whereas the DelMgmteml1gen class will generate the Delegation of Management Functionality policy.
The parameters that will be retrieved from this type of policy will eventually be delivered to the PDP
manager (via the ANSProxy) that will perform the instantiation of the components in the new domain.
The use case diagram is depicted below:

NLPDPManager NLDlgPDP :
DlgPDP

fainDelegateAPIAction :
fainDelegateAPIAction

NLDlgPEP :
dlgpepimpl

Evaluation :
Evaluation

ActionInterpreter :
ActionInterpreter

create()

create()

create()
newInstance()

send_policy()

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 56

Figure 40. Use case diagram of the NL Access Rights Delegation PEP

The sequence diagram that shows the main interactions of the NL Delegation of Access Rights
PEP is the following:

Figure 41. Sequence diagram of the NL Access Rights Delegation PEP

NL DlgPDP NLDlgPEP :
DlgPEPImpl

DlgEvaluation :
DlgEvaluat ion

DlgActionInterpreter :
DlgActionInterpreter

NLDlgAction :
NLDlgAction

Deleml1gen :
Deleml1gen

DelMgmgeml1gen :
DelMgmteml1gen

ELANSProxy :
iANSProxy

send_policy()
evaluate()

execute()
execute()

write() forwardPolicy()

write() forwardPolicy()

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 57

A simplified class diagram is shown below:

Figure 42. Class diagram of the NL Access Rights Delegation PEP

NL Dlg PDP

(from Use Case View)

DlgPEPImpl

send_policy()

(from Use Case View)

DlgEvaluation

evaluate()

(from Use Case View)

DlgActionInterpreter

execute()

(from Use Case View)

NLDlgAction

execute()

(from Use Case View)

NLparams

Deleml1gen

write()

DelMgmte
ml1gen

write()

iANSProxy

forwardPolicy()

(from Use Case View)

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 58

2.4. Element-level Management System (EMS)
Figure 31 shows the main components of the EMS. We can also see here the common components

described in the previous section. In the following sub-section we will explain first the main interfaces
used to communicate with components outside the EMS. In the rest of the sub-section we will briefly
describe those components that are particular to the element management system.

Figure 43. Architectural Model for EMS

2.4.1 Use cases
This section introduces the main use cases, which are more closely related with the element level

than with the network level. The use cases to be covered are signalling, policy within active packet
and the fault-triggered management reconfiguration, as highlighted in Figure 44.

ANSP Management Instance

Monitoring
system

PDP
Manager

Access Rights
Delegation

PDP

QoS
PDP

ANSP
proxy

PEP PEP

Other SP
Management
Instances

Delegation of
Management
Architectures

Service
Specific

PDP

REP

PEP

Access
Rights
Check

ASP

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 59

Figure 44. Use Case Diagram for EMS

Before proceeding with the actual description of the use cases, please refer to the page xxx for the
list of acronyms used. This actor appears in the element level use cases because most of the changes
occurring at the element level are notified to the network level. Thus, the network level always has a
general view of the network resources and can act accordingly.

2.4.1.1 Automatic Reconfigure after fault
This use case is responsible for readapting the active node and network configuration when a fault

occurs.

The management framework, upon receiving the alarm of a fault occurrence, will determine the
policies that should be applied to correct the faulty situation. In that way the system is autonomous,
distributed and resolves problems and faults quickly.

The policy logic functionality in this use case is mostly the same as in the policy provisioning use
case with the exception that there is no new policy introduced, thus there is no need to store any new
policies in the policy repository.

As described above, the management instance will try to solve the problem, and if it succeeds,
then the configuration changes should be notified to the appropriate network level management
instance. However, it might be the case that for several reasons, the problem can not be solved at the
element level, then the element management instance will send an alarm notification to the network
level management instance to allow it to react accordingly.

PBANEMS

automatically
reconfigure after fault

provision policy
in active packet

request decision
through signal ling

NIP, ANSP, SP or
Consumer MI

NIP, ANSP, SP or
Consumer VE

<<configure>>

<<configure>>

<<configure>>

<<communicate>>

<<communicate>>

<<communicate>>

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 60

2.4.1.2 Provisioning Policy contained in Active Packet
The provisioning policy contained in Active Packet use case is the same as the provisioning policy

use case. There are new functionalities specifically added to the element management level. A policy
is included within an active packet and forwarded to the nearest management station each time it
arrives at a targeted active node. Since the nearest management stations to active nodes are the
element management stations, it is, in practice, applied only at the element level. Theoretically the use
case is applicable at both levels of the framework. The policy is stored at the element level policy
repository and a notification is send to the corresponding network level management instance. If the
policy had been sent by the network level this notification serves as a confirmation. Otherwise it
informs that a new policy, with its main properties coming from the virtual environment, has been
introduced at the element level management instance.

2.4.1.3 Request Decision through Signalling
The signalling use case specific to the element level management includes new functions:

• Demultiplex decisions to PEP: At the element level the PEPs are located within the active
node, particularly within the VE owned by the same actor as the management instance where the
decision is made. Therefore, since there might be the case that a single element management
system’s station manages several active network nodes, we will have a one-to-many relationship
between decision points and enforcement points. Hence, the component that realises the ‘make
decision’ function at the element level should be extended with the function necessary to find the
appropriate enforcement point where this decision should be forwarded.

• Dynamic conflict checking functionality: There is a need for checking possible conflicts
between different policies at the precise moment where the policy should be enforced. This
functionality is realised in part when the decision is made and in part when the decision has to be
enforced. The approach in FAIN is to avoid dynamic conflicts as much as possible, hence
making a clear and efficient allocation of resources whilst keeping different allocations
completely isolated from each other. Further dynamic conflicts will be dealt with as follows.
When a policy has to be deployed, it will be checked for conflicts, within the PDP, against other
policies in that PDP. If any conflict is detected, it will be resolved with policy priorities. If no
conflicts exist in this first step, the element management system will maintain its normal process
and will try to enforce the policy in the node. In this case, the enforcement point may find that
there are insufficient resources, that is, it detects a dynamic conflict. As such, the element
management system will only enforce that request if it comes from the owner of the
infrastructure, usually the NIP. If enforced, the node should notify the responsible entities of the
removed resources so as to allow them to react accordingly.

• Notify Configuration Changes to NL MI: When resources of others actors are released due to
dynamic policy conflict, as introduced above, this function would be responsible for notifying
the network level, which will, in turn, forward it to the relevant actors.

2.4.2 Application Programming Interfaces (API)

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 61

Figure 45. Interfaces Offered by EMS

This section describes the main EMS interfaces accessed by ANSP, SP, Consumer and other FAIN
systems in order to develop management tasks over FAIN Active Nodes.

i_ANSProxy: This interface is offered by the ANSPProxy Component and is the initial access
point for ANSP, SP, Consumer and NMS, as it receives a request in form of a policy. Once it is
received a set of events are triggered in order to start the logic processing of the request.

This is the IDL description for the interface:

Where:

Argument Name Argument Type Description

policy String String containing the
incoming policy. The policy is
defined following the PCIM
Information Model

Returns Nothing. It is an asynchronous call. A one-way
CORBA communication type.

/** AnspProxy Interface.*/
interface iANSProxy {

oneway void forwardPolicy((in string policy));

VE

ASP
EMS

ANSP
SP

Consumeri_ANSPProxy

PVEAN
VE

i_setReport

NMS

Notification Channel

i_setReport

StructuredPushConsumer

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 62

Exceptions

i_setReport: This interface is offered by all the PEPs/PDPs and is used for the PEPs running as an
active service inside the Privileged Virtual Environment (PVE) or VE (which are located inside AN)
to send a report about the actual policy enforcement status.

This is the IDL description for the interface:

Where:

Argument Name Argument Type Description

report t_Report Structure that contains attributes to show the
actual policy status enforcement. IDL type defined as
follows:

enum t_policyStatus { INPROGRESS, DONE,
FAILED };

struct t_Report {
string owner;
string pdpName;
string policyRef;
t_policyStatus status;
string details;

};

Returns Nothing. It is an asynchronous call. A one-way CORBA communication
type.

Exceptions

StructuredPushConsumer: provides the access point to the notification channel. Whenever the
probes running in the VEs or the privilege VE detect an event, they forward it to the notification
channel using this interface. The notification channel distributes them to the interested PDPs.

This is the IDL description for the interface:

Where:

Argument Name • Argument Type • Description

notification StructuredEvent Enable to map a wide variety of event formats to
a common structure. Each structured event consists
of an event header (with a fixed part and optional
header fields), the filterable event body which
enables applying filtering on the events and the

/** i_setReport interface.*/
interface i_setReport {

oneway void setReport((in t_Report report));
};

/** StructuredPushConsumer interface */
interface StructuredPushConsumer : NotifyPublish {

void push structured event(in CosNotification::StructuredEvent
notification)

raises (CosEventComm::Disconnected);
};

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 63

remainder of the body which is container for
transparently submit information to the PDPs.

• Returns void

• Exceptions Disconnected: when the PDP (consumer) is no longer connected to the
notification channel.

2.4.3 EMS Components

2.4.3.1 Quality of Service (QoS) PDP
This PDP is responsible for processing Quality of Service (QoS) Policies. By QoS policies we

mean those policies that allow differentiating a particular flow or an aggregated flow with an enhanced
quality of service. Currently the only way to differentiate among flows is to assigning them to a
different VE and assigning for each VE a particular resource profile. This resource profile consists of a
set of resources available at node level.

In FAIN we use QoS policies to trigger the creation of a VE and setting up a resource profile. The
resource profile at element-level is abstract enough to be able to give support to other
implementations. For this reason the task of mapping these parameters to particular parameters
understandable within the active node is performed by the PEP.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 64

Figure 46. Architectural Computational Model for QoS PDP.

The Figure 46 illustrates the architectural components that contain a QoS PDP. It is identical to the
Core PDP except that it includes more than just the generic Event/Condition/Action Interpreter. The
QoS PDP was designed by extending the core PDP component and implementing all the condition,
action, event interpreters required.

2.4.3.2 Quality of Service (QoS) PEP
The PEP (Policy Enforcement Point) component of the PDP is a very important part of the policy-

based management architecture. Its main functionality is enforcement of decisions in the policy target
(i.e. the active node). It supports two ways of working: provisioning (the interactions are initiated by
the PDP with a decision) and signalling (the interactions are started by a decision request coming from
the node interface.

The QoS PEP is responsible for the actual enforcement of the action enclosed into the QoS
element-level policies. It is responsible for mapping the medium level abstract parameters into
particular commands that are understandable within the active node.

In the particular case of the QoS element-level policies that create a VE, the PEP maps the
medium level attributes into a resource profile. A resource profile is used by the Virtual Environment
Manager (VEM) to create any referenced resource; currently the resources available are as follows:

Notification Channel

Core

Conflict
Checker

Evaluation
Condition
Interpreter

Action
Interpreter

Scheduler

Register
Event

Monitoring
System

ASP

i_pdp

i_report

PEPs

QoS PDP

Event
Interpreter

11 1

1

1

1

1
1

N

1

N

N

1

1
1

N

1

N

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 65

Channel Resource: If it is specified, a channel resource will be created and all the component
instances running inside the execution environment will be able to connect to it, and thereby receive
and send packets from and to the network. The channel resource can be allocated a specific percentage
of the bandwidth allocated to the VE.

Traffic Resource: If it is specified, a traffic controller will be created and the component
instances running inside the EE will use it to control particular packet flows. Depending on the type of
traffic controller used it will offer methods for setting up a guaranteed bandwidth or a specific packet
scheduling.

DiffServ Resource: This is a specialised DiffServ traffic controller that allows the component
instances running inside the EE to prioritise particular packet flows in preference over others.

Execution Environments: As explained in [D7], since the component instances must run inside
an EE, at least one EE must exist, attached to a virtual environment. The FAIN active node has
support for:

o JavaExecution Environment Resource: That’s the more common EE. It provides a runtime
support for service components implemented in JAVA together with support for inter-component
communication based on CORBA.

o PromethOS Environment Resource: That is a High Performance EE and it is use always that
the component instances have been implemented as PromethOS plugins.

o Snap Environment Resource: The SNAP execution environment features the execution of
active packets and uses SNMP for communication with other component instances.

Figure 47. Figure 2: API offered by QoS PEP

Figure 2 illustrates the API offered by the QoS PEP and how it is accessed by its peer components.
The black rectangles represent interfaces supported by the PEP component. The QoS PEP has been
implemented as an Active Service Component in order to be able to execute inside a JAVA Execution
Environment running in a VE.When the QoS PEP is owned by the ANSP it is deployed and executed
inside the Privileged VE.

The QoS PEP provides the following interfaces:

QoS PEP Delg PEP

VEM

i_pep iComponentInitial

i_qospep

PVE

AN

QoS PDP

i_setReport
EMSANSP Owner

Management Instance

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 66

• “i_pep”, is used by the QoS PDP to forward the decision taken to QoS PEP. (i.e. when a
QoS Policy for creating a VE is received, PDP sends the appropriate command and
arguments that allow to the PEP to create it).

• “i_qospep”, is mainly used by the Delegation of Access Rights PEP (i.e. when a VE has
been created and a resource profile assigned to it, the VE still needs to be activated, and
this activation is done by the Delegation of Access Rights PEP. So the Delegation of
Access Rights PEP will contact with QoS PEP to retrieve the appropriated VEID
associated with the VE created.

• “i_ComponentInitial”, as stated before the QoS PEP runs as an active service inside the
Privileged Virtual Environment (PVE). So this interface is used by the Virtual
Environment Manager (VEM) to retrieve all ports implemented by the component. In
particular the other interface described above can be retrieved through this interface.

2.4.3.3 Delegation of Access Rights PDP
The Access Rights Delegation PDP is used to process Delegation of Access Rights policies. These
policies specify to what extent an actor is permitted to access network resources through the control
interfaces provided. In this way, by controlling access to resources, the operations on them are also

controlled, eventually restricting the capabilities of services that are deployed. At the Element Level,
the Delegation PDP extracts the necessary security information from the Delegation policy and then
passes the security information to the Delegation PEP for enforcement.

Use case diagram of the EL Access Rights Delegation PDP depicts the access rights control
mechanism managed by the Delegation of Access Rights PDP. The PDP interacts with the Delegation
of Access Rights PEP which consequently contacts the Security component of each of the active
nodes. In this figure, VE1 and MI-1 are assigned to the SP-1 whereas VE-1 and MI-2 are assigned to
the SP-2. The ANSP-MI and prVE are used by the ANSP. Access to the components of the active
nodes are restricted to both users (SP1-1 and SP-2) by the access rights control that is initially defined
in the delegation of access rights policies.

For example, SP-1 may have access rights attributes “ReadWrite”, “Read”, “ReadWrite” to
Component-1, Component-2 and Component-3 respectively. This means that SP-1 can configure only
Component-1 and Component-3 whereas it can only read information from Component-2.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 67

With similar mechanisms we could implement a business scenario that involves a billing service
provider who could be delegated to perform billing for other service providers. In such a scenario, SP-
1 may outsource the billing task to SP-2, who is expected to collect usage information form each
component in order to produce a bill for SP-1. SP-2 should be given access to all those components
that are of interest to him.

Figure 48. The Access Rights Control

The delegation of Access Rights PDP inherits features from the core PDP, such as the way that the
Policy Action Interpreters are instantiated.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 68

Figure 49. Sequence diagram of the EL Access Rights Delegation PDP

The sequence diagram showing the interactions that involve the EL Delegation PDP is shown in
Figure 49. For completeness, we have included the creation mechanism of the Policy Action
Interpreter and the fainDelegateAPIAction class, which is responsible for sending the Delegation of
Access Rights parameters to the Delegation of Access Rights PEP:

2.4.3.4 Delegation of Access Rights PEP
The Delegation of Access Rights PEP at the Element Level runs as a service inside the Active

Node (AN) and enforces the Delegation of Access policies to the AN. Specifically, it receives the
security-related parameters from the Element Level Delegation PDP and passes them to the node
management system so that they are enforced by the security framework within the active node. In
order to identify the correct VE, the Delegation PEP retrieves a reference to the proper VE from the
QoS PEP, which helped to create that VE. Its use case diagram is shown below:

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 69

Figure 50. Use case diagram of the EL Access Rights Delegation PEP

The sequence diagram that shows the main interactions of the EL Access Rights Delegation PEP
is the following:

Figure 51. Sequence diagram of the EL Access Rights Delegation PEP

2.4.3.5 Monitoring System
The whole monitoring infrastructure is progressively created from the bootstrap. Figure 52 depicts

the initial components existing in each layer: the monitoring PDP and policy repository in the control
layer; the extended notification channel in the distribution layer and the master sensor registry in the
acquisition layer. The rest of components are uploaded on demand, therefore decreasing the
monitoring system overhead.

After this initial phase, the master sensor registry listens for any PDP subscription filter addressed
to the EMS in which it is running. Such filters, originated by the PDPs during their event subscription
processes, are delivered through the extended event channel to the master registry. The master sensor
registry analyses them, extracting the configuration parameters they contain. It then examines whether
there is already any sensor suitable for performing the requested monitoring operation on the
considered target. If no sensor is available, it contacts the monitoring PDP asking for a configuration
decision.

The monitoring PDP navigates the policy repository, gathering the policies applicable to the
considered target and maps the policy actions into an appropriate and predefined monitoring PIB
(Policy Information Base).

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 70

The monitoring PDP delivers the IDL-defined PIB, through the COPS interface [1], to the master
sensor registry. In this case, the master sensor registry acts as the ‘PEP’ contact point. The master
sensor registry will use the PIB and filtering information altogether for instantiating and deploying the
sensors. Two possibilities are to be considered: in the local deployment, the sensor is installed in the
EMS station itself, remotely accessing the monitored targets. Remote deployment requires accessing
the ASP for installing the sensor in the corresponding active node.

Figure 52. The Main EMS Monitoring System Components

Figure 52 shows how the remaining monitoring components are installed, taking into account such
configuration information. Remote sensor deployment requires the previous installation in the node of
a slave sensor registry, which from that moment takes control of the sensor instantiation, under the
master sensor registry supervision. Once in the active node, the slave sensor registry is connected to
the event channel and subscribed to receiving filters whose destination fits the particular node in
which it is hosted.

From the point of view of the node management framework component model, the slave sensor
registry assumes the Sensor Manager role, being responsible for the creation and management of the
sensors. The monitoring process is completed when the sensor, after acquiring and processing the
requested information, sends it to the event channel, where it will be distributed exclusively to the
subscribed PDPs. The following paragraphs provide further description of the main components
involved in these interactions.

2.4.3.5.1 Monitoring PDP:

Figure 53 presents the class diagram representing the main relationships between the control layer
components. The monitoring PDP makes decisions regarding the location and configuration of the
sensors required for performing a given network or service measurement. For this purpose, the PDP
uses the DataBaseAccessController to gather the monitoring policies from the LDAP policy
repository. After evaluating them, it generates a Decision, which is responsible for translating the
policy actions into an appropriate SensorConfiguration (PIB). Eventually the Decision delivers such
PIB to the PEP.

Each EMS station hosts a single monitoring PDP, which may control several PEPs (represented by
master and slave sensor registries) in an asynchronous way. Therefore the PDP is prepared to maintain
session information on each request being served and to handle several simultaneous PDP-PEP
sessions.

Master Sensor

Registry

EMS

Node NodeNodeNode NodeNode

Sensor
LOCAL

Sensor
LOCAL

Node
Sensor

Slave Sensor

Registry

Target

REMOTE

NodeNode
Sensor

Slave Sensor

Registry

Target

REMOTEASP

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 71

Figure 53. Control Layer Components

2.4.3.5.2 Monitoring PIB

The monitoring policy information is defined as an IDL structure used as a means to exchange
specific monitoring configuration information through the COPS interface. Below we introduce its
definition. The PIB contains fields identifying the target for the metering operation, and defining the
strategy to capture the data and chain of manipulators that will be required to process them.

module pib {
typedef struct ManipulatorDef {

string name;
short order;
DynamicAny::NameValuePairSeq configuration;

} tManipulatorDef;

typedef struct CaptureDef {
string name;
string connector;

DynamicAny::NameValuePairSeq configuration;
} tCaptureDef;

typedef sequence<CaptureDef> CaptureDefSeq;

typedef struct SensorConfiguration {
string targetID;
boolean remote;
CaptureDefSeq cdefSeq;

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 72

ManipulatorDefSeq mdefSeq;
} tSensorConfiguration;

};
}

2.4.3.5.3 Master Sensor Registry

As in the case of the monitoring PDP, there is only one instance of the master sensor registry per
EMS station. As depicted in Figure 54, the SensorRegistry is actually the PolicyClient (PEP) in the
policy based monitoring system. It receives filters from the SubscriptionBroker, representing the link
with the extended notification channel, uses the FilterProcessor to process such filters and, based on
the information gathered, it solicits a decision on how to perform the requested measurement
operation.

Any operation involving the deployment of active code to the FAIN active nodes is carried out by
the NetworkASPManager. This normally leads to the creation of a SlaveSensorRegistry in the active
node which takes the role of a sensor manager, controlling the sensor lifecycle.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 73

Figure 54. Acquisition Layer Components

2.4.3.5.4 Slave Sensor Registry

The SlaveSensorRegistry extends the ConfigurableComponent, and is fully integrated with the
node management framework component model. The slave sensor registry assumes the role of a
sensor manager on behalf of the master sensor registry, which controls each of the slaves.

It maintains connections with the policy repository, the monitoring PDP and the extended
notification channel, being fully functional and autonomous during its operative state. However it
should be noted that its influence is limited to the active node in which it runs. In fact, whilst the
master is subscribed to receive every filter appearing in the channel, the slaves will receive only those
going to the VEs actually instantiated in the hosting active nodes.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 74

2.4.3.5.5 Sensor

A Sensor coordinates the data acquisition and manipulation activities at the lowest level. Each
sensor interprets the SensorConfiguration information in order to create and join each of the
monitoring building blocks. It creates each probe and assigns appropriate data capture strategies to
them. Also it instantiates and chains the data manipulators in the specified order and connects the
probes and manipulator as requested in the PIB.

2.4.3.5.6 Probe

A probe is a generic element that is responsible for gathering data using the capture strategies
defined in the PIB. Additionally it manages event distribution among the data manipulator chains. The
capture behaviour is encapsulated inside data capture strategies, where each strategy knows its set of
configuration parameters. This model provides a higher degree of flexibility.

Indeed, the probe applies generic configuration mechanisms that allow previously unknown
strategies to be followed. In order to achieve this, each strategy is questioned about its own
configuration parameters and the list of available configuration values is traversed in order to match
both of them based on the parameter name. When, as a consequence of adjusting one of the
parameters, the probe detects the need for new configuration parameters, it requests the complete list
again and the process is resumed.

2.4.3.5.7 The Data Manipulator Chain

Data manipulation is performed through the use of manipulation chains. Each manipulator is
considered as a building block that performs a discrete operation on the data. After processing the
data, the manipulator propagates the data to the next manipulator. Depending on the order of the
manipulators different manipulations are possible. Additionally, several manipulation chains may be
attached to the same probe, thus performing different processing operations on the same data.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 75

3. ACTIVE SERVICE PROVISIONING

Active Service Provisioning, or ASP for short, is understood in the context of the FAIN project as
a system for deploying active services in the FAIN network. In general, active service deployment is a
process for making a service available in the active network so that the service user can use it. The
deployment process is usually seen as a number of preparatory activities before the phase of the
service operation. Typical activities include releasing the service code, distributing the service code to
the target location, installing it and activating it.

Since the mid nineteen-nineties many efforts have been made to develop Active Networks
technology to enable more flexible service provisioning in networks. By defining an open environment
on network nodes this technology allows rapid deployment of new services which otherwise have a
long lead-time and possibly require installation of new hardware.

The FAIN project follows an approach in which a number of existing and emerging active
network technologies are integrated. With regard to deployment, FAIN proposes a novel approach to
deploying services in heterogeneous active networks. In particular, the FAIN approach to deployment
is characterized by the following:

• On-demand service deployment support. The ASP supports deployment of a service
whenever it is needed. Service deployment may be explicitly requested by a service provider,
by another service already deployed, or by a management component.

• Component-based approach. Deploying and managing high-level services requires an
appropriate service model. While fully-fledged component-based service models are an
integral part of many enterprise computing architectures (e.g. Enterprise JAVA Beans,
CORBA Component Model, Microsoft’s..NET), it is not the case in many approaches
developed by the active networking community. The FAIN deployment framework is
designed on top of a component-based service model similar to the CORBA Component
Model. The service model is hierarchical in that service components may recursively include
sub-components. This allows for a fine-grained service description and composition.

• Network and node level architecture. To deal with complexity of deployment in active
networks, the Active Service Provisioning has been designed having separation of concerns in
mind . The network-level ASP copes with network issues that include finding the nodes of the
target environment for a given service considering topological service requirements as well as
network link Quality of Service (QoS) requirements, for instance bandwidth. The node-level
ASP, on the other hand, is concerned with node specific requirements, including technology
and other service dependencies.

• Integrated Service Deployment and Management. The FAIN approach to service
deployment is tightly integrated with FAIN service and network management. On one hand,
the ASP depends on the service management framework which implements EE-specific
deployment mechanisms, including installation and instantiation. On the other hand, the target
environment in which the service is to be deployed is co-determined by the Network
Management System. The target environment is defined to be a Virtual Active Network which
is established by the FAIN Network Management System. The VAN is created by the
management system according to the service requirements.

• Selective code deployment. Service code is distributed by selective downloading selected
code modules from a code repository. The decision as to which code modules are needed is
made by the ASP components at the target active nodes.

• Support for heterogeneous services and networks. The ASP has been designed to enable
service deployment in heterogeneous networks. This is achieved by specifying a unified
interface to the node capabilities and a unified notation for describing service specification
and the implementation requirements. Whereas CORBA technology is used to define the
unified API to the node, XML technology is used to define the unified service description.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 76

The following sections give the details of the approach taken. Section 3.1 describes the final
architecture of the Active Service Provisioning SystemThe interfaces of the ASP system are presented
in section 3.3 and the design and implementation details of the ASP components are given in section
3.4.

3.1. ASP Final Architecture
The architecture of the ASP comprises two levels, the network level and the element level, as

depicted in Figure 47.

On the network level the ASP consists of the Network ASP Manager working as the central access
point of the ASP to other Non-ASP sub-systems. The Network Service Registry and the Network
Service Repository are dedicated to service information storage and delivery:

• The Network ASP Manager has significantly extended functionality compared to the Network
ASP Manager presented in D5 [1]. It is responsible for mapping services onto target nodes,
and so provides mechanisms for evaluating nodes, focusing on service requirements.
Furthermore it provides service inquiry and service management operations to retrieve static
service information from the service descriptors or manage services respectively. It is solely
able to parse network level service descriptors similar to the Service Creation Engine on
element level for element level service descriptors. This service information partitioning over
network level and element level is described in more detail in section 3.5.1.

• The Network Service Registry and the Network Service Repository are for service release and
service update purpose. The Network Service Registry holds service descriptions in terms of
service descriptors written in XML. These service descriptions are implementation-
independent descriptions of the contents and internal structures of the service as well as the
requirements and dependencies on other service or underlying infrastructures. On request
giving the unique service name the Network Service Registry provides the descriptor of this
service.

• The Network Service Repository stores the service code modules belonging to respective
service descriptors and provides them on request for a given service code module name.

Combined, service descriptors and service code modules make up all service information to
describe a service.

On the element level the ASP consists of the Node ASP Manager, which is the central access point
for the ASP on the element level. The Node ASP Manager on the candidate nodes selected for
deployment of service components is contacted by the network ASP manager . In addition the Code
Manager, the Service Creation Engine, the Local Service Registry, the Local Service Repository and
the Reconfiguration Manager make up the element level ASP:

• The Node ASP Manager delegates requests from network level to dedicated components of
the element level ASP. Access to the element level ASP is only permitted through the Node
ASP Manager.

• The Code Manager has unique knowledge about installed services and uses this knowledge
during the service installation and service instantiation process. It is the coordinating
component on the element level for the service code module fetching mechanism. It becomes
active when requested by the Service Creation Engine.

• The Service Creation Engine is the key component of the element level ASP which processes
the EE-independent part of the element level service descriptor. To perform the EE-dependent
part of the service deployment process it cooperates with the deployment infrastructure of
available Execution Environments.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 77

• The Local Service Registry and the Local Service Repository are the counterparts of the
Network Service Registry and the Network Service Repository. Basically they are caches for
their network level counterparts as they fetch service descriptors and service code modules on
request if not already fetched and available locally.

• A new component on the element level compared to the design presented in D5 is the
Reconfiguration Manager. It focuses on service specific resource monitoring on the element
level, in cooperation with the Node Manager of the Node Framework. It registers callback so
that it can signal the need for a dynamic service reconfiguration to the Network ASP
Manager, which then communicates with the Network Management System to get a decision
whether a service reconfiguration should take place or not.

Figure 55, shows all the components of the ASP architecture. Whereas the node ASP components
are located on active nodes, the network ASP (on the left of the figure) appears only once in the whole
network. The node ASP communicates with Node Management Framework when requesting the node
capabilities and installing service components. The network ASP is contacted by the Network
Management System on behalf of the Service Provider that wants to deploy its services. The solid
lines with arrows show the control flow when processing the deployment request of a service provider.
The dashed lines show how the service code and service meta-data is transported to the active node
during the deployment process. The details of this process are given in later sections.

Network ASP

Active Node

Network
ASP

Manager

Service
Registry

Service
Repository

JavaEE

Client

Privileged VE

Node ASP

Code
Manager

Service
Creation
Engine

Node ASP
Manager

Node
Management
Framework Txcoder

Service

Local
Service
Registry

Local
Service

Repository

Service
Provider

Service Provider
VE

Reconfig
uration

Manager

NMS

Figure 55. ASP Overview

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 78

3.2. ASP Functionalities
Figure 56 shows the functional range of the ASP, presenting the main use cases of the ASP. To

obtain a deep understanding of the goals, tasks and requirements, the definition of the actors both from
the FAIN enterprise model [3] and added later during the design phase are summarised in section
3.2.1. Complete ASP use cases [5] are described below in section 3.2.2.

3.2.1 Actors
In this context there are two types of actor, primary and supporting, each showing its own distinct

behaviour. Primary actors use the services of the system under discussion (SuD) to fulfil user goals.
They are defined in order to find the user goals that drive the use cases. Supporting actors provide
services to the SuD. They are defined in order to identify external interfaces and protocols. The
following actors have been identified for the ASP:

The primary actor is:

Service Provider, or SP for short, composes services that include active components and deploys
these components in the network via the Active Service Provisioning, and offers the resulting service
to Consumers. The service provider is responsible for releasing and withdrawing a service which
includes a service version update or a complete remove of the service from specific nodes or from the
complete active network respectively. Furthermore, the SP may be represented by the FAIN Network
Management System with regard to initiation of service deployment or service reconfiguration.

The supporting actors are:

Active Network Service Provider, or ANSP for short, provides facilities for the deployment and
operation of the active components into the network. Such facilities come in the form of an active
middleware, support of new technologies. ANSP is represented by Active Nodes which are the target
environment in context of deployment, which means that services may be deployed in these nodes and
use the node resources made available to them by the ANSP.

Network Infrastructure Provider, or NIP for short.

Service Component Provider, or SCP for short.

3.2.2 Use Case Diagrams
This section describes the functionalities of the ASP system in terms of use cases. The following

use cases have been identified:

• Releasing a service. The Service Provider who decides to offer his service in the active
network has to release it in the active network. The service is released by making the service
meta-information and service code modules available to the ASP system.

• Deploying a service. After the service is released in the network, the Service Provider may
want to deploy his service so that it can be used by a given service user. This means finding
target nodes that are most suitable for the given service installation, determining a mapping of
the service components to the available Execution Environments of the target node,
downloading the appropriate code modules, and finally installing and activating them.

• Removing a service. The Service Provider may request to remove a deployed service from the
environment in which it was deployed. The ASP identifies the installed service components
and removes them from the Execution Environments (EE’s) of the target environment.

• Withdrawing a service. A service released in the active network may be withdrawn so that is
no longer available to be deployed. The ASP removes the service meta-information and
discards the service code modules.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 79

• Reconfiguring a service. Changes of the current configuration of a service may be requested.
Requesters of reconfigurations could be the Service Provider (SP), the Network Management
System (NMS), the Element Management System (EMS) or the Active Network Service
Provider (ANSP). Reconfiguration may include modifying component bindings, deploying
additional service components or redeploying components that have been already deployed.

• Updating a service. The Service Provider may announce a new version of an already released
service to an active network. The service code and metadata of the new version of the service
have to replace the code and metadata of the old (updated) version.

Figure 56 presents the identified use cases, their interdependencies as well as the actors interacting
with them. The following sub-sections provide the detailed descriptions of these use cases. The
description of the use cases is structured according to a use case description template presented in [5].

Updating a service
<<extend>>

<<include>>

SP

Deploying a service

Reconfiguring a service

Removing a service

Withdrawing a service

NIPANSP

SCP Releasing a service

Figure 56. Main Use Case of the ASP

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 80

3.2.2.1 Releasing a service / Updating a service
Figure 57 depicts use case diagram “Releasing a service/Updating a service”.

SP

Store service descriptors

SCP

Store service code modules

Figure 57. Releasing a service / Updating a service - Use case diagram

Primary actor: Service Provider

Stakeholders and interests:

- Service Provider: Wants to offer a service in an active network.

- Service Component Provider: Wants its services to be applied in an active network.

Preconditions: Service descriptors for network and element level as well as dedicated service
code modules are available.

Postconditions: Service descriptors for network level and element level are stored in the Network
Service Registry. Respective service code modules are stored at the Network Service Repository.

Basic flow:

1. Service Provider obtains all service components from the Service Component Provider: The
service components are: service descriptors for network level and element level and the
respective service code modules.

2. Service Provider requests storage of the service descriptors from the Network Service Registry
and storage of the service code modules from the Network Service Repository.

3. Network Service Registry stores the service descriptors. Network Service Repository stores
the service code modules.

4. Service Provider gets feedback about a successful storage of all service components from the
Network Service Registry and the Network Service Repository.

Extensions:

At any time, System fails: Since the service descriptors and service code modules are stored
persistently, usually a restart of the Network Service Registry and
Network Service Repository is enough to make them work again. If
service components are not stored yet the storage of the service parts
have to be requested again.

3a. In case of a failure in storing the service descriptors or the service code modules the basic flow
has to be repeated for the respective service.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 81

Special Requirements: None

Data Variations List:

1a. Network level service descriptors have to be consistent to the network level service descriptor
schema. Element Level service descriptors have to be consistent to the element level service
descriptor schema.

Frequency of Occurrence: Releasing a service: At least once per service, at latest before
deployment.

 Updating a service: If any nearly continuous after a service is released

3.2.2.2 Deploying a service
Figure 58 depicts use case diagram “Deploying a service”.

SP

<<communicate>>

ANSPDeploying a service in the network

Mapping a service to target node(s)

Deploying a service on the node(s)

<<include>>

Bind service components

<<include>>

Figure 58. Deploying a service - Use case diagram

Primary actor: Service Provider

Stakeholders and interests:

- Service Provider: Wants to deploy a service in an active network.

- Active Network Service Provider: Offers facilities for the deployment and operation of service
components in an active network.

Preconditions: Releasing a service

Postconditions: Service is deployed in an active network.

Basic flow:

1. Service Provider requests the deployment of a service in an active network from the ASP.

2. The network level ASP performs a service requirements to target environments mapping to
find matching target nodes to component requirements of a service. This mapping of service
requirements to target environments is done in cooperation with the Service Creation Engine
(SCE) on element level.

3. Deployment of service components to the found target nodes is initiated.

4. Download of element level service descriptors at the found target nodes.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 82

5. The element level service descriptor is processed by the SCE to resolve dependencies to map
service component names to implementations suitable to local node environments.

6. The Code Manager is ordered by the SCE to download service code modules of determined
implementations.

7. The Code Manager installs, configures and instantiates downloaded service code modules
right after their download.

Extensions:

2a. If mapping of service requirements to target environments fails, the deployment process is
cancelled. The service deployment requester is notified about this failure.

5a. If no implementations are found for service component names during the dependency
resolution by the SCE, the service components can not be deployed onto these nodes. The
deployment process has to be cancelled. The service deployment requester is notified about
this failure.

Special Requirements: None

Data Variations List: None

Frequency of Occurrence: Could be nearly continuous considering different SP’s requesting
deployments of different services.

3.2.2.3 Reconfiguring a service

3.2.2.3.1 Dynamic Reconfiguration of a service

Figure 59 depicts use case diagram “Dynamic Reconfiguration”.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 83

Ini tiating new m atching of service
requirements to target environments

Redeploying a service

Deploying a service

<<include>>

<<com municate>>

Identifying non-valid runtime
environments

Reconfiguration
Manager

ANSPMonitoring service specific
resources

Figure 59. Dynamic Reconfiguration – Use case diagram

Primary actor: Reconfiguration Manager

Stakeholders and interests:

- Reconfiguration Manager: Wants to alert an inconsistency between service requirements and
respective service runtime environments to the Network ASP Manager.Active Network
Service Provider: Offers facilities for the deployment and operation of service components in
an active network.

Preconditions: An inconsistency exists between service requirements and respective service
runtime environments

Postconditions: Runtime environments match service requirements

Basic flow:

1. Monitoring of service specific resources by the Node Manager of the Node Framework on
each node.

2. Node Manager alerts the Resource Manager on its node in case of thresholds of service
specific resources are reached.

3. Resource Manager alerts the Network ASP Manager about this mismatch of service
requirement to runtime environment.

4. Network ASP Manager forward this alert to the NMS as it is the NMS that decides on a re-
matching of requirements of a service to target environments.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 84

5. The NMS initiates a re-matching of requirements of a service to target environments.

6. The Network ASP performs this re-matching process and initiates the deployment process of
the service or its components respectively.

Extensions:

5a. The NMS decides not to deploy this service again.

6a. The Network ASP finds out that no target environment fits the service requirements. It
delivers this result of its re-matching process back to the NMS which decides about further
steps.

Special Requirements: None

Data Variations List: None

Frequency of Occurrence: Could be nearly continuous.

3.2.2.3.2 Management controlled Reconfiguration of a service

Figure 60 depicts use case diagram “Management controlled Reconfiguration”.

Redeploying a service

Deploying a service

<<include>>

NMS/EMS ANSPReconfiguring a service

<<communicate>> <<com municate>>

Figure 60. Management controlled Reconfiguration

Primary actors: NMS, EMS, Active Network Service Provider

Stakeholders and interests:

- NMS: Wants to reconfigure management services like Policy Enforcement Point (PEP)
services and Policy Decision Point (PDP) services.

- EMS: Wants to reconfigure management services like PEP services and PDP services.

- Active Network Service Provider: Wants to deploy its PDP/PEP service in the network. Offers
facilities for the deployment and operation of service components in an active network.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 85

Preconditions: Already deployed PDP/PEP services have to be reconfigured to adapt to changed
environments.

Postconditions: PDP/PEP services fit the changed environments.

Basic flow:

1. NMS/EMS requests a reconfiguration of PDP/PEP services in a way that these PDP/PEP
services should run on different nodes than they are running on now. NMS/EMS specify on
which nodes which PDP/PEP service should run.

2. Network ASP Manager deploys the PDP/PEP services to the specified nodes without checking
whether a service deployment would be successful or not.

Alternative flow:

1. ANSP wants to deploy its PDP/PEP services in the network.

2. Network ASP Manager deploys the PDP/PEP services to the specified nodes without checking
whether a service deployment would be successful or not.

Extensions, valid for both flows:
2a. Due to the fact that not enough resources are available for a PDP/PEP service the Network

ASP Manager receives an error message from the Node ASP Manager and passes this negative
response to its request to the NMS/EMS.

Special Requirements: None

Data Variations List: None

Frequency of Occurrence: Could be nearly continuous.

3.2.2.4 Removing a service
Figure 61 depicts use case diagram “Removing a service”.

SP ANSPRemoving a service from the network

<<communicate>>

Find target environment(s)

Removing a service from the node(s)

<<include>>

Figure 61. Removing a service - Use case diagram

Primary actor: Service Provider

Stakeholders and interests:

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 86

- Service Provider: Wants to remove a service and its components respectively from
environments it was deployed in.

- Active Network Service Provider: Offers facilities for the deployment and operation of service
components in an active network.

Preconditions: Deploying a service

Postconditions: Service and its component respectively are removed from environments it was
deployed in.

Basic flow:

1. Service Provider requests the removal of a service from an active network.

2. Search for environments the service was deployed in.

3. Resolve dependencies to map service component names to implementations suitable to local
node environments. Instances of the respective service code modules corresponding to the
found implementations are removed and the service code modules are uninstalled from the
specific execution environments.

Extensions:

2a. If the search for environments the service was deployed in is not successful for some reason,
then the requester receives an error message including the reason.

3a. If de-instantiations or de-instantiations fail for some reason the requester receives an error
message including the reason.

Special Requirements: None

Data Variations List: None

Frequency of Occurrence: If at all, once per deployed service.

3.2.2.5 Withdrawing a service
Figure 62 depicts use case diagram “Withdrawing a service”.

Delete service descriptors

SP

Delete service code modules

Figure 62. Withdrawing a service - Use case diagram

Primary actor: Service Provider

Stakeholders and interests:

- Service Provider: Wants to withdraw a service from an active network.

- Active Network Service Provider: Offers facilities for the deployment and operation of service
components in an active network.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 87

Preconditions: Releasing a service

Postconditions: Service is completely unknown to the active network.

Basic flow:

1. Service Provider requests deletion of the service descriptors from the Network Service
Registry and storage of the service code modules from the Network Service Repository.
Existing service descriptors at element level counterparts are also deleted so no service parts
are available in the active network anymore.

2. Service descriptors are deleted from Network Service Registry and its element level
counterpart. Service code modules are deleted from Network Service Repository and its
element level counterpart.

3. Service Provider gets feedback about a successful deletion of all service parts from the
Network Service Registry and the Network Service Repository.

Extensions:

At any time, System fails: Since the service descriptors and service code modules are stored
persistently usually a restart of the Network Service Registry and Network Service Repository is
enough to make them work again. If service parts are still stored the deletion of the respective service
parts have to be requested again.

3a. In case of a failure in deleting the service descriptors or the service code modules the basic
flow has to be repeated for the respective service.

Special Requirements: None

Data Variations List: None

Frequency of Occurrence: If at all, once per released service.

3.3. Application Programming Interface
The Network ASP as the central access point of the ASP offers an external Application

Programming Interface (API) for service inquiry and service management. The IDL specification of
this external API is described in detail below.

3.3.1 Service Inquiry Interface
Operations on the service inquiry interface are dedicated for service information delivery. This

service information is only extracted from network level service descriptors since the Network ASP
has exclusive knowledge of network level service information. Element level service information is
not delivered in any way outside the ASP because this service information is for exclusive use within
the ASP.

A network level service descriptor should contain at least one service component. Operation
listServiceComponentNames() delivers the names of the service components mentioned in the
network level service descriptor:

ServiceComponentNames listServiceComponentNames
(in ServiceName serviceName)

raises (ServiceNotFound);

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 88

Every service component has specific runtime requirements. They can be extracted from the
network level service descriptor and delivered to the requester using operation
getServiceComponentRequirements():

Properties getServiceComponentRequirements
(in ServiceName serviceName, in ServiceComponentName componentName)

raises (ServiceNotFound, ServiceComponentNotFound);

Operation getServiceComponentLinkRequirements() extracts and delivers link requirements

between two given services:

LinkRequirements getServiceComponentLinkRequirements
(in ServiceName serviceName, in ServiceComponentName from,
in ServiceComponentName to)
raises (ServiceNotFound, ServiceComponentNotFound);

The topology of a given service can be requested using operation

getServiceTopologyRequirements():

ServiceTopologyInfo getServiceTopologyRequirements
(in ServiceName serviceName)

raises (ServiceNotFound, ServiceComponentNotFound);

3.3.2 Service Management Interface
Compared to static service information delivered by operations on the service inquiry interface,

the service management interface offers operations using this service information to fulfil different
tasks, i.e. service release or service deployment.

For service release and service withdrawing the Network ASP offers operations
registerService() and unregisterService(). Registration includes the announcement of service
descriptors to the Network Service Registry and the announcement of service code modules to the
Network Service Repository:

void registerService
(in ServiceName serviceName,
in ServiceDescriptor serviceDescriptor,
in URLs serviceURLs,
in org::ist_fain::tIdentity who)
raises (ServiceRegistrationFailed);

void unregisterService
(in ServiceName serviceName,
in org::ist_fain::tIdentity who)
raises (ServiceNotFound);

For given VANPaths the best fitting candidate for the deployment of a service is determined by

operation calculateBestCandidate():

VANPath calculateBestCandidate
(in ServiceName serviceName,
in VANPaths vanPaths,
in org::ist_fain::tIdentity who)
raises (ServiceNotFound, ServiceMappingFailed);

After one VANPath was chosen to deploy a service, operation createServiceInstance()

realizes the deployment of this service:

ServiceReferenceInfos createServiceInstance
(in ServiceName serviceName,
in org::ist_fain::node::management::tPropertyList aConfiguration,

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 89

in VANPath vanPath,
in org::ist_fain::tIdentity who)
raises (ServiceNotFound, InstantiationFailed);

If a running service is not needed any more, it can be removed from the environment in which it

was deployed. The installed service components are identified and removed from the Execution
Environments of the target environment:

void removeServiceInstance
(in ServiceInstanceID serviceInstance,
in org::ist_fain::tIdentity who)
raises (ServiceInstanceNotFound, RemovalFailed);

If a service could not be released before requesting its deployment, operation

deployServiceComponent() can be used. This operation will implicitly perform the service release
right before initiating the service deployment for a given VANPath:

ServiceReferenceInfos deployServiceComponent
(in ServiceName serviceName,
in org::ist_fain::node::management::tPropertyList aConfiguration,
in ServiceDescriptor descriptor,
in URL codeModuleURL,
in VANPath vanPath,
in org::ist_fain::tIdentity who)

raises (InstallationFailed);

For the distribution of a service code module to a node of a VAN, dependent on where an instance

of a specific service is running, operation addServiceCodeModule() is needed:

CodeModuleRef addServiceCodeModule
(in ServiceInstanceID serviceInstance,
in CodeModuleID codeModuleID,
in VANNodeID vanNodeID,
in org::ist_fain::tIdentity who)
raises (ServiceInstanceNotFound, CodeModuleNotFound, InstallationFailed);

The counterpart of operation addServiceCodeModule() to remove the distributed service code

module from the specified VAN node where an instance of a given service is running is operation
removeServiceCodeModule():

void removeServiceCodeModule
(in ServiceInstanceID serviceInstance,
in CodeModuleID codeModuleID,
in VANNodeID vanNodeID,
in org::ist_fain::tIdentity who)
raises (ServiceInstanceNotFound, CodeModuleNotFound, RemovalFailed);

To receive a list of ServiceComponentID’s of running service components of a specific service,

operation listRunningServiceComponents() is needed:

ServiceComponentIDs listRunningServiceComponents
(in ServiceInstanceID serviceInstance)

raises (ServiceInstanceNotFound);

To receive only the ServiceComponentID of one running service component within a specific

service, operation getServiceComponentID() is needed:

ServiceComponentID getServiceComponentID
(in ServiceInstanceID serviceInstance,
in ServiceComponentName componentName)
raises (ServiceInstanceNotFound, ServiceComponentNotFound);

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 90

If only the IP address of a node and the name of a service running on this node are known,

operation getServiceRef() delivers the reference of this service:

ServiceReferenceInfo getServiceRef
(in ServiceName serviceName,
in NodeIPAddress ipAddress)
raises (ServiceNotFound, IPAddressNotFound);

To receive the ServiceComponentInfo structure for a specific service component, operation

getServiceComponentInfo() can be used.

ServiceComponentInfo getServiceComponentInfo
(in ServiceComponentID componentID)
raises (ServiceComponentInstanceNotFound);

A ServiceComponentInfo is structured as follows:

struct ServiceComponentInfo {
org::ist_fain::node::management::iComponentInitial initial;

};

If a running service instance exists, a service component can be instantiated on the same node as

the running service instance using operation addServiceComponent(). Among other parameters a
VANPath in which the service instance can be found is needed to call this operation:

ServiceReferenceInfos addServiceComponent
(in ServiceInstanceID serviceInstance,
in ServiceComponentName componentName,
in org::ist_fain::node::management::tPropertyList aConfiguration,
in VANPath vanPath,
in org::ist_fain::tIdentity who)
raises (ServiceInstanceNotFound, ServiceComponentNotFound,

InstallationFailed);

The IP address of a node and the Virtual Environment ID a component should be deployed in is

needed mainly to use operation addComponentToNode() to add a service component instance on a
specific node given by the IP address:

ServiceReferenceInfos addComponentToNode
(in ServiceComponentName componentName,
in NodeIPAddress ipAddress,
in org::ist_fain::node::management::tPropertyList aConfiguration,
in VeID veID,
in org::ist_fain::tIdentity who)
raises (ServiceInstanceNotFound, ServiceComponentNotFound,

InstallationFailed);

To remove a service component instance from a given service instance, operation

removeServiceComponent() is needed:

void removeServiceComponent
(in ServiceComponentID componentID,
in org::ist_fain::tIdentity who)
raises (ServiceComponentInstanceNotFound, RemovalFailed);

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 91

For management controlled reconfiguration it is necessary to bind and unbind service components.
Operations bindServiceComponents() and unbindServiceComponents() are needed for such binding or
unbinding processes respectively.

void bindServiceComponents
(in ServiceComponentID first, in ServiceComponentID second,
in org::ist_fain::tIdentity who)
raises (ServiceComponentInstanceNotFound, BindingFailed);

void unbindServiceComponents
(in ServiceComponentID first, in ServiceComponentID second,
in org::ist_fain::tIdentity who)
raises (ServiceComponentInstanceNotFound, UnbindingFailed);

For bind a given service component instance to a specified WP3 port, operation
bindServiceComponentPort() is offered. To unbind a formerly bind service component from a
specified WP3 port, operation unbindServiceComponentPort is used:

void bindServiceComponentPort
(in ServiceComponentID componentID,
in org::ist_fain::node::management::tPortName cPortName,
in org::ist_fain::node::management::tPort otherPort,
in org::ist_fain::tIdentity who)
raises (ServiceComponentInstanceNotFound, BindingFailed);

void unbindServiceComponentPort
(in ServiceComponentID componentID,
in org::ist_fain::node::management::tPortName cPortName,
in org::ist_fain::node::management::tPort otherPort,
in org::ist_fain::tIdentity who)
raises (ServiceComponentInstanceNotFound, UnbindingFailed);

3.4. Service Description
To deploy a service according to its needs, a notion of describing these requirements is needed. In

the FAIN project, a service descriptor is used. It includes basic information about the service as well
as the deployment requirements of the service.

Because of the complexity of the information needed for the service to be deployed, a structured
notion is needed to handle this information. In the FAIN project, the XML language was chosen to
define a service descriptor.

Furthermore, a service descriptor is divided into two parts: network level and node (element)
level. There are two main reasons of including network and node levels in the service descriptor.

• Separation of concerns. The ASP was designed using a two layer architecture to deal with
different issues at different layers. Whereas the network level ASP is concerned with network
issues, including service distribution on network nodes, the node level ASP deals with issues
local to the node, like choosing the target execution environment and resolving service
component dependencies. It is thus natural to separate these concerns and deal with them
using separate data structures, i.e. in the context of the ASP - service descriptors.

• Re-use the node ASP. The previous work in FAIN resulted in the implementation of the node
ASP. To maximally re-use this software, a design decision was made to specify another
network level service descriptor. This descriptor is based on the XML schema used for the
node level service descriptor.

The next sections are structured as follows: Section 3.4.1 introduces the basic concepts used for
describing a service for deployment purpose. Section 3.4.2 gives the details of the network level
service descriptor, whereas section 3.4.3 describes the node level service descriptor.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 92

3.4.1 Basic Concepts
The following concepts are helpful when understanding the way a FAIN service is structured for

the deployment purposes.

Service Deployment – a process that involves fetching, installing and loading all the service
components’ code modules into their Target Environments.

Service – a unit of functionality that a service provider wants to offer to the customers. In terms of
deployment, it is a service component (without any unresolved inter-code module independencies).

Service Component – a unit of deployment. It consists of:

• service descriptor kept in the service registry and possibly in its local counterpart.

• optional reference to a code module kept in the service repository.

There are three classes of service component that differ in the terms of whether they consist of
service sub-components and whether they directly refer to a code module.

(Simple) Implementation – a service component without any dependencies. It contains just a
reference to a code module.

Compound Implementation – a service component consisting of sub-components and having a
reference to a code module.

Abstract Implementation - a service component consisting of sub-components and having no
reference to a code module.

Target environment – the runtime environment that the service component is to be installed. In
FAIN, the target environment is defined by a virtual execution (resource management) and an
execution environment.

Code Module is a file with the code. The contents of the file are obscure to the ASP. It may
contain however some EE-specific information, on how to deploy the code module, which is used by
the EE configurator. A code module has the following phases of life cycle (also depicted in Figure 63)
from the node perspective:

• It is fetched onto a local node from the service repository and may be kept in the local service
repository for some time.

• It is installed into an EE instance or an EE type. This is done by configuring the running
instances of the EE or changing the EE templates that are used to instantiate new EE in which
the code modules are to be installed.

• It is loaded into an EE instance. The module is either dynamically loaded into the running EE
instance or loaded by a new EE instance is started.

The code module may be also unloaded and changes to the installed state. It may be also
uninstalled for a certain EE instance on demand. The Code Manager keeps information about installed
code modules.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 93

fetched

installed

loaded

install

uninstall

unload

load

Figure 63. The life cycle phases of the code module

3.4.2 Network-level Service Descriptor
The Network ASP which is exclusively responsible for processing network level service

information extracts this service information from network level service descriptors.

A network level service descriptor can specify the following:

Service Description:

- Name of the service (SERVICE_NAME)

- Identifier for the service (SERVICE_ID)

- Name of the provider of the service (PROVIDER)

- Version of the service (VERSION)

- Signature of the service (SIGNATURE)

- Classifier for the service (CLASS)

- License for the service (CLASS)

Service Component:

- Name of the service component (NAME)

- Name of the service instance to differentiate between service components of name
NAME (INSTANCE_NAME)

- Location of the service component relative to nodes fulfilling specific roles
(LOCATION/RELATIVE/NODE_ROLE)

The number of service components specified in a network level service descriptor is not limited.

Connections between service components running on different nodes are not yet specified in
network level service descriptors since this implies the ability of the Node Framework to do inter-node
binding operations, which is not yet supported.

<NETWORK_SERVICE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="/home/mos/FAIN_network_level_descriptor.xsd"
xsi:type="NETWORK_SERVICE">

<DESCRIPTION>
<SERVICE_NAME>extended_transcoder</SERVICE_NAME>
<SERVICE_ID>extended_transcoder_pure_java</SERVICE_ID>
<PROVIDER>FT</PROVIDER>
<VERSION>0.2</VERSION>
<SIGNATURE>0x1234ab006f8b11fa8c</SIGNATURE>

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 94

<CLASS>economy</CLASS>
<LICENSE>0.2</LICENSE>

</DESCRIPTION>
<SERVICE_COMPONENT>

<NAME>duplicator</NAME>
<INSTANCE_NAME>d1</INSTANCE_NAME>
<LOCATION>

<RELATIVE>
<NODE_ROLE>ingress
</NODE_ROLE>

</RELATIVE>
</LOCATION>

</SERVICE_COMPONENT>
<SERVICE_COMPONENT>

<NAME>TXengine</NAME>
<INSTANCE_NAME>tx1</INSTANCE_NAME>
<LOCATION>

<RELATIVE>
<NODE_ROLE>egress
</NODE_ROLE>

</RELATIVE>
</LOCATION>

</SERVICE_COMPONENT>
</NETWORK_SERVICE>

Figure 64. Example of a network level service descriptor

3.4.3 Node Level Service Descriptor
The service descriptor describes the node level meta-information of the service. The first part of

the service descriptor holds information about the service component developer or provider and its
functionality. The second part is dependent on the class of service component described. For a simple
implementation this part contains a reference to a code module and identifies the target environment
where the code module is to be installed. It also contains EE-specific information, which is used to
perform EE-specific part of deployment process.

The service descriptor of an abstract implementation holds information about required sub-
components and how they are to be bound to each other in order to perform the expected functionality.
Finally, a compound implementation is a mixture of the two classes above, and hence contains both
sets of information. The service descriptor is implemented in XML, which proved to be a very suitable
technology for the task at hand. Furthermore, we developed an XML Schema to verify the structure
and correct syntax of service descriptors.

Figure 64 gives a simple example of such a descriptor.. The service “transcoder” is composed of
two sub-services” transcoder1” and” transcoder2”.

The first XML descriptor detailed the service descriptor for the global service (transcoder) and the
second XML descriptor detailed the service descriptor for the sub-service “transcoder1”, which is a
real implementation and a running service.

Transcoder.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Matthias Bossardt

(ETH Zurich) -->
<SERVICE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\Documents and Settings\bossardt\My
Documents\Projects\Chameleon\XML\chameleon.xsd" xsi:type="SPECIFICATION">

<DESCRIPTION>
<SERVICE_NAME>transcoder</SERVICE_NAME>
<SERVICE_ID/>
<PROVIDER>FT</PROVIDER>
<VERSION>0.1</VERSION>

</DESCRIPTION>
<SUB_SERVICE>

<SERVICE_NAME>transcoder1</SERVICE_NAME>

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 95

<INSTANCE_NAME>t1</INSTANCE_NAME>
</SUB_SERVICE>
<SUB_SERVICE>

<SERVICE_NAME>transcoder2</SERVICE_NAME>
<INSTANCE_NAME>t2</INSTANCE_NAME>

</SUB_SERVICE>
</SERVICE>

Transcoder1.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Matthias Bossardt

(ETH Zurich) -->
<SERVICE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\Documents and Settings\bossardt\My
Documents\Projects\Chameleon\XML\chameleon.xsd" xsi:type="IMPLEMENTATION">

<DESCRIPTION>
<SERVICE_NAME>transcoder1</SERVICE_NAME>
<SERVICE_ID/>
<PROVIDER>FT</PROVIDER>
<VERSION>0.1</VERSION>

</DESCRIPTION>
<PROPERTIES>

<PROPERTY>
<KEY>mainClassName</KEY>

<VALUE>org.ist_fain.services.transcoder1.TranscoderManager</VALUE>
</PROPERTY>
<PROPERTY>

<KEY>mainCodePath</KEY>
<VALUE>/usr/local/jmf-2.1.1/lib/jmf.jar:/usr/local/jmf-

2.1.1/lib/sound.jar:/usr/local/jmf-2.1.1/lib:code/demux.jar</VALUE>
</PROPERTY>
<PROPERTY>

<KEY>AdmissionTimeOut</KEY>
<VALUE>30000</VALUE>

</PROPERTY>
</PROPERTIES>
<ENVIRONMENT>

<EE_NAME>JVM</EE_NAME>
<EE_VERSION>1.3.1</EE_VERSION>

</ENVIRONMENT>
<CODE xsi:type="CODE_LOCATION">

<CODEBASE>jvm.transcoder1.FT.transcoder1.jar</CODEBASE>
</CODE>

</SERVICE>

Figure 65. Example of a node level service descriptor

3.5. ASP Components
In this section, the design and implementation details of the ASP components are given. Whereas

the functionality that has not changed since publishing [1] is briefly summarised, the new features of
the ASP components are described in more detail.

3.5.1 Network ASP
To optimally deploy a service in an active network, the network characteristics have to be

considered during the deployment process. The previous work on the deployment in the FAIN project
focused on element level aspects and thus extensions on the network level were required. This section
describes the design and implementation of the network level ASP, which has been significantly
extended since the last public description of the FAIN ASP system [4].

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 96

3.5.1.1 Network ASP Manager
As an ASP component having access to this kind of network view, the Network ASP Manager as

the representative of the Network ASP is introduced. The Network ASP is the network level
counterpart of the Node ASP.

The Network ASP Manager introduced in D5 [1] did not have such a network view since the ASP
part of D5 focused on the Node ASP design only. Therefore the Network ASP Manager was used as a
simple initiating component on network level for the deployment of a service to a single node. This
Network ASP Manager had no network knowledge of any kind; it knew only about one single node
where it initiated deployment of a single service.

The current design of the Network ASP includes such a network view.

This network view is restricted to service specific information, so the Network ASP has exclusive
knowledge about services and contributes it at specific stages of the service deployment process to
support decisions that have to be taken at network level first, then to be able to continue the service
deployment process on element level.

The service information is structured according to the access provided to the Network ASP and
Node ASP, as shown in Figure 66 below.

 Complete Service Information

Network Level Service Information
processed by Network ASP

Element Level Service Information
processed by Node ASP

Figure 66. Composition of the complete service information

The Network ASP has exclusive knowledge of network level service information and the Node
ASP has exclusive knowledge of element level service information in terms of exclusively processing
of network level service information or element level service information, respectively.

In contrast to other interactions at specific stages of the full service deployment, i.e. knowledge
sharing for requirements matching as shown in Figure 10, where exclusive knowledge of sub-systems
is shared with other sub-systems, the knowledge of service information on the network level and on
the element level is not shared between the Network ASP and the Node ASP.

The Network ASP does not have access to service information classified for the element level and
the Node ASP does not have access to service information classified for the network level.

Since service specific information is held in service descriptors, this knowledge partitioning is
realized by distributing the service specific information in network service descriptors and node
service descriptors, for interest at network level and at element level respectively. The network level
service descriptor is described in detail below in section 3.4.2.

The only ASP component that processes network level service descriptors is the Network ASP
Manager. The Network ASP Manager is similar to the Service Creation Engine (SCE) on the element
level, being exclusively responsible for parsing the element level service descriptors.

In contrast to the Network ASP Manager design described in [1], the current design presents a
Network ASP Manager that acts solely on the basis of service information contained in the network
level service descriptor. Since Node ASP processing is totally dependent on the service information in
the element level service descriptor, current ASP system operation is completely service description
based.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 97

The architecture depicted in Figure 67 shows the main components of the Network ASP Manager.
Due to the exclusive use of a Network Level Descriptor Parser the Network ASP Manager is aware of
all service information included in network level service descriptors.

Processing of requests to the Network ASP Manager produces service related data that have to be
stored and managed in the Service Database to be able to manage service instances and other service
related data needed for internal purpose.

The Network ASP Manager has a CORBA interface for interoperability with other FAIN sub-
systems. The Network ASP Manager has been implemented as an agent running on top of the
Grasshopper platform. As a Grasshopper Agent the Network ASP Manager has an interface to the
agency it is running on for agent related activities. For the Network ASP Manager this interface is
necessary to create and send a Deployment Agent to dedicated nodes.

The Network ASP, or its representative the Network ASP Manager, is the central access point for
any service related request. Therefore it provides appropriate operations, i.e. to manage service
descriptors, to extract information from network level descriptors, to move code to specific nodes, to
install, instantiate and configure services on specific nodes or to find out which nodes fit best to a
specific service and its components respectively.

The ASP with its extension on the network level, the Network ASP, processes service information
on two levels. Network level service information has the highest priority in service information
processing, and has to be performed prior to the processing of element level service information.

The Network ASP is the central access point of the ASP on the network level. The ASP on the
element level presents no interface to non-ASP components.

Network nodes perform network service information processing before proceeding to process
element level service information.

Ex
te

rn
al

 C
O

R
B

A
 In

te
rf

ac
e

Network ASP Manager Agent

O
R

B
 C

on
ne

ct
or

O
R

B
 U

til
ity

Service Runtime
Management

Service Releaser

Service Information
Management

Service Remover

Service Withdrawer

Network Level Service
Descriptor Parser

Deployment Facility

VAN Selector

Component Binder

In
te

rn
al

 G
ra

ss
ho

pp
er

 In
te

rf
ac

e

A
ge

nt
 M

an
ag

em
en

t F
ac

ili
ty

Deployment Manager

Service
Database

Figure 67. Network ASP Manager Architecture

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 98

3.5.1.1.1 Requirements Matching

One of the core functions of the Network ASP is to map service requirements to target
environments. The determination of nodes of an active network valid for execution of specific
components of a service is depicted in Figure 67.

To fulfil this task the Network ASP has knowledge of service requirements, as far a service is
known to the active network, as it is stored at service release time in the Network Service Registry and
the Network Service Repository. This knowledge is exclusive to the Network ASP in that other FAIN
subsystems can only get this information by accessing the network ASP.

This knowledge about services includes requirements on the network level concerning service
topology.

Methodology

The ASP has no knowledge of network resources or network topology, either on the network level
or on the element level, although it totally relies on this information to match service requirements to
target environments. Access to this information depends on non-ASP sub-systems.

The Resource Manager, as a component of the NMS, has knowledge about network resources and
network topology of an active network, so it can share this knowledge with the Network ASP. The
Network ASP has exclusive knowledge about service specific information.

This knowledge sharing that is necessary for requirements matching fulfilment is depicted in
Figure 68.

Network
Information

Service
Topology

Information

Resource
Manager

Network
ASP

Figure 68. Knowledge sharing for Requirements Matching

If service components must be mapped to active nodes of a potential VAN, the Network ASP that
is responsible for this task receives information about the network topology of the potential VAN. In
addition indicators are included which classify the service topological role of each node of the
potential VAN.

For this purpose a VAN consists of nodes and links connecting them. The structure of a VAN can
be seen in Figure 69.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 99

 Virtual Active Network Structure

 Nodes Links

- Node ID
- Node Properties

- 1st Node ID
- 2nd Node ID
- Link Properties

Figure 69. Virtual Active Network Structure

A node is uniquely identified by the NodeID, and node properties further characterise the node.

The following node properties are specified:

- IP address of the computer hosting the node (IPAddress)

- Classifier for the QoS level (CompQoSClass)

- Node wide unique identifier of a Virtual Environment which is unique for each
Service Provider (VEID)

- Classifier for the node role (INPUT/OUTPUT)

A link connects two nodes. The specification of two NodeID’s makes clear which node
connections exist. This represents the network topology within the potential VAN.

The characteristics of a link are described in the link properties, as follows:

- Average bandwidth: Value specifying the average bandwidth needed for service
fulfilment

- Average throughput: Value specifying the average throughput needed

- Link type: Classifier for the link type

- Jitter: The jitter parameter of the link.

- Latency: The latency of the link.

The VAN information provides information to the Network ASP, in particular which nodes having
which characteristics exist to deploy a service.

Using the service topology information from the Network ASP the RM classifies nodes within the
potential VAN according to their specific roles and their ability to deploy specific service components.

Since the Network ASP has no knowledge about network resources, the RM performs this
classification of nodes on network level.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 100

The Network ASP’s task now is to check if the service requirements are also met on the element
level. For this purpose a so-called Deployment Agent is sent to the element level on each node to
check these node wide service requirements. At this time the Node ASP is taking part in this
investigation process as it, exclusively, has the functionality to check if node wide service
requirements can be met by the target environment.

The component of the Node ASP used to do this check of node wide service requirements is the
Service Creation Engine (SCE) as depicted in step 6 in Figure 69.

The SCE parses the node service descriptor and resolves any dependencies. This means
determining the dependencies between services and between service components and the target
environment in which it must execute.

If the dependency resolution finds out that the target environment is valid for the service to be
deployed, the Network ASP assigns the appropriate node of the potential VAN to the service or its
component respectively.

This process of checking node wide service requirements on the element level is done until every
service component has been assigned to a node of the potential VAN or no other nodes in the potential
VAIN are left to assign to the remaining service components. . If none of the proposed VAN’s is
suitable for all components of a service a failure report is given back to the requester the NMS.

The Network ASP adds a classifier to each node of the chosen potential VAN to identify nodes
that will be used for the deployment of a service or its component respectively. The only information
about specific components that will be applied on these nodes is the kind of Execution Environment
(EE) that needed.

The NMS, which receives this modified potential VAN, recognizes which nodes will be involved
in the service deployment due to the classifier given by the Network ASP. Therefore the NMS can
reserve resources and create resources prior to service deployment. Resources to be created could be
Virtual Environments (VE’s) and Execution Environments within the VE’s, in which to apply the
service or its components respectively.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 101

Service Provider NMS Network ASP
Manager

Deployment
Agent

Node ASP
Manager

Service Creation
Engine

deployService()

getServiceTopologyRequirements()

calculateBestCandidate()
checkService()

checkService()
checkService()

Determine
potential
VANPath(s)

Figure 70. Requirements matching Sequence Diagram

3.5.1.1.2 Service Deployment

Once the Network ASP Manager has determined the nodes of the potential VAN that will be used
for service deployment and the NMS has reserved and created the required resources, the service
deployment process can be initiated.

Within the NMS, service deployment is initiated by the Node ASP Manager at the request of the
Network ASP Manager.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 102

Node
ASP

1.

Deployment
Agent

Network ASP
Manager

Network
Service
Registry

Network
Service

Repository

3.

4.

Active Nodes

Node ASP

Service Creation
Engine

2.

Local Service
Repository

Local Service
Registry

4.
3.

Code Manager

Figure 71. Service Deployment

Service Distribution

The Network ASP Manager contacts the Node ASP Manager of each involved active node to start
the service deployment on these nodes. The node ASP Manager is a static agent located at the Node
ASP’s agency in each active node. The Deployment Agent works as a carrier for this task information
(step 1).

This task is passed by the Node ASP Manager to the Service Creation Engine (SCE) for node-
wide service deployment (step 2).

The SCE parses this node-wide service descriptor. The parsing results are transmitted to the Code
Manager as a list of software components, and their associated service descriptors, that need to be
fetched. Furthermore dependent service components as mentioned in the node-wide service descriptor
are also passed to the Code Manager (step 3).

The required service components are fetched by the Local Service Repository and the Local
Service Registry or its network counterparts respectively on request of the Code Manager (step 4).

Service Installation and Configuration

The Code Manager asks the Node Manager for known resources, such as available EE’s and
where to pass the EE-specific part of the node-specific service descriptor for service code module
installation and instantiation.

The Code Manager initiates the EE-specific installation and service-specific configuration on the
specific EE by using a defined EE-specific interface. The service is configured according to the
service properties given to the Code Manager at instantiation request time.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 103

The resulting service reference is passed to the SCE.

The SCE passes this service reference to the Node ASP Manager which passes it back to the
Network ASP Manager using the Deployment Agent.

The Network ASP Manager passes this service reference to the requester NMS.

3.5.1.1.3 Service Reconfiguration

The steps of service deployment are combined as step 1 in Figure 72. After a service has been
deployed successfully, the runtime environment could change in a way that it no longer fits the
requirements of the deployed service and its components.

Reconfiguration can take place in case of an inconsistency of requirements of a service already
running on a node and the target environment of this node. If such an inconsistency is identified a new
matching of service requirements to target environments is initiated automatically. This kind of
reconfiguration, called dynamic reconfiguration is initiated within the ASP.

Reconfiguration is also possible on request by a Non-ASP management components, like the
NMS, to manage service components on specific nodes to meet different target or service
environments.

So we differentiate between two cases of reconfiguration, the dynamic reconfiguration during
service runtime and the management controlled reconfiguration as described in the following sections.
Dynamic Reconfiguration

To be able to react automatically to a change of node resources, resource monitoring has to take
place. The Node Manager of the Node Framework on every node offers two different kinds of
resource monitoring method. The first monitoring method offers a callback interface that notifies the
registrar of a callback interface for a specific resource if a specific threshold is reached. The second
method offers monitoring by polling.

An ASP component, the Reconfiguration Manager, is involved in this resource monitoring. This
monitoring component is located within the Node ASP so it acts solely on the element level. The
Reconfiguration Manager steps on stage right after instantiation of a service which means also the use
of specific resources by this service.

The Code Manager as the Node ASP component responsible for initiating installation and
instantiation of services orders the Reconfiguration Manager after instantiation of a service to observe
resources used by this service as step 2 of Figure 72 illustrates. These resources and their specific
values for a service make up the basic conditions needed for a service. If these crucial resources and
their values do no longer meet the basic conditions of a service, a reconfiguration of this service must
take place. The Code Manager specifies exactly which resource to monitor to meet which values.

The Reconfiguration Manager registers a callback interface (resource observer) at the Node
Manager for every resource (i.e. of services and sub-services) it needs to monitor as depicted in Figure
72 as step 3.

In the case of a specific threshold being reached, the Node Manager of the Node Framework sends
an event to the Reconfiguration Manager, also shown in figure 8 as step 3. The Reconfiguration
Manager then informs the Network ASP Manager as step 4 about a non-valid target environment for
the service it is responsible for.

The Network ASP Manager now has to inform the Network Management System (NMS) about
the need to search for a different node for a service (service reconfiguration) as it does in step 5, since
the ASP is not allowed to decide about a re-matching of service requirements to target environments
on its own.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 104

A Component of the NMS then decides whether a new matching of service requirements to target
environments should take place for a service whose runtime environment does not match its
requirements.

4.

Node
ASP

1.

Network ASP
Manager 3.

Active Nodes

Node ASP

Local Service
Repository

Local Service
Registry

Node
Framework

Node Manager

NMS

1.

1.
Service Creation

Engine

1.

2.
Code Manager

3.
Reconfiguration

Manager 5.

Figure 72. Dynamic Reconfiguration, 1st level

Within the dynamic reconfiguration we differentiate between two levels.

The 1st level is reached when the result of the new matching of service requirements to target
environments is actually the same node the service is already running on. In this case this service
needs to be reconfigured in terms of a new determination of service implementations by the SCE for
the changed target environment. The steps performed are the same as they are for the first deployment
of a service as depicted in Figure 72.

The 2nd level is reached when the new matching of the target environment of the node a service is
actually running on and the requirements of this service results in a different node from the node the
service is running on. In this case the service has to be started on the new node. The node that is no
longer useable is called ‘non-valid node’. The node that was found after a new requirements matching
to target environments is called ‘valid node’.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 105

Node
ASP

Active Nodes

3.

Node ASP

Local Service
Repository

Local Service
Registry

Node
Framework

Node Manager

Service Creation
Engine

Code Manager

Reconfiguration
Manager

Node
ASP

Network ASP
Manager 3.

Active Nodes

Node ASP

Local Service
Repository

Local Service
Registry

Node
Framework

Node Manager

NMS

2.

3.
Service Creation

Engine

Code Manager

Reconfiguration
Manager

1.

Valid
Node

Non-
valid

Figure 73. Dynamic Reconfiguration, 2nd level

A dynamic reconfiguration at the 2nd level must make sure that the properties and status of the
service that was already running on a valid node are preserved, so the service can continue under the
same service related conditions as before. This service status preservation is done by the Code
Manager of the non-valid node at the request of the Node ASP Manager of the valid node.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 106

Manage service descriptions

The Node ASP Manager of the valid node is contacted by the Code Manager of the non-valid node
receiving the preserved service properties as depicted as step 1 in Figure 73 which are passed to the
Code Manager of the valid node at instantiation request time over the SCE as shown in steps 2 and 3
that is responsible to parse the element level service descriptor and resolve dependencies within a
service.

Management controlled Reconfiguration

In contrast to dynamic reconfiguration where the Reconfiguration Manager alerts the need for a
service reconfiguration, controlled reconfiguration is requested from outside the ASP.

The Node ASP has no logic or information upon which to base a decision to initiate a management
controlled reconfiguration. Instead the decision to reconfigure a service is computed by the NMS or
the EMS, so this kind of reconfiguration is only done by the ASP on request.

Management controlled reconfiguration can be initiated in cases where the port bindings between
service components have to be changed, for example a new service component could be added to a
node to fulfil a task in cooperation with an already running service component, in which case the ports
of these two service components are bound.

3.5.1.2 Service Registry
In the ASP part of the FAIN architecture, the service registry is responsible for managing the

description of services that can be loaded into active nodes (register, unregister, find services).

This section aims to briefly present the design of this component and to show its interfaces
(defined in IDL).

3.5.1.2.1 Use cases

The actors are: the NASPM and the NMS.

• NASPM: Network Active Service Provisioning Manager.

• LSR: Local Service Registry

• NMS: Network Management System.

Fetch service description

System: service
registry

NASPM

NMS

 LSR

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 107

0. registerService (s)

NMS
Network

ASP
Manager

Service
Registry

1. getServicesList()

2. fetchService(s)

Rsp: XML Description D(s)

Rsp: <seq>s

Local
Service
Registry

3. fetchService(s)

Rsp: XML Description D(s)

4. unregisterService (s)

Use case 1.

The first use case starts when the NASPM needs to fetch the description of a service. First the
NASM gets the list of the available service descriptions by calling the method getServicesList of the
CORBA interface. Then the NASPM can choose a service in the list and it requests its descriptions (a
sequence of XML file) by calling the method fetchService. There might be several descriptions for a
service, in which case several XML scheme might be returned.

Use case 2.

The second use case starts when the NMS wants to install a new service in the active node. The
NMS registers a new service description with registerService and unregisters it with
unregisterService.

Use case 3.

The third use case starts when the LSR is asked by the Node Code Manager for the description of
a service it doesn’t have locally. It then asks for the descriptions of this service from the service
Registry by calling the method fetchService.

3.5.1.2.2 Design

The service registry sends information to the ASP Network Manager based on the ASP Network
Manager request. The latter is responsible for combining this information to fulfil the user request: no
further processing is needed in the case of (un)register requests, but there is more work to do for a
deployment of the user's service (resolving service dependencies and asking the service registry other
information, asking the download of the right code at the right code repository, downloading the code
to the appropriate active node…).

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 108

The service registry must register new services, unregister old services, find services (based on the
name).

The service name must be unique (in order to clearly distinguish services): it is composed by the
name of the service concatenated with the name of the service provider (example:
VideoTranscoder_FTR&D).

No public attribute is necessary. Only 4 methods are public

• registerService: In order to register a service into the Service Registry, the service name must
be passed with a descriptor, describing the service. This descriptor is a XML file, mapping the
Chameleon requirements. If the service is already registered (one previous version has already
been registered) then the service registry registers this new request as a new version of the
service and increments the number of the version.

• unregisterService: Only the service name is passed to the service Registry, and the latter
removes it from the database and removes all the descriptions related to it.

• fetchService: Only the service name is passed to the service Registry, and the latter is
responsible for retrieving the XML descriptors in the database and sending it back to the client
(ASP Network Manager or Local Service Registry). If there are several versions of the service
(then several XML descriptors), all the XML descriptors are sent back.

• getServicesList: No input parameter is given. When receiving this request, the Service
Registry sends back all the registered services.

Some exceptions are also defined: checking the correctness of the name, the syntax of the XML
descriptor, etc.

In the initial implementation, it is planned to store this registry in regular files and not to use a
database yet (because the data size will not be large).

It has been decided to pass the XML file to/from the Service Registry as a String. It is assumed
that a String can be long enough to represent the XML descriptor.

Another option was to implement a HTTP server and to request a GET/PUT method on this
server, but in this case we are no longer in a CORBA architecture (as it has been defined by FAIN
members).

3.5.1.2.3 IDL Interface

typedef string ServiceComponentID;
typedef string ServiceName;
typedef sequence<ServiceName> ServiceNames;
typedef string ServiceComponentDescriptorRef;
typedef sequence<ServiceComponentDescriptorRef> ServiceComponentDescriptorRefs;

exception serviceNotFound{
string name;
};

exception invalidServiceName {
string name;
};

exception invalidXMLDescriptor {
string serviceName;
};

interface ServiceRegistry {

void registerService(in ServiceName serviceToRegister,
in ServiceComponentDescriptorRef XMLDescriptor)

raises (invalidServiceName

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 109

, invalidXMLDescriptor);

ServiceComponentDescriptorRefs fetchService(in ServiceComponentID serviceToFecth)
raises (invalidServiceName, serviceNotFound);

void unregisterService(in ServiceName serviceName)
raises (invalidServiceName, serviceNotFound);

ServiceNames getServicesList();

};

3.5.1.3 Service Repository
The service repository contains the implementation components for the services which are

available in the network. These components can be specific to an implementation from a particular
vendor, or for a specific EE-type. The repository stores only the code files. Additional information,
about which components are required for the service, or how these must be configured, is stored in the
service registry. In the FAIN Network architecture, there is a central Service Repository for each
administrative domain.

The main requirement of the service repository is to function as a file-server, which contains the
code modules that can be injected into the active nodes. The repository can be implemented using
existing file transfer mechanisms. In the initial implementation an http server is used as the service
repository. An alternate implementation using plain sockets is also under development.

3.5.1.3.1 Service Repository: Interfaces, implemented operations

The Service Repository offers the following operations:

• storeComponent

• deleteComponent

These two operations are used to add/remove software components to/from the repository.

• getComponent

This operation is used to download a specific component to the active node. The component is
identified by its name, which must be unique.

The main Service Repository operation required for the initial implementation is getComponent.
As the repository is realized using an http server, this operation is actually implemented by http. The
components are stored in the server in a directory structure. Files are stored in a path of the form
 /EEType/Service/developer/component filename. All necessary information for the creation
of this path is included in the naming scheme used for the components, so by knowing the
component’s name it is easy to construct the path to its location.

At the moment the operation required for inserting new implementation components has not been
fully implemented.

3.5.2 Node ASP
On the node level, the following components make up the ASP system, as shown in the node ASP

block in Figure 74, Node ASP manager, Service Creation Engine and Code Manager.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 110

Node level ASP system

Service Creation
Engine

Code Manager

Node Management
Framework (WP3)

Node ASP
manager

Communication with
network ASP

manager

Communication
with service
repository

Communication
with service

registry

Figure 74. Node level ASP

The Node ASP Manager is the equivalent of the network ASP manager, but on the node level.
The network ASP manager communicates with the node ASP manager in order to request the
deployment, upgrading and removal of service components.

The Service Creation Engine (SCE) selects appropriate code modules to be installed on the node
in order to perform the requested service functionality. The service creation engine matches service
component requirements against node capabilities and performs the necessary dependency resolution.
Since the service creation engine is implemented on each active node, active node manufacturers are
enabled to optimise the mapping process for their particular node. In this way it is possible to exploit
proprietary, advanced features of an active node. The selection of service components is based on
service descriptors. Moreover, service descriptors describe how service components are bound to each
other. This type of information is extracted by the SCE and passed to the code manager.

The Code Manager performs the execution environment independent part of service component
management. During the deployment phase, it fetches code modules identified by the service tree from
the service repository. It also communicates with Node Management to perform EE-specific part of
installation and instantiation of code modules. The Code Manager maintains a database containing
information about installed code modules and their association with service components.

The Local Service Registry (LSR), its counterpart of the Service Registry in the active node and
acts as a cache-enabled client of the Service Registry in the node level. If the local service registry
does not have the description of the given service, it asks the network Service Registry for it.
Otherwise it returns a local copy of the node level service descriptor.

The Local Service Repository is a client of the Service Repository and fetches code modules on
demand.

3.5.2.1 Node ASP Manager
The Node ASP Manager is implemented as a stationary agent running in a Grasshopper agent

system. The connection of the Node ASP Manager to the Demux component is realized by using the
Communication Service facilities of Grasshopper. A (mobile) deployment agent will be received via
that Communication Service which is encoded in an ANEP packet and received from network level
(i.e. Network ASP manager).

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 111

3.5.2.1.1 Node ASP Manager: Interfaces, implemented operations

There is an inter-agent system interface for exchange/migration of the mobile deployment agent
provided. This interface is integral part of the Grasshopper environment distribution and does not need
to be described here. For further description, please refer to the Grasshopper documentation, which
can be found at www.grasshopper.de.

3.5.2.1.2 Node ASP Manager Activity diagram

This is provided in the section above, with the Network ASP Manager.

3.5.2.2 Code Manager
The Code Manager performs the EE independent aspects of service component management.

During the deployment phase, it fetches code modules identified by the service tree from the service
repository. It also communicates with Node Management to perform EE-specific part of installation
and instantiation of code modules. The Code Manager maintains a database containing information
about installed code modules and their association with service components.

3.5.2.2.1 Design

The Code Manager is a node-level ASP component, which maintains the information about the
code modules, installed on the node. This component is contacted after the Service Creation Engine
has resolved the dependencies of the service component requested to be deployed.

The service component information comprises:

• Service Component dependencies:

o Resolved inter-component dependencies, in the form of a list of all the service
components that the given service component depends on.

o Environment dependencies, i.e. the dependencies on the execution environment that
the code module associated to a service component is supposed to run in.

• Service Component local installations:

o Expiration date,

o VE identifier and EE identifier, where the code modules are installed.

The Code Manager holds the information about the installed service components in a data structure
forming a directed acyclic graph (DAG). The nodes in the data structure represent the service
components installed on the node, whereas the edges represent the dependencies between these
components. The data structure used to keep this information is depicted in Figure 70. The DAG has
two levels: the first level consists of nodes representing service components that were requested to
install by the SCE. Nodes on the second level represent the service components that the service
components from the first level directly or indirectly depend on.

The information maintained by the Code Manager is updated by:

• SCE in case it requests fetching and installing a service component

• Code Manager itself whenever a service component expires and needs to be uninstalled from a
given target environment.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 112

SC00
VE1

SC01
EE1

SC02
EE2

SC10
VE1

SC11
EE1

SC12
EE2

SC13
EE3

SC10
VE2

SC21
EE10

SC22
EE11

Figure 75. Data structure with the code module information in the Code Manager.

IDL Specification

The Code Manager-related interfaces and data structures are specified in IDL. They defined in the
ASP module and presented in Listing 1.

InstallationTarget

The data structure represents a target environment where a code module is installed. The
environment is identified by a pair of the Virtual Environment Identifier and Execution Environment
Identifier.

ServiceComponentInfo

The data structure represents some information associated with the service component from which
the code module is referenced. The information contains the code module identifier, the code module
identifier of the parent service component and the component module expiration date.

EndPoint

This data structure describes an end point of a connection between two components. It includes a
reference to a service component and the corresponding port of this component.

ConnectionInfo

This data structure includes all the information needed to determine a connection between two
service components. The information contains two end points of the connection as described above.

ServiceInfo

The data structure describes all the information needed to properly instantiate a service. The
information includes references to the service components and a set of connections to be built up
between these service components.

Code Manager Interface

This interface is provided by the Code Manager component. It is mainly used by the service
creation engine (SCE), which resolves the service component dependencies and requests their fetching
and installation. The interface defines three operations described below:

• fetchAndInstallService. The operation triggers and coordinates:

o fetching all the code modules that a given service component depends on

o installing these code modules into their target environments.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 113

The input parameter the service component information including the component
identifier, the VE identifying the target environment and a list of dependent service
components.

• uninstallService. The operation triggers uninstalling the given service component and
all its dependent service components from a given execution environment instance.

• getDeploymentDescriptors. The operation returns a list of available deployment
descriptors representing possible realizations of the given service.
ServiceComponentIDNotFound is thrown if the service component cannot be found in
Service Repository.

Listing 1 Code Manager and related IDL specifcation
module asp {
typedef string ServiceComponentID;
typedef string CodeModuleID;
typedef string ServiceName;
typedef string VeID;
typedef string EeID;
typedef string CodeModuleRef;
typedef string DeploymentDescriptorRef;
typedef sequence<DeploymentDescriptorRef> DeploymentDescriptorRefs;
typedef string Date;

struct InstallationTarget {
VeID veID;
EeID eeID;
};

struct Property {
string key;
any value;

};

typedef sequence<Property> Properties;
typedef Properties Configuration;

/**
* this type describes the metadata of an implementation (i.e. a service
* component with a reference to a code module).
*/

valuetype ServiceComponentInfo {

/* the id of the service component */
public ServiceComponentID theComponent;

/** the Execution Environment type in which service component may run */
public EeID target_ee;

/** configuration information */
public Configuration config;

/** reference to the code module */
public CodeModuleRef codeModule;

/** helper function to create a valuetype */
factory init(in ServiceComponentID theComponent,

in EeID target_ee,
in Configuration config);

};

typedef sequence<ServiceComponentInfo> ServiceComponents;

struct EndPoint {
ServiceComponentID componentID;
PortName p_name;

};

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 114

struct ConnectionInfo {
EndPoint firstEndPoint;
EndPoint secondEndPoint;

};

typedef sequence<ConnectionInfo> ConnectionInfos;

struct ServiceInfo {
ScInfos scInfos;
ConnectionInfos connectionInfos;

};

exception ServiceComponentIDNotFound { string ServiceComponentID; };
exception CodeModuleIDNotFound {};
exception InstallationTargetNotFound { };
exception InstallationFailed { string reason; };

interface CodeManager {

/**
* updates the CM data base by adding information representing the
* service to deploy and all the dependent implementations and Mr.Xs
* @param service_id the service component to be installed
* @param target_ve the Virtual Environment where the service component
* is to be installed
* @param expiration_date the date until the service may be used
* @param dependent_components the resolved dependencies of the service
* component
* @exception ServiceComponentIDNotFound if one of the dependent service
* components cannot be found in the service repository
* @exception InstallationFailed if the installation process cannot be
* succeed for some other reason
*/
void fetchAndInstallService(

in ServiceComponentID service_id,
in VeID target_ve,
in Date expiration_date,
in ServiceComponents dependent_components)

raises (ServiceComponentIDNotFound, InstallationFailed);

/**
* removes all the code modules installed for a given Service Component
* @param service_id the id of the service component to be uninstalled
* @param target_ve the Virtual Environment from which the service
component is to be uninstalled

* @exception ServiceComponentIDNotFound if a service cannot be found
* among the installed ones
* @exception InstallationTargetNotFound if the given VE is not valid
*/
void uninstallService(

in ServiceComponentID serviceID,
in VeID target_ve)

raises (ServiceComponentIDNotFound, InstallationTargetNotFound);

/**
* returns a list of available deployment descriptors representing
* possible Service Component IDs (i.e. various realizations of the
* given Service Component.
* @param service the service component of which available realizations
* are to be returned
* @exception ServiceComponentIDNotFound is thrown if the service

component cannot be found in Service Repository
*/
DeploymentDescriptorRefs getDeploymentDescriptor(
in ServiceName service)

raises (ServiceComponentIDNotFound);
};

};

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 115

3.5.2.3 Local Service registry
Inside an active node, the local service registry is responsible for managing the description of

services that are requested by the Code Manager and can be loaded into active nodes. If the local
service registry does not have the description of the given service, it asks the network service registry
for it.

This section aims to quickly present the design of this component and to show its interfaces
(defined in IDL).

3.5.2.3.1 Use cases

The actors are: the CM and the NSR.

• CM: Code Manager.

• NSR: Network Service Registry.

Code
Manager

Service
Registry

Rsp: XML Description D(s)

Local
Service
Registry

Rsp: XML Description D(s)

1. fetchService(s)

2. fetchService(s)

Rsp: XML Description D(s)

If stored locally

If NOT stored locally

1a

1b

Use case 1.

Fetch service description

System: Local Service
Registry

 CM

 NSR

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 116

The first use case starts when the CM wants the description of a service fetchService. The CM
asks it to the LSR. If the latter has this description locally (in cache), it returns it to the CM. If the LSR
doesn’t have the descriptions of the service, it then asks it to the network Service Registry, gives it
back, stores it and sends it back to the CM.

3.5.2.3.2 Design

The Local Service Registry is responsible for managing service descriptions locally inside the
active node. Its role is then to fetch service descriptions and to store them (cache).

When the Code manager wants to deploy a service, it asks the LSR the descriptions of this service.

If this service has already been deployed (or requested by the CM), the LSR has keep the
descriptions in cache and then can give them back to the CM.

If this description is not know locally by the LSR, then the latter will contact the network service
registry and fetch the descriptions for this service.

The LSR will then store it locally (keep it in cache) and will send back this information to the CM.

The LSR can also reply to the CM if the CM wants to get the list of all available services. This
option will certainly not be used because it is not the role of the CM but it is possible.

If the CM requests that, then the LSR will contact the Network Service Registry to retrieve the list
of services. This list is not cached in order to get always the up-to-date list.

No public attribute is necessary. Only 2 methods are public

• fetchService: Only the service name is passed to the Local Service Registry, and the latter is
responsible for retrieving the XML descriptors (locally if stored or remotely with CORBA
invocation to the network service registry if not) and sending it back to the Code Manager. If
there are several versions of the service (then several XML descriptors), all the XML
descriptors are returned.

• getServicesList: No input parameter is given. When receiving this request, the Local Service
Registry requests the network service registry to get this information and sends back all the
registered services (received from the SR) to the CM.

Some exceptions are also defined: checking the correctness of the name, the syntax of the XML
descriptor, etc.

3.5.2.3.3 IDL Interface

The IDL definition of the Local Service Registry is included below.

typedef string ServiceComponentID;
typedef string ServiceName;
typedef sequence<ServiceName> ServiceNames;
typedef string ServiceComponentDescriptorRef;
typedef sequence<ServiceComponentDescriptorRef> ServiceComponentDescriptorRefs;

exception serviceNotFound{
string name;
};

exception invalidServiceName {
string name;
};

exception invalidXMLDescriptor {
string serviceName;
};

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 117

interface ServiceRegistry {

ServiceComponentDescriptorRefs fetchService(in ServiceComponentID serviceToFecth)
raises (invalidServiceName, serviceNotFound);

ServiceNames getServicesList ();

};

3.5.2.4 Local Service Repository
The Local Service Repository caches the service implementation components that have been

recently downloaded to the active node, so that if they are requested in the future it will not be
necessary to retrieve them from the network.

The number of components that are cached depends on the available storage space on the node. If
available space is exhausted, a replacement algorithm is applied, to delete an unnecessary component
from the cache in order to store a new one. The repository itself does not have the necessary logic for
these checks. This is the responsibility of the code manager. In this context the local cache can be
considered as a simple “back-end” of the code manager.

3.5.2.4.1 Local Service Repository: Interfaces, implemented operations

The interface of the Local Service Repository has been specified in IDL. The implementation is in
pure Java and so the use of CORBA objects has not been necessary.

The IDL interface of the Local Service Repository is presented below.
Listening: IDL for Local Service Repository.
typedef string CodeModuleID;
typedef string CodeModuleRef;

exception BadComponentName { string componentName; };

exception ComponentNotFound { string componentName; };

interface ServiceRepository {

boolean storeComponent(in CodeModuleRef codeComponent,
in CodeModuleID componentName)

raises (BadComponentName);

boolean deleteComponent(in CodeModuleID componentName)
raises (ComponentNotFound);

CodeModuleRef getComponent(in CodeModuleID componentName)
raises (ComponentNotFound, BadComponentName);

};

All of the three operations of the Local Service Repository interface have been implemented for
the milestone, although only one of them, getComponent, will be essential for the demonstration.

• getComponent

This operation is responsible for retrieving a code module. The repository first checks if the
requested component is cached locally. A hash table is used as an index for the cached
components. If the code does not exist locally, it is downloaded from the network service
repository. In this implementation, where the network service repository is an http server, the
download of code to the node is done using http. The operation returns a reference of the local file,
which contains the code.

• storeComponent

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 118

This operation is used to store a new component in the cache.

• deleteComponent

This operation deletes a cached component. It is used by the code manager, when it decides
that a stored component must be deleted, either because it has been cached for a long time or has
to be refreshed, or because more disk space is required to cache other components.

There are also the following two exceptions defined:

• BadComponentName is thrown when the component name given as input is not valid, so
the Local Service Repository is not able to request the file from the code server.

• ComponentNotFound is thrown when the requested component could not be located in
the local cache or retrieved from the network service repository.

3.5.2.4.2 Local Service Repository: Activity diagram

Look if component is
cached

getComponent called by Code Manager

fetch component from
network repository

Insert component
to cache index

Return component
location

No

Yes

Figure 76. Local Service Repository Activity diagram

The activity diagram describes the main operations performed when a component is requested by
the code manager. First the local repository looks up in an index to see if the component is already
stored locally. If the component is not cached, it is downloaded from the network-wide repository.
After download, it is entered in the cache index and the local location of the component is returned to
the code manager.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 119

3.5.2.5 Service Creation Engine
The Service Creation Engine (SCE) [6] selects appropriate code modules to be installed on the

node in order to perform the requested service functionality. The service creation engine matches
service component requirements against node capabilities and performs the necessary dependency
resolution. Since the service creation engine is implemented on each active node, active node
manufacturers are enabled to optimise the mapping process for their particular node. In this way it is
possible to exploit proprietary, advanced features of an active node. The selection of service
components is based on service descriptors. Moreover, service descriptors describe how service
components are bound to each other. This type of information is extracted by the SCE and passed to
the code manager.

3.5.2.5.1 SCE use cases

Figure 77 shows the SCE use cases, which are described in this section.

Get Service Component Descriptor
References

PDPMgr SecurityFW

Demux
Active Packet

Node Manager

Evaluate Mapping Policies
Get EEs

<<uses>>

Service Requester

Resolve Dependencies

<<uses>>

SCEInterface
(from Logical View)

<<Interface>>

Install Service Component

<<uses>>

Fetch and Install Implementations

<<requests>>

<<requests>>

CodeManager

<<performs>>
ASP Node

Manager

Figure 77. Service creation engine use cases

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 120

Install Service Component: The Install Service Component use case is offered to service
requester. Different actors, such as ASP Node Manager, Demux (in case of an active packet), or the
PDP Manager may take on this role. To carry out service component installation, interaction with the
code manager is needed. Furthermore, this use case involves the Dependency Resolution use case.

Check Service: This use case is offered to the ASP Node Manager to check whether a service can
be deployed on a specific node. To do so, the Dependency Resolution use case is involved.

Dependency Resolution: This use case is needed to determine the code modules needed to offer
functionality defined by the service descriptors on a specific node. It is involved in both, the Install
Service Component, as well as in the Check Service use cases described above. To perform this use
case, interaction with Virtual Environment Manager and Code Manager is needed.

3.5.2.5.2 Interfaces and Implemented Operations

Listening: IDL for Service Creation Engine
interface SCE {

/**
* identifies required service components and selects compound
* implementations and implementations to be installed, based
* on the capabilities of a particular node.
* @returns a service runtime reference to the component manager
* @param service_name well-known identifier of the behavioural characteristics
* of the service to be installed.
* @exception InstallationFailed is thrown if the installation did not succeed
*/

ServiceRuntimeRef installServiceComponent(in ServiceComponentName service_name, VeID
target_ve)

raises (InstallationFailed);

};

The SCE implements two public methods:

· installServiceComponent: This method performs node specific dependency resolution and
identifies required code modules that implement the functionality specified by the service
descriptor(s). Furthermore, from the service descriptors information is extracted describing the way
code modules must be bound to each other. The download and installation of those modules is
triggered using a method of the code manager. A reference to the service component is returned,
which allows performing further management operations on it.

· checkService: This method checks whether the functionality specified by the service
descriptor(s) can be implemented on a specific node, i.e. dependencies are resolved and it is verified
that all necessary code modules exist. The code modules, however, are neither downloaded nor
installed. A list of involved EE identifiers is returned.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 121

3.5.2.5.3 Methodology

 : Serv ice
Requester

SCE VE ManagerCode Manager

installServ iceComponent
getEE

getServ iceComponentDescriptorRef s

selectServ iceComponentDescriptor

f etchAndInstallServ iceComponents

do until
serv ice tree is
resolv ed

Figure 78. Service creation engine sequence diagram for “installServiceComponent”

method

Install Service Component Flow: The SCE is responsible to map a service component name to
code modules suitable to the local node environment.

The SCE starts with a service component name that stands for a specific type or functionality.
Based on the service component name, the SCE requests a list of matching service component
descriptors. From this list, the SCE selects – based on the available EEs - the appropriate service
component descriptor. If a service component descriptor contains a non-empty list of service
component names that it depends on, the resolution process continues in a recursive manner. A service
component descriptor might contain a reference to a code module. If such a service component is
selected by the SCE, the necessary information is stored in the serviceComponents data structure (see
section 3.5.2.2).

The resolution process terminates when all dependencies are resolved. The binding between the
code modules is determined based on the information available from the different service descriptors
and stored in the connectionInfos data structure (see section 3.5.2.2). The SCE subsequently requests
the download and installation of the compound implementations and implementations from the code
manager. The necessary information is in the installation map, which is passed to the code manager,
using the fetchAndInstallServiceComponents method.

Check Service Flow: The checkService flow is basically the same way as the
installServiceComponent method, except that the code manager to trigger the download and
installation of code modules is not contacted.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 122

3.5.2.5.4 Extensions

The extension of the ASP with the Network ASP functionality led to internal changes in the Node
ASP as well. These changes affect internal interfaces and the Service Creation Engine (SCE)
functionality.

These modifications were necessary due to the partitioning of service information knowledge
between the Network ASP and the Node ASP. Network ASP needs to pass requests to the Node ASP
when element level service information is involved. As previously mentioned, this element level
service information is only processed within the Node ASP so it has to undertake partial tasks where it
has exclusive knowledge in.

The SCE was extended so that it can check if implementations exist for specific target
environments found. Therefore the SCE can be used to check if a node is suitable for the deployment
of a specific service, before actually initiating the service deployment process which implies service
distribution, installation, instantiation and configuration. These initial checks into the suitability of the
target environments reduce the potential waste of time and other resources that would result from
complete failure of a service deployment.

A detailed application of these changes is described in section 3.5.1.1.1. They are reflected in the
use case diagram of the SCE. The modified internal interfaces can be seen in the section 3.3.

Node ASP
Manager

Deployment
Agent

Network
ASP

Manager

Active Nodes

Node ASP
SCE

: Agency : Stationary

Agent
: Mobile Agent

Figure 79. Validation of potential target environments

The Network ASP is involved in certain stages of the complete process of service deployment,
performing operations that need service knowledge. The complete service deployment process also
includes preparation stages like service release and requirements matching.

The Network ASP Manager provides service topology requirements that are defined as static
service information within a network level service descriptor.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 123

4. CONCLUSIONS AND FUTURE WORK

Since the last technical review, many improvements have been achieved regarding the FAIN
policy-based network management system. A set of core components have been designed and
implemented to build the hierarchically distributed architecture, through inheritance and enhancement
to each management level. These core components include all common functionality to each level, i.e.,
all functionality related to the policy processing logic. Furthermore, we have added an extension
mechanism that allows the management system to cope with new requirements unforeseen at design
time.

At the element level, PDPs have being extended and enhanced to cope with the expected
functionality. The PEPs have being designed and implemented as active service, running within FAIN
active nodes. At the network level, the PBNM has been substantially extended to allow the
creation/extension of a VAN by deploying a given service. The VAN can be under a unique
administrative domain or encompass different domains.

VAN creation and extension processes make extensive use of the FAIN service management
functionality designed and implemented at the network-levels of both the management system and the
ASP system. These two systems interact to find the most appropriate service implementation based on
the user (e.g., NIP, ANSP, or SP) requirements and the available resources, and to finally deploy the
service, on the chosen FAIN active nodes.

Based on the FAIN Enterprise Model that advocates the deployment of virtual networks on top of
the same network infrastructure, we have extended the concept of management by delegation to allow
multiple management architectures to be instantiated and to function independently of each other. This
has been achieved by using FAIN active node and its open facilities and interface.

In summary, we have achieved the following features:

• Delegation of management functionality: We cover this functionality in several ways: firstly,
with the SP’s access to ANSP management functionality (within the node and the element
manager). The SP may also use its own code to manage allocated resources in order to offer a
service. In order to allow the SP to do that the ANSP restricts the node interface offered to that
code.

• Creation of an active virtual network for an SP: An SP obtains several isolated computational
and communication resources, which conform a virtual environment in a group of, interconnect
active nodes across the active network, thus creating an active virtual network.

• Dynamic downloading of service-specific management components from the SP: This was
developed in order to be able to specifically manage the service it offers. This component is
installed within the management stations and might interact with some of its components, e.g.,
the monitoring system in order to be able to make service decisions (e.g., for customer
bandwidth reallocation).

• Dynamic extensibility of the management stations functionality is available by downloading new
PDPs when they are needed. The dynamic installation of an active service within the node that is
composed by two components: one running at the control plane and the other one in the data
plane. The former controls the behaviour of the latter.

The active service provisioning system enables on-demand deployment of heterogeneous
distributed component-based active services in the FAIN network.

The main features of the systems are:

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 124

• Two-layered architecture: The rationale for choosing this architecture was a separation of
concerns in the service deployment problem space. Whereas the network-level ASP deals with
network issues including identifying nodes of the target environment for a given service with
regard to the topological service requirements and network Quality of Service requirements, the
node-level ASP is concerned with node specific requirements, including technology and other
service dependencies.

• Heterogeneous active service support: The ASP enables deployment of active services
independently of the implementation technology they are based on. As long as a service is
structured in terms of components and described using universal service descriptors defined in
XML, it can be deployed using the ASP in the same way.

• Multi-EE node support: The ASP allows for deployment of active services on top of multi
execution environment nodes. A service may consist of components to be deployed in different
execution environment on a node. The decision as to which EE should be chosen depends on the
execution capability and the availability of the suitable component implementation.

• Deployment support for service components in different planes: ASP is designed for deploying
service code independent of the purpose. In the same way, it is possible to deploy components to
run in management, control and data plane.

• Hybrid two-phase process for the selection of a target environment: The selection of active nodes
suitable for a deployment of active services is designed as a hybrid of a centralized pre-section of
the candidate nodes to be used for service deployment and a decentralized checking that the actual
node capabilities on the candidate nodes suffice the service needs.

• Universal service meta-information description: The service descriptors are expressed in XML, a
commonly-used SGML-based language standardized by W3C. By applying this language, the
descriptors are easy to write for the service providers, easy to process by the programs (e.g. to
generate it automatically by developing a service or to parse it) and, last but not least, as easy to
extend. The common availability of the parsers also makes the software processing XML-based
service descriptors easy to port to other platforms.

• Binding of service components: The FAIN ASP also supports binding service components forming
a service. A service descriptor enables describing the way the components should be connected
with each other and the node level ASP can interpret this information and perform the necessary
actions.

The network level ASP has been significantly extended from its rudimentary form allowing for
deploying active services on pre-selected number of nodes by adding to it logic enabling automatic
selection of the target nodes based on matching the service requirements regarding the locations of the
service components against the capabilities of the network available to the service provider at the
deployment time. On the node level, the ASP code has profited from more thorough testing when
performing the more advanced test case scenarios required for deploying more complex services,
composed of components deployed on different active nodes distributed in the network

The future work will focus on providing improved support for service reconfigurability.
Deployment algorithms and more optimised target environment selection algorithm will also be
investigated.

D8: Final Specification of Case Study Systems

Copyright © 2000- 2003 FAIN Consortium 125

5. REFERENCES

[1] FAIN Deliverable D5 “Revised Specification of Case Study Systems”, May 2002 –
http://www.ist-fain.org

[2] Steven J. Metsker, “Design Patterns Java Workbook”, Addison Wesley, March 2002

[3] FAIN Deliverable D1: Requirements Analysis and Overall Architecture. FAIN Consortium,
May 2001, pp. 11-18, http://www.ist-fain.org

[4] M.Solarski, M.Bossardt, T.Becker “Component-based Deployment and Management of
Services in Active Networks”, IWAN’02, Zürich, CH, Dec. 2002.

[5] Larman C.: Applying UML and Patterns, 2nd Ed., Prentice Hall, ISBN 0-13-092569-1, 2002.

[6] Matthias Bossardt, Lukas Ruf, Rolf Stadler, Bernhard Plattner: A Service Deployment
Architecture for Heterogeneous Active Network Nodes. Kluwer Academic Publishers, 7th
Conference on Intelligence in Networks (IFIP SmartNet 2002), Saariselkä, Finland, April
2002.

[7] FAIN Project WWW Server – http://www.ist-fain.org

[8] K. Chan, et. al., “COPS Usage of Policy Provisioning”, IETF RFC 3084, March 2001.

[9] J.E. van der Merwe, S. Rooney, I.M. Leslie and S.A. Crosby, “The Tempest - A Practical
Framework for Network Programmability”, IEEE Network, Vol 12, Number 3, May/June
1998, pp.20-28. http://www.research.att.com/~kobus/ docs/tempest_small.ps

[10] G. Goldszmidt and Y. Yemini. “Distributed Management by Delegating Mobile Agents”. In
The 15th International Conference on Distributed Computing Systems, Vancouver, British
Columbia, June 1995. http://www.cs.columbia. edu/~german/papers/icdcs95.ps.Z

[11] “Specification of Revised Case Study Systems”, FAIN Project Deliverable 5, http://www.ist-
fain.org/deliverables/del5/d5.pdf.

[12] “Node OS Interface Specification”, AN Node OS Working Group, Larry Peterson, ed.,
November 30, 2001. http://www.cs.princeton.edu/nsg/papers /nodeos-02.ps

[13] M. Sloman, E. Lupu “Policy Specification for Programmable Networks” in Proceedings of
IWAN99, 1999

[14] N. Damianou, N. Dulay, E. Lupu, M Sloman, “The Ponder Specification Language”
Workshop on Policies for Distributed Systems and Networks (Policy2001), HP Labs Bristol,
29-31 Jan 2001. http://www.doc.ic.ac.uk/~mss/Papers/Ponder-Policy01V5.pdf

[15] Open Source Project OpenORB http://openorb.sourceforge.net/

[16] Distributed Management Task Force, Inc., "DMTF Technologies: CIM Schema V. 2.6",
February 2002

[17] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy Core Information Model --
Version 1 Specification”, IETF Policy Working Group, RFC3060, February 2001.

[18] FAIN Deliverable D3, “Initial Specification of Case Study Systems”, May 2001.

