
D7-Final Active Node Architecture and Design

 Project Number : IST-1999-10561-FAIN

Project Title : Future Active IP Networks

D7-Final Active Node Architecture and Design

Editor : Spyros Denazis

Document No: WP3-HEL-055-D7-Int

Contribution File Name : WP3-HEL-055-D7-Int.doc

Version : 1.0

Company : HEL

Date : 13 May 2003

Distribution : WP3,WP4, WP5

Dissemination: CO

Copyright  2000-2003 FAIN Consortium

The FAIN Consortium consists of:

Partner Status Country
UCL Partner United Kingdom
JSIS Associate Partner to UCL Slovenia

NTUA Associate Partner to UCL Greece
UPC Associate Partner to UCL Spain
DT Partner Germany
FT Partner France

HEL Partner United Kingdom
HIT Partner Japan
SAG Partner Germany
ETH Partner Switzerland

FHG/FOKUS Partner Germany
IKV Associate Partner to

FHG/FOKUS
Germany

INT Associate Partner to
FHG/FOKUS

Spain

UPEN Partner USA

Copyright  2003 FAIN Consortium May 2003 a

http://www.ee.ucl.ac.uk/
http://www.ijs.si/
http://www.iccs.ntua.gr/eng/
http://www.upc.es/
http://www.berkom.de/
http://www.francetelecom.fr/
http://www.hitachi-eu.com/
http://www.hitachi.co.jp/
http://www.siemens.de/
http://www.ethz.ch/
http://www.gmd.de/
http://www.ikv.de/
http://www.integrasys-sa.com/
http://www.upenn.edu/

The FAIN Consortium

University College London (UCL)
Josef Stefan Institute (JSIS)
National Technical University of Athens (NTUA)
Universitat Politecnica De Catalunya (UPC)
T-Nova Deutsche Telekom Berkom GmbH (DT)
France Télécom / R&D (FT)
Hitachi Europe Ltd. (HEL)
Hitachi Ltd. (HIT)
Siemens AG (SAG)
Eidgenössische Technische Hochschule Zürich (ETH)
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FHG/FOKUS)
IKV++ GmbH Informations- und Kommunikationstechnologie (IKV)
Integracion Y Sistemas De Medida, SA (INT)
University of Pennsylvania (UPEN)

Project Management

Alex Galis
University College London
Department of Electronic and Electrical Engineering,
Torrington Place
London WC1E 7JE
United Kingdom
Tel +44 (0) 207 458 5738
Fax +44 (0) 207 388 9325
E-mail: a.galis@ee.ucl.ac.uk

Authors

Spyros Denazis (HEL) – Editor
Toshiaki Suzuki (HEL) – Contributor
Chiho Kitahara (HIT) – Contributor
Thomas Becker (FHG/FOKUS) - Contributor
Lukas Ruf (ETH) – Contributor
Cornel Klein (SAG) – Contributor
Antonis Lazanakis (NTUA) – Contributor
Lawrence Cheng (UCL) – Contributor
Dusan Gabrijelcic (JSIS) – Contributor
Walter Eaves (UCL) - Contributor

D7-Final Active Node Architecture and Design

Change History

Ver. Date Authors Comments

0.1 11.03.2003 Spyros Denazis (HEL) Initial ToC

0.2 10.04.2003 Spyros Denazis (HEL)
Toshiaki Suzuki (HEL)
Chiho Kitahara (HIT)
Thomas Becker (FhG)
Antonis Lazanakis (NTUA)
Lukas Ruf (ETH)
Cornel Klein (SAG)
Lawrence Cheng (UCL)

First Draft of the following sections is added:
• Virtual Environments and Management (FhG)
• RCF (NTUA, HIT)
• Demultiplexing (HEL)
• PromethOS (ETH, SAG)
• Active SNMP Activator (UCL)
• Wireless LAN Scenario was deleted as it was
transferred to D9

0.3 8.05.2003 Spyros Denazis (HEL)
Toshiaki Suzuki (HEL)
Chiho Kitahara (HIT)
Thomas Becker (FhG)
Antonis Lazanakis (NTUA)
Lukas Ruf (ETH)
Cornel Klein (SAG)
Lawrence Cheng (UCL)
Dusan Gabrijelcic (JSIS)

Final versions of the following sections have been
received. D7 is now ready to be submitted for review by
the consortium.
• Virtual Environments Management & Java EE (FhG)
• RCF (NTUA, HIT)
• Demultiplexing (HEL)
• PromethOS (ETH, SAG)
• Active SNMP Activator (UCL)
• Security architecture (JSIS)

0.4 9.05.2003 Lawrence Cheng (UCL) Revisions of Active SNMP

0.5 9.05.2003 Antonis Lazanakis (NTUA)
Spyros Denazis (HEL)

• RCF Conclusions added and other editorial changes
• Minor editorial changes (formatting)

0.6 11.05.2003 Dusan Gabrijelcic(JSIS) • Security updated

0.7 12.05.2003 Spyros Denazis (HEL)
Toshiaki Suzuki (HEL)
Thomas Becker (FhG)

• Executive Summary and Conclusions (HEL)
• Demultiplexing Minor modifications (HEL)
• Virtual Environments Management & Java EE
Updated Version (FhG)

0.9 13.05.2003 Alex Galis (UCL) Overall review and modifications

0.91 13.05.2003 Lawrence Cheng (UCL) Includes contributions from Alex, Antonis, Dusan,
Lukas and myself.

1.0 13.05.2003 Spyros Denazis (HEL) Final Modification and completion of the editorial work

Copyright  2003 FAIN Consortium May 2003
3

D7-Final Active Node Architecture and Design

Executive Summary

This deliverable (D7) is the third and final in a series of deliverables (D3, D5 and D7) that described
the architecture and implementation of the FAIN Active Node. These annual project deliverables were
produced as phased revisions: Concept revisions and /or Technical revisions.

Concept revisions refer to the main architectural concepts outlined in year 1 or year 2 deliverables as
they needed more focus in some cases or lacked completeness in the previous version of the
deliverable. In the year 3 deliverable we have revisited the concepts and described them from a
different viewpoint while making the necessary references to the corresponding implementation,
thereby adding more depth in their description by connecting them with experimental proofs.

Technical revisions refer to the implementation of the FAIN Active Network architecture, which
resulted in modifications, or extensions of the initial version of the architecture description as well as
the particular choice of technologies and the engineering aspects thereof.

A full overview of the FAIN project architectural results are described in deliverable D14. As a result
what is described here are the design and implementation details of the FAIN node components
mentioned in the D14 common part.

Section 1, presents a short introduction to the FAIN Active Node whereas details may be found in
D14. Section 2, describes the Virtual Environment Management (VEM) framework and how it has
been designed to realise the component-based feature of the FAIN node. Around VEM, the other
components of the node have been designed and integrated. More specifically, Resource Control
Framework (RCF), Demultiplexing, and Security are presented in Sections 3, 4, and 5. Section 6
consists of the description of different Execution Environments that have been identified, designed and
implemented. In Section 6.1, we describe a Java EE which is in fact the implementation of the VEM
framework and through the offered management functionality binds together all the FAIN node
components as well as the other EEs. Section 6.2, describes the architecture and functionality of a high
performance EE which also supports the deployment of new components in the same way as the Java
EE and entirely resides in the transport plane. Section 6.3 describes an Active SNMP EE based on the
SNAP EE which resides in the control plane and is used in order to control and configure the transport
plane and in particular a router. In the last Section of this deliverable we provide our conclusions.
More elaborate conclusions are presented in the new deliverable D14 where the overall achievements
of the project are provided.

Copyright  2003 FAIN Consortium May 2003
4

D7-Final Active Node Architecture and Design

TABLE OF CONTENTS

1 FAIN OVERVIEW .. 9

2 VIRTUAL ENVIRONMENTS & MANAGEMENT .. 10
2.1 INTRODUCTION... 10
2.2 REQUIREMENTS.. 11
2.3 DESIGN... 11

2.3.1 Basic Component .. 12
2.3.2 Configurable Component .. 12
2.3.3 Component Manager... 13
2.3.4 Template Manager .. 13
2.3.5 Resource Manager .. 14
2.3.6 Special Managers.. 14

2.4 CONCLUSION .. 15
3 RESOURCE CONTROL FRAMEWORK.. 16

3.1 INTRODUCTION... 16
3.2 REQUIREMENTS.. 16

3.2.1 RCF Design... 16
3.3 RCF MAIN FUNCTIONALITIES .. 17

3.3.1 Admission Control... 17
3.3.2 Resource Control .. 19

3.4 MODEL RCF IMPLEMENTATION ... 20
3.4.1 Traffic Control and Management for Linux .. 21
3.4.2 DiffServ Control and Management for a Gigabit Router.. 22

3.5 CONCLUSIONS .. 23
4 DEMULTIPLEXING... 24

4.1 REQUIREMENT FOR DEMULTIPLEXING ... 24
4.1.1 Requirement for Active Packet format for Demultiplexing ... 24
4.1.2 Requirement for Demultiplexing Mechanism.. 24

4.2 DEMULTIPLEXING FRAMEWORK... 24
4.2.1 Active Channel .. 25
4.2.2 Data Channel .. 28

4.3 CONCLUSION ON DEMULTIPLEXING ... 29
5 SECURITY ... 30

5.1 INTRODUCTION... 30
5.2 SYSTEM RELATIONSHIPS AND ENTITIES .. 30
5.3 THREATS, SECURITY REQUIREMENTS AND ARCHITECTURE GOALS ... 32
5.4 SECURITY ISSUES.. 33

5.4.1 Authorization and policy enforcement .. 33
5.4.2 Authentication ... 34
5.4.3 Packet integrity ... 34
5.4.4 System integrity ... 35
5.4.5 Code and service verification.. 35
5.4.6 Limiting resource usage .. 35
5.4.7 Accountability ... 36

5.5 HIGH LEVEL SECURITY ARCHITECTURE .. 36
5.6 FAIN ARCHITECTURAL MODEL AND SECURITY ARCHITECTURE ... 36
5.7 SECURITY ARCHITECTURE DESIGN AND IMPLEMENTATION... 38

5.7.1 Building components security context ... 38
5.7.2 Enforcement layer, authorization and policy enforcement.. 39
5.7.3 External security representation ... 39
5.7.4 Cryptographic subsystem and secure store... 40
5.7.5 Connection manager ... 40
5.7.6 Verification manager .. 40

5.8 GENERAL ACTIVE PACKET SECURITY EVENTS... 41

Copyright  2003 FAIN Consortium May 2003
5

D7-Final Active Node Architecture and Design

5.9 SECURITY ARCHITECTURE PERFORMANCE.. 41
5.10 ARCHITECTURE APPLICABILITY.. 43
5.11 EVALUATION OF THE SECURITY ARCHITECTURE... 44
5.12 CONCLUSIONS .. 45

6 EXECUTION ENVIRONMENTS.. 46
6.1 JAVA EE... 46

6.1.1 Introduction... 46
6.1.2 Implementation.. 46
6.1.3 Use Cases.. 50
6.1.4 Conclusion .. 51

6.2 PROMETHOS EE .. 52
6.2.1 Architectural Overview ... 53
6.2.2 Netfilter Framework.. 53
6.2.3 PromethOS Netfilter-Table ... 55
6.2.4 Plugin Framework and Execution Environment ... 56
6.2.5 PromethOS User Space Library.. 56
6.2.6 Summary, Outlook and further work... 57

6.3 ACTIVE SNMP ACTIVATOR ... 58
6.3.1 Introduction to SNAP EE .. 58
6.3.2 System Design Goals... 58
6.3.3 System Design ... 59
6.3.4 Introduction to the ANEP-SNAP Packet Engine (ASPE) .. 62
6.3.5 Requirements of the ASPE... 63
6.3.6 ANEP-SNAP Packet Format ... 64
6.3.7 System Architecture... 65
6.3.8 Conclusion .. 66

7 CONCLUSIONS... 67

8 REFERENCES... 68
A.1 INTERFACE DEFINITIONS OF THE JAVA EXECUTION ENVIRONMENT............................... 71
A.1.1 Identification ... 71
A.1.2 Properties.. 71
A.1.3 Ports .. 71
A.1.4 Interface iComponentInitial .. 72
A.1.5 Interface iConfiguration.. 73
A.1.6 Interface iConfigurationObserver... 74
A.1.7 Interface iTemplateManager... 74
A.1.8 Interface iComponentManager ... 75
A.1.9 Interface iResourceManager... 76
A.1.10 Interface iResourceMonitor .. 77
A.1.11 Interface iResourceObserver... 77
A.1.12 Interface iMonitoredResourceManager .. 78
A.1.13 Interface iVirtualEnvironmentManager.. 78
A.2 IMPLEMENTATION OF PROMETHOS .. 78
A.2.1 PromethOS Netfilter-Table: iptables_promethos.c ... 78
A.2.2 PromethOS Netfilter-Target: ipt_PROMETHOS.c ... 80
A.2.3 Plugin Implementation .. 81
A.2.3.1 load()... 81
A.2.3.2 unload ().. 81
A.2.3.3 target() .. 81
A.2.3.4 config() .. 81
A.2.3.5 reconfig()... 82
A.2.3.6 print() .. 82
A.2.4 Example Plugin Explained .. 83
A.2.5 The PromethOS User Space Library... 84
A.2.6 Example Use of PromethOS Plugin Framework... 88
A.2.7 Example Use of the PromethOS User Space Library.. 89

Copyright  2003 FAIN Consortium May 2003
6

D7-Final Active Node Architecture and Design

Copyright  2003 FAIN Consortium May 2003
7

D7-Final Active Node Architecture and Design

Table of Figures

FIGURE 1-1: OVERVIEW OF FAIN NODES.. 9
FIGURE 2-1: AN EXAMPLE SERVICE CONSISTING OF SEVERAL COMPONENTS. .. 11
FIGURE 2-2: HIERARCHY OF COMPONENT ABSTRACTIONS. .. 12
FIGURE 2-3: INITIAL SETUP OF THE MANAGEMENT LAYER OF A FAIN ACTIVE NODE... 15
FIGURE 3-1: RCF ARCHITECTURE ... 17
FIGURE 3-2: ADMISSION CONTROL. INVOLVED COMPONENTS HIERARCHY .. 18
FIGURE 3-3: MULTILEVEL HIERARCHICAL RESOURCE SHARING ... 19
FIGURE 3-4: RESOURCE CONTROL. COMPONENTS AND INTERFACES... 20
FIGURE 3-5: TRAFFIC CONTROL AND MANAGEMENT FOR LINUX SOFTWARE ROUTER.. 22
FIGURE 3-6: DIFFSERV CONTROLLER FOR GIGABIT ROUTER ... 23
FIGURE 4-1: BLOCK DIAGRAM OF PACKET DELIVERY... 25
FIGURE 4-2: ACTIVE PACKET TRANSMISSION.. 26
FIGURE 4-3: ANEP PACKET FORMAT.. 27
FIGURE 4-4: VIRTUAL ENVIRONMENT IDENTIFIER... 28
FIGURE 4-5: EXECUTION ENVIRONMENT IDENTIFIER... 28
FIGURE 4-6: DATA PACKET TRANSMISSION... 29
FIGURE 5-1: SYSTEM ENTITIES AND RELATIONSHIPS.. 31
FIGURE 5-2: HIGH LEVEL SECURITY ARCHITECTURE.. 36
FIGURE 5-3: SECURITY CONTEXT, VE AND SERVICE STARTUP... 38
FIGURE 5-4: SECURITY RELATED PACKET COSTS ... 42
FIGURE 6-1: CLASS HIERARCHY FOR JAVA EXECUTION ENVIRONMENT ... 47
FIGURE 6-2: NETFILTER AND PROMETHOS... 53
FIGURE 6-3: NETFILTER ARCHITECTURE FOR IPV4.. 54
FIGURE 6-4: PROMETHOS NETFILTER-TABLE HOOKS... 55
FIGURE 6-5: SNAP PACKET FORMAT .. 59
FIGURE 6-6: SNAP ACTIVATOR BLOCK DIAGRAM.. 61
FIGURE 6-7: ANEP-SNAP PACKET FORMAT .. 64
FIGURE 6-8: BLOCK DIAGRAM FOR ANEP-SNAP PACKET FLOW ... 65

Table of Tables

TABLE 4-1: DATABASE FOR THE ACTIVE PACKET ... 26
TABLE 4-2: DATABASE FOR THE DATA PACKET .. 29
TABLE 3: EXAMPLE CODE OF THE PROMETHOS USER SPACE LIBRARY .. 90

Copyright  2003 FAIN Consortium May 2003
8

D7-Final Active Node Architecture and Design

1 FAIN OVERVIEW

FAIN Active Node

Node OS

FAIN Management Node

Privileged VE

SEC RCF

Active Network Test Bed

VEM

DMUX PBNM

ASP

Figure 1-1: Overview of FAIN Nodes

Figure 1-11 provides an overview of the major AN node components and their corresponding
interfaces that comprise the FAIN AN node architecture.

The main components of the FAIN Active Node are presented in the following chapters and they are:

• Virtual Environment Management (VEM)

• Resource Control Framework (RCF)

• Demultiplexing

• Security

• EE Types: Java EE, High-performance EE, SNAP EE

Copyright  2003 FAIN Consortium May 2003
9

D7-Final Active Node Architecture and Design

2 VIRTUAL ENVIRONMENTS & MANAGEMENT

2.1 INTRODUCTION
The concept of virtual environments was introduced in FAIN to overcome the problem of having
several execution environments implemented in various technologies and providing different
abstractions, interfaces, etc. For example, in FAIN we implemented three kinds of execution
environments, based on JAVA/CORBA, SNAP, and PromethOS (see chapter 6).

While execution environments support the installation, instantiation, and configuration of active
services’ code in various ways, the virtual environment puts a uniform management layer on top. This
allows external clients to interact with services through the interface of the virtual environment in a
generic way and the interactions will be mapped to specific interfaces of the execution environments.

Several execution environments can be attached to a virtual environment just in the same way as other
resources. This leads to another aspect of virtual environments, which is the partitioning of resources.
As defined in the FAIN business model [9], there may be a number of service providers acting as the
customers of a network provider. The network provider can set up virtual environments on selected
network nodes and assign them to a particular service provider in order to offer a virtual active
network. The access to the virtual environments will be made available to the respective service
provider so that it can manage it’s own virtual network. The resource partitioning implemented among
virtual environments will prevent interferences with other service providers and additionally allow an
accounting per service provider.

A special virtual environment, also called the privileged virtual environment, will be started when an
active node is booted. This environment belongs to the network provider and contains the fundamental
services such as management of basic resources (CPU, memory, bandwidth) as well as management of
virtual environments plus different kinds of execution environments. The privileged virtual
environment also provides a means for the network provider to manage the nodes inside an active
network.

Several virtual environments belonging to the same service provider but running on different active
network nodes will form a virtual network to be used by the service provider to deploy services and
make them available to customers. In order to know which virtual environments belong to a particular
virtual network the environments get tagged with a special network identifier.

To summarise, the concept of virtual environments enables several aspects:

• a generic way of deploying and managing active services independent of the technology of
the underlying execution environment,

• a generic way to manage (i.e. monitor and control) active nodes for service providers as well
as for network providers,

• the partitioning of resources among several service providers,

• the accounting of resource usage per service provider, and

• the delegation of service management to the service providers.

In the following the requirements towards the node level management and its design are presented in
more detail.

Copyright  2003 FAIN Consortium May 2003
10

Spyros G. DENAZIS
(E) Thomas, (C) Antonis, Spyros, Jan, (R) Joan
Purpose: Introduction & Summary/Requirements and functionality/Design and Framework/ components, interfaces/Conclusion /References

D7-Final Active Node Architecture and Design

2.2 REQUIREMENTS
The major requirement towards the design of the interface of a virtual environment is to provide a
generic way of deploying and managing services on active network nodes offering different execution
environments. Further, the deployment and management should be possible in a flexible and dynamic
way of facilitating creation, configuration, and reconfiguration of services on demand. Interaction
between services should be supported in a safe and controlled way. Nonetheless, the development of
services should be easy and concentrated on the service logic by avoiding to re-implemented
commonly needed functionality. Last but not least, the implementation of the node level management
layer (i.e. the virtual environments) should be portable between different operating systems and should
interoperate with external components potentially implemented in different programming languages.

In the following we will show how those requirements were met.

2.3 DESIGN
In FAIN, services are described in a component-based approach. This approach allows the creation of
new services by combining already available components and potentially configuring them. However,
any missing functionality has to be implemented somehow. Consequently, a component-based
approach has been chosen for the deployment and management of services as well as for the
development of services. Legacy systems missing a component-oriented interface can be wrapped by
components residing in the node management layer (see figure 1).

legacy
system

management

control

transport

Figure 2-1: An example service consisting of several components.

A component-based runtime environment for services makes it easier to develop services. Aspects
such as lifecycle management, configuration, access control, monitoring, etc. can be implemented by
the supporting framework. Thus the developer of a service can concentrate on the service logic and
frequently needed aspects don’t have to be implemented over and over again.

By providing means to dynamically inter-connect components a high degree of flexibility can be
reached. After the initial setup services may be reconfigured during runtime by adding new
components, removing components, or changing connections between components. This applies not
only to high-level services but also to the basic service offered by an active node. For example, a
specific service component may be connected to a “channel” component providing the dispatching of
packets belonging to a particular flow while also controlling the bandwidth.

Copyright  2003 FAIN Consortium May 2003
11

D7-Final Active Node Architecture and Design

Components are created and destroyed by component managers. A component manager is responsible
for one type of component and besides the creation and deletion it offers methods for activating,
deactivating, and finding component instances. Thus a component manager implements the so called
factory and finder patterns.

In order to deploy a service, which needs components that are not already available on a particular
network node, the respective component managers have to be loaded into an appropriate execution
environment. Since a component manager functions as a template from which instances can be created
the execution environments are template managers allowing to install, uninstall, and find component
managers. As virtual environments provide an abstraction from particular execution environments they
also need to implement the template manager pattern.

Specialised component managers are used to manage specific resources. Additionally to the factory
and finder patterns a resource manager offers methods for monitoring instances with regards to certain
dimensions like usage of memory usage or CPU cycles.

Basic Component

Configurable Component

Component Manager Template Manager

Resource Manager

Figure 2-2: Hierarchy of component abstractions.

Figure 2-2 depicts the hierarchy of abstractions used for service components. In the following sections
these abstractions will be presented in more detail. The implementation of the abstractions makes up
the runtime support framework for service components and is described in chapter 6.1.

2.3.1 Basic Component
The objective for the design of the FAIN component model has been its generality. It should be
possible to cover all other models with this one. Thus, the FAIN model is quite simple: a basic
component has a defined owner, a unique identifier, and optionally offers a couple of ports through
which its specific functionality could be accessed.

A port will have a particular format and address so that is can be accessed from the outside. The values
of the format and address are expressed as arbitrary character strings, which are transparent to the
service runtime framework but have to be understood by the component itself and its communication
peers. At least one port is offered by all components, which is the initial port. This port is used by
clients to query other supported ports and to get access to them. In order to get access to a port a client
must authenticate himself.

2.3.2 Configurable Component
A configurable component is derived from a basic component and additionally offers a configuration
port. This port is used to get and set the configuration of the component in the form of properties, i.e.
pairs of names and values. Interested clients can connect a call-back port to receive notifications when
selected properties change their values.

Copyright  2003 FAIN Consortium May 2003
12

D7-Final Active Node Architecture and Design

Further, the configuration port allows connecting the ports of the respective component with ports of
other components. This is used when a service is deployed and components have to be interconnected
as described in chapter 2.3

2.3.3 Component Manager
A component manager is derived from a configurable component. It offers a port for managing
component instances comprising the following:

• Creation of instances with specifying a profile: the component manager will create a new
instance in a standby mode and store it together with the profile. The result is a unique
identifier for the new instance. If no activation occurs for the new instance within a specific
timeframe the instance will be deleted automatically.

• Activation of instances with specifying initial setup parameters: the component manager will
put the new instance into action and initialise it with the setup parameters. The new instance
is now ready to interact with its environment.

• Deactivation of instances: the component manager will put the instance back into the standby
mode. After a specific timeframe the instance has to be activated again or it will be deleted.

• Deletion of instances: the component manager will simply delete the instance.

• Discovery of instances: the component manager will return a reference to a desired instance
or a set of instances based on several criteria, e.g. the instance’s unique identifier, an owner,
or other properties.

2.3.4 Template Manager
A template manager is derived from a configurable component. It offers a port for managing
templates, where a template corresponds to a particular component manager instance. There are
exactly two occurrences of template managers: execution environments and virtual environments.
While execution environments are responsible for putting component managers into action the task of
a virtual environment is to dispatch requests to an appropriate execution environment. The role of the
privileged virtual environment is to dispatch requests to the virtual environment owned by the
appropriate service provider and can thus be used as the initial point of contact for any client.

Managing templates comprises:

• Installation of templates with specifying a template description: the environment will take the
required steps to put the corresponding component manager in action. An installation request
will eventually arrive at the appropriate execution environment. The execution environment
will use specific means for installing a component manager depending on the underlying
technology, e.g. instantiating a new JAVA class loader or copying object files to appropriate
locations. The template description includes a name, a version, the identifiers of the target
virtual and execution environments, the path to the templates code base, and the entry point
for starting the corresponding component manager. The result of the installation is a unique
identifier for the new template.

• De-installation of templates with specifying the template’s unique identifier: the environment
will delete the corresponding component manager. It is specific to the template – and thus
part of the implementation of the component manager – whether running component
instances should be deleted, too.

• Discovery of templates: the environment will return a reference to a component manager or a
set of component managers according to various criteria, e.g. the template’s unique identifier,
its name, version, or identifiers of environments.

Copyright  2003 FAIN Consortium May 2003
13

D7-Final Active Node Architecture and Design

2.3.5 Resource Manager
A resource manager is derived from a component manager. It offers a port for monitoring component
instances and for registering call-back ports to get notifications when certain thresholds are reached.

The methods offered by a component manager are extended in the following way:

• Creation of instances with specifying a resource profile: the resource manager can use this
profile for checking the availability of resources needed for putting the new instance into
action. The required resources will be kept in a standby mode for a certain amount of time in
order to be usable by the new instance when it gets activated. If no activation occurs within
the timeframe the resources will be released.

• Activation of instances with specifying initial setup parameters: the new instance is now
ready to use the assigned resources and the resources are bound to the instance.

• Deactivation of instances: the resource manager will put the resources assigned to the
instance back into the standby mode. After a specific timeframe the instance has to be
activated again or the resources will be freed.

• Deletion of instances: the resource manager will free all resources assigned to the instance.

• Registering a call-back: interested clients can register a call-back port in order to receive
notifications when the usage of resources by an instance reaches particular limits. This can be
done for upper or lower limits.

2.3.6 Special Managers
During the boot procedure of a FAIN active node the privileged virtual environment is started together
with an attached execution environment. When a new virtual environment is created it will need some
basic resources in order to support template installation and component instantiation. For this reason
various resource managers are installed inside the privileged virtual environment during the boot
procedure.

Those basic resources managers comprise:

• A virtual environment manager for the creation of new virtual environments. This manager
will examine the resource profile and try to create any referenced resource using the other
basic managers. The resulting resource components will be attached to the new virtual
environment.

• A number of execution environment managers for the creation of specific execution
environments. Since all templates have to be installed in an execution environment and
running instances can also exist only inside execution environments, there has to be at least
one execution environment attached to a virtual environment. Specific execution
environments will be described in chapter 6.

• A security manager for creating security contexts. A security context will hold information
about the identity and security policies of the owner of an environment, i.e. the network
provider for the privileged virtual environment or a service provider for other virtual
environments. The security context is used to check interactions with components belonging
to the respective environment.

• A channel manager for creating channels. Component instances running in an execution
environment can connect to a channel to receive and send packets from and to the network.
The channel manager is responsible for dispatching packets to the appropriate channels.

• A traffic manager for creating traffic controllers. A traffic controller can be used by
component instances to control particular packet flows. For example, a traffic controller may
offer methods for setting up a guaranteed bandwidth or a specific packet scheduling.

Copyright  2003 FAIN Consortium May 2003
14

D7-Final Active Node Architecture and Design

priviledged virtual environment

priviledged execution environment

VE mgr EE mgr security
manager

traffic
manager

channel
manager

Figure 2-3: Initial setup of the management layer of a FAIN active node.

Figure 2-3 shows the initial setup of the management layer of an active node. The privileged execution
environment runs in the context of the privileged virtual environment. Inside the privileged execution
environment there are the resource managers for the basic services. They will be used to create
resources for other virtual environments. Details of the implementation are described in chapter 6.1.

2.4 CONCLUSION
This chapter presented the management layer on the node level. The introduction of virtual
environments allowed integrating several execution environments with potential different
implementation technologies. Further, physical resources could be partitioned among several node
users – the service providers – with the help of virtual environments. To achieve a flexible and fine
grained control over service deployment and management a component-based approach was chosen
for the node level management layer. With the introduction of properties and ports for components a
means was found for dynamic reconfiguration of services in that service components’ properties and
interconnections between service components could be changed during the service’s runtime.

Copyright  2003 FAIN Consortium May 2003
15

D7-Final Active Node Architecture and Design

3 RESOURCE CONTROL FRAMEWORK

3.1 INTRODUCTION
In this section the Resource Control Framework (RCF) of the FAIN nodes is described. RCF is the
part of the virtual environment management (VEM) framework that is involved in the management of
resources and other node components and performs the runtime control of resources inside the FAIN
ANs. The importance of RCF is considered as very high as it supports one of the major concepts of the
FAIN project: the bounding of Virtual Environments (VEs) in the FAIN ANs with specific resource
capacity. RCF supports this bounding, isolates various VEs in the same node and supports
dynamically the lifecycle of each VE by allocating, controlling and releasing resources
correspondingly.

3.2 REQUIREMENTS
The main objective of Active Networking of FAIN is to provide the necessary infrastructure for the
dynamic deployment of the new services and to give the user the ability to customise the network
using his own code. This dynamic aspect of active networks has an impact on the requirements for
resource management of active node. In comparison to a traditional network node, active node offers
the ability to dynamically inject code, which implements a new service. The code is injected in an
execution environment that belongs to a VE, which presents an abstraction of the node to the active
application. In order to be able to support these services the VE should have guaranteed access to the
necessary resources of the node. Hence, RCF should provide the necessary mechanisms to enforce
resource sharing among the various users. Every resource allotment in the form of a VE should be
isolated and independent from other VEs. Furthermore, the dynamic creation, deletion and
reconfiguration of VEs should be supported at any time that the status of the resources does not forbid
it. An other important rule that should be followed during the control of the FAIN AN resources is that
the admission of the creation of a new VE should not affect the contracts and the agreements of the
existing VEs. In addition, not only should RCF provide access to the allocated resources, but also a set
of the necessary control and management mechanisms, in order the VE owner to be able to use and
manage these resources according to his desire and necessities. Finally, an open interface that gives
the necessary access to RCF functionality of the VE should be provided to its owner.

3.2.1 RCF Design
In Figure 3-1, the design of RCF is depicted. For every resource that is controlled a resource controller
(RC) takes over its runtime control and a resource manager (RM) to manage the partition of the
resource among the VEs. Finally for every VE exists a resource controller abstraction (RCA) that
represent part of the RC functionality, specifically for the part of the resource that have been allocated
to the VE, to the VE client.

In more details the main categories of RCF components are the following:

Resource Controller (RC): RC is an entity, which is responsible for the actual control of a resource
inside the FAIN Active Node. RC can be a component running in Kernel Space of the node for a
software router or can be a specific device of a hardware router. Moreover, a RC can vary from a
simple scheduler (e.g. CPU Scheduler) to a more complex framework, which could control a whole
mechanism in the kernel that includes the control of more than one real resource, e.g. for Linux based
AN can be the Netfilter Framework or the Traffic Control Framework. Every RC has an interface that
allows its runtime configuration, which includes the allocation and monitoring of the resource for
which is responsible for.

Copyright  2003 FAIN Consortium May 2003
16

Spyros G. DENAZIS
(E) Antonis, (C) Thomas, (R) Cornel
Purpose: Introduction & Summary/Requirements and functionality/Design and Framework/ components, interfaces/Conclusion /References

D7-Final Active Node Architecture and Design

Resource Manager (RM): For every RC, a RM exists in user space. It is responsible for the
configuration of the corresponding RC in order to enforce the resource partition among the various
VEs. Moreover, RMs are responsible for the RCAs creation, configuration and management. Among
others, the RMs are responsible for the Admission Control of the incoming requests for new
allocations and for the realization of the allocation by configuring the corresponding RC.

RMRCA RCA RCA

RMRC

Resources

VEM
Client

VE

Figure 3-1: RCF Architecture

Resource Controller Abstraction (RCA): For every resource that is allocated to a VE, a RCA of that
resource is created. The RCA represent the part the RC that controls the allotted to the VE resource
and it is bounded up with a specific part of the whole resource. The RCAs export IFs and accept
requests by VE owners for resource access. Resource access includes requests for resource
consumption and management. RCAs check those requests against resource status and VE owners’
privileges and enforce the valid requests by configuring the corresponding RCs accordingly.

The RMs and RCAs are part of the VEM framework as RMs are specific component managers and
RCAs are specific configurable components. Virtual Environment Manager (VEM) is the higher
manager in hierarchy and manages all the RMs. In a sense, VEM is also a RM that manages the high
level resource that called VE.

RCs generally are not part of the virtual environment management framework. Mostly are platform
dependent entities and mechanisms that their mission is to control a specific or a set of resources. Each
of them has a configuration interface which gives to the corresponding RM and RCAs the ability to
dynamically determine the way that its control the resource by changing its configuration.

3.3 RCF MAIN FUNCTIONALITIES
In order RCF to meet its requirements acts in two different ways. The first is to make the admission
control of any new VE creation request. The second is to control and manage the usage of the
resources of the admitted VEs.

3.3.1 Admission Control
The creation of a new VE in the FAIN Node cannot always be accepted because of the finite amount
of resources. This requires the existence of an Admission Control (AC) mechanism within the RCF of
the FAIN Node.

AC in the FAIN Node addresses a set of actions that should be made by the RCF during the VE’s
creation phase (or during re-negotiation phase) in order to decide whether a VE creation request
should be accepted or rejected.

Copyright  2003 FAIN Consortium May 2003
17

D7-Final Active Node Architecture and Design

A new VE can be admitted to the node only if its requirements for resources can be satisfied without at
the same time any commitments that have been made to the existent VEs to be violated. The final
decision for the acceptance or not of the request for the creation of a new VE the unreserved resources
and the needs of the new VE. In parallel the increase of the node’s utilization should be achieve by the
acceptance of as many VEs as possible. In other words RCF should not refuse the creation of a VE
that node status in terms of resources shows that can be admitted.

The AC decision for every resource is based on an algorithm, which is not necessary to be the same
for every resource. The RCF framework does not define specific algorithms for specific resources as it
is beyond its scope and can vary according to the resource. It just defines the mechanism, the involved
components, the interactions between them, and above all the admission control decision point for the
FAIN AN.

3.3.1.1 Admission Control Model
VE includes a set of different resources for which different RMs are responsible. Hence, AC isn’t
performed by a central object but by the various involved RMs independently. Of course, for the
overall decision when the creation of a new VE can be admitted or not the responsible component is
the VE Manager (VEM). The VEM in order to make the final decision gets in contact to the involved
RMs and asks them if they can or cannot admit the new VE. The RMs perform AC independently and
if the responses from all of them are positive the VEM’s decision will be positive as well. Otherwise
the VEM rejects the VE creation request.

Figure 3-2 depicts the relationships and the hierarchy between the involved components to the AC
process. The VE creation requested entity is a client from RCF AC functionality perspective, hence,
from now on will be called Client. According to FAIN business model [9], probably, Client cannot be
someone/something else than a service provider (SP) or a SP’s agent or the Network Management
System on behalf of a SP. Of course, the client’s nature does not affect in any way the AC process.

R2MR1M RnM…

VEM

Client

Figure 3-2: Admission Control. Involved Components Hierarchy

In FAIN we adapted a two-phase approach for AC, the creation phase and the activation phase.

During the creation phase, the client requests the creation of a new VE. The request includes a
resource profile, which describes the client’s requirements in resources. VEM receives the request and
breaks it down into single resources requirements. Then, VEM passes these requirements to the
corresponding RMs. Every RM decides if the needed allocation can be done or not, and if the reply is
positive, pre-allocates the resource and replies positively to the VEM. The pre-allocation includes the
creation of a RCA for that part of the resource, but in a standby mode. In addition, no configuration of
the RC for the actual allocation of the resource is occurred. That means that the VE client cannot use
the part of the resource, which is pre-allocated, but neither this part can be allocated by someone else.
The resources remains pre-allocated until an activation or a withdraw request arrives, or until the
expiration of a specific timeout. When the VEM has collected all the replies from the RMs, it can
decide to admit or not the new VE. If any of the RM replies negatively, the VEM reply will be
negative as well, and also it gets in contact with the rest RMs in order to inform them that the new VE

Copyright  2003 FAIN Consortium May 2003
18

D7-Final Active Node Architecture and Design

will not be created, and therefore they have to release the pre-allocated resources.

When all the replies from the RMs are positive, the VEM replies positively as well. But even then, the
VEM does not activate the newly created VE and the resources remain preallocated. The reason is that
generally every VE is part of a virtual private active network (VPAN). During the creation of a
VPAN, different VE creation requests are made to different ANs. It is possible the request in one or
more of the nodes to be rejected and therefore the creation of the VPAN not to be feasible. Then the
admitted and created VEs should be removed without using them. On the other hand, the resources on
every node that the VEs have been admitted should be shielded from anyone who simultaneously tries
to set up a VPAN.

 If all the creation of all the VEs of a VPAN has succeeded, the activation of each created VE required
before being ready for use. On the node level, the activation request arrives at VEM. VEM gets in
contact with all the involved RMs in order to activate the RCAs and configure the RCs accordingly, in
order to enforce the allocation.

3.3.2 Resource Control
One of the main duties of RCF is the partitioning of resources to the various users and the real time
control of their consumption. Every player who desires the use of the node should request the
assignment of a part of the resources, in terms of specific capacity. This part of the node capacity is
assigned to a VE. Moreover RCF is responsible to export interfaces to VEs' clients, which interfaces
offer resource access and management capabilities to VEs’ clients.

3.3.2.1 Resource Control Model
RCF supports a multilevel, hierarchical resource sharing, as it is shown in Figure 3-3. The first level of
sharing is among the various VEs. RCF then exports a control I/Fs to every VE, one for every resource
which have been allocated to the VE, that allows the further partitioning of the resources according to
owners desire. For example in the Figure 3-3 the node is shared by three VEs. Then the VE1 is
partitioned in 3 shares, the VE2 is not partitioned at all, and the VE3 is partitioned in two shares, the
one of which is further partition to

FAIN
AN

VE3VE2

S11 S12

VE1

S12 S32S31

S322S321

Figure 3-3: Multilevel Hierarchical Resource Sharing

RCF is responsible for the first partitioning among the VEs in the sense that does not define how the
resources will be further partitioned. On the other hand RCF supplies VEs’ owners with the
appropriate mechanisms in order to be able to further partition their resources according to their will.

For the first level partitioning, namely the partition of the overall node resources among VEs, we use
the hard allocation approach. Apart from being the simplest managed solution, there are three
important reasons for that choice. For starters, according to FAIN business model [9], FAIN network
is owned by Network Provider (NP). Multiple Service Providers (SPs) request to use part of network
infrastructure in order to deploy their services. NP provides this infrastructure by setting up VEs to

Copyright  2003 FAIN Consortium May 2003
19

D7-Final Active Node Architecture and Design

multiple nodes. Every VE represents a part of node resources. In other words, FAIN aims to be a
commercial network, where NP sells network infrastructure to SPs. Therefore, SP should be enforced
to buy the infrastructure that wants to use, and not be able to consume any unused resources without to
be charged. Secondly, SP is charged for the resources, which have been provided to him, and he
demands to have 100% guarantee access to them. Hard allocation is the only method that ensures this
guarantee. Finally, SP is responsible to manage his VEs, so he is able to use resource control
techniques that lead to high utilization. Hence, if we have chosen to use an over-allocation technique,
the result would have been that in many cases the requirements of SPs in terms of resources not to be
satisfied. So hard allocation is considered the best choice, without the general design of RCF to
exclude other approaches.

Apart from the allotted part of resources, NP provides SP with resource control mechanisms. These
mechanisms allow the efficient management of the allotted resources by the SP. The SP has been
given the capability to further partition the resources that belongs to him, choosing if it is desirable, to
use soft allocation, or hard allocation or combination of the above. In addition SP can choose among a
variety of resource sharing algorithms to partition its resources. Obviously, SP aims to utilize all the
node capacity that he has charged for.

3.3.2.2 Components and Interfaces
Figure 3-4 depicts the involved components and interfaces and the interactions between them during
the resource control and management process.

RMRCA

RC

Resource

Client

VE(3)

(2)

(1)

Figure 3-4: Resource Control. Components and Interfaces

The responsible component for the run-time control of every resource is the corresponding Resource
Controller (RC). For every resource that is controlled exist a separate RC. Every RC has an interface
(Figure 3-4 – (1)) that allows its configuration. The Resource Manager (RM) and Controllers (RCs)
have access to that Interface. The RM uses that interface to partition the resource to the various VEs.
For every VE allotment, the RM creates a Resource Controller Abstraction (RCA) for it. RM uses the
configuration interface (Figure 3-4 – (2)) of the new RCA to configure it, in order to have access to the
appropriate allotment of the resource. The RCA exports a control interface (Figure 3-4 – (3)) to VE
client in order to be possible the use of the resource. In addition that interface allows in some extend
the building of resource control mechanisms, that determine how this part of the resource will be used,
without of course this to have any effect out of the VE. The last is ensured by the RCAs, which
intersect and check every configuration request by VE clients. All the configuration requests from the
Client to RCA, first are checked and then are forwarded to the corresponding RC.

3.4 MODEL RCF IMPLEMENTATION
The variety of the different resources that are deemed as essential to be controlled in an active node is
very wide. They can vary from network resources, like the bandwidth of the links, to computational

Copyright  2003 FAIN Consortium May 2003
20

D7-Final Active Node Architecture and Design

resources, like the CPU cycles and memory space. From all these resources, we chose to control for
the model RCF implementation the outbound bandwidth because bandwidth still is considered as the
most valuable resource for every existing network architecture and because the Linux TC framework
[16] existence. Linux TC exists as standard component in the kernel of every resent Linux distribution
and it is a very powerful framework for the control of traffic.

3.4.1 Traffic Control and Management for Linux
Based on the general RCF framework and as part of virtual environment management (see chapter 2)
implementation a Traffic Manager and a Traffic Controller Abstraction have been implemented in
order to control and manage the outbound bandwidth of FAIN ANs. These two components are
running on user space and their implementation was based on the component model of virtual
environment management framework. Traffic Manager derived from the Component Manager and the
Traffic Controller Abstraction from the Configurable Component.

For platform we uses the Linux, while the existent of TC in every resent Linux kernel, gives as a very
powerful and flexible tool for the building of control mechanism of the bandwidth, which is totally
aligned with the requirements of FAIN RCF for the resource controllers. Linux TC has been built on
the following major conceptual components:

• queuing disciplines: controls how packets enqueued on a network device (e.g. a network
interface) are treated.

• classes (within a queuing discipline): are used in classful queuing disciplines to determines
different treatments for different kinds of traffic.

• filters: are used for distinguishing among the different kind of traffic.

• policing: is used in policing filters that only match up to a certain bandwidth.

In FAIN traffic control we make wide use of the three first concepts. For queuing discipline we chose
to use the classful and famous CBQ [16]. For every VE we create a different class bounded with
specific bandwidth and isolated from the rest classes. Generally CBQ allows the bandwidth borrowing
between different classes, but we choose to disable that feature for the VEs' classes. After that VE
owner can choose to use between different resource sharing models that are supported by Linux TC.
For example, he can create different classes, with specific bandwidth every class, and assign by the
use of specific filters, each class to a different flow, or with the use of the TOS field or the DSCP bits
the packets can be filtered in a way of mapping different classes to aggregation of flows.

The decision is up to VE owner, but RCF is responsible to check the validity of every request, which
is something that is not supported by Linux TC. Also with the cooperation of FAIN Security
framework (see chapter 5) every access to Linux TC is checked against the authorization and the
privileges of the requested entity.

In Figure 3-5, the involved components that have been implemented and their interactions are
depicted.

Copyright  2003 FAIN Consortium May 2003
21

D7-Final Active Node Architecture and Design

Linux Kernel

Java EE

Kernel Space

User Space

Linux TCIncoming Traffic Outgoing Traffic

VE

Traffic Controller
(TC Abstraction) Traffic Manager

VEM

Client

(1)

(2)

(4)
(3)

Figure 3-5: Traffic Control and Management for Linux Software Router

As it is shown in Figure 3-5, four are the main interfaces that are used:

• Interface 1: it is command line interface and it is used by Traffic Manager and Traffic
Controller for the configuration of Linux TC.

• Interface 2: it is a CORBA communication interface and it is defined by the VE management
framework. It is used by Traffic Manager in order to configure the Traffic Controller.

• Interface 3: like interface (2), it is used it is a CORBA communication interface and it is
defined by the VE management framework. It is used by VEM in order to request by the
Traffic Controller the creation of a new Traffic Controller or the reconfiguration of an
existing one.

• Interface 4: Is also a CORBA interface. It is the open configuration interface that the RCF
provides to the VE client. It provides a set of operations that offers the capability to the VE
client to create finer granularity of the bandwidth allotment by creating new child classes of
the VE class and to create classification rules in order to assign traffic to those classes.

The Traffic Manager is the component which is responsible to manage the overall outbound
bandwidth of the FAIN AN. First of all it is responsible for the initial configuration of the Linux TC
during the bootstrapping of the node. In addition, it divides the bandwidth to the various VEs by
creating an isolated and bounded CBQ class for each of them. Moreover, it creates a Traffic Controller
for each VE. Finally it decide weather or not the requirements for bandwidth of a new VE can be
satisfied or not, and therefore admit or not that new creation.

Every Traffic Controller is the abstraction of the Linux TC to the VE client. It is the entity that
manages the corresponding to the VE, TC class inside the Linux TC. In addition with the open control
interface (Figure 3-5 – interface 4) that exports, provides part of the Linux TC functionality to the VE
client, but only in order to have access and to be able to manage the part of the bandwidth that belongs
to the VE. When an authorized client calls an operation of the interface, the Traffic Controller checks
the validity of the request, checks also if the status of the configuration of the VE TC class justifies
that the request can be satisfied and then translate the request with an appropriate sequence of TC
commands. The execution of these commands configures the Linux TC in a way that the request of the
client be satisfied.

3.4.2 DiffServ Control and Management for a Gigabit Router
For the sake of the DiffServ scenario with the use of a Gigabit Router like GR2000 or TC-100 of
Hitachi, a Diffserv Controller and its corresponding Manager have been implemented. The
functionality of the DiffServ Manager is very simple as it just initialises a DiffServ controller for every
new VE that will be used as part of a virtual private Diffserv network. The description of the Diffserv

Copyright  2003 FAIN Consortium May 2003
22

D7-Final Active Node Architecture and Design

controller for a gigabit router and its functionality follows.

3.4.2.1 Diffserv Controller for the Gigabit Router GR2000
The Diffserv Controller component as shown in Figure 3-6 is in charge of dynamic configuration of
the Gigabit Routers, e.g. GR2000, TC-100, based on the traffic conditions. To do this, this component
provides two main functions, configuration and monitoring. The Diffserv Controller configures GRs
with mapping DSCP values on specific flows. The configuration is done using the BANG API that
was the result of the Hitachi and FhG collaboration project. The monitoring function consists of the
SNMP traps handler and the interaction with the Monitoring System of the FAIN PBNM. The SNMP
traps from GRs are captured through the VEM and analysed in the Diffserv Controller, then the
Monitoring System is notified based on filters. Eventually GRs are reconfigured considering to the
condition.

DiffServ Controller

 Wrapper

Gigabit Router

BANG API

VE VEM

Diffserv Manager

Java EE

Outgoing Traffic

Configure:

Monitor:
Trap CLI

TC SNMP AgentIncoming Traffic

Figure 3-6: Diffserv Controller for Gigabit Router

3.4.2.2 Interface for a Gigabit Router (GR)
We have implemented the interface code (Wrapper) to configure GRs on the top of the BANG API.
This interface is to send command by telnet function. Init() establishes a connection between
Gigabit Routers and an active proxy, then opens a configuration file of the router whereas
closeConnect() saves and closes the configuration file, then terminates this connection.
BindFlow2DSCP() is called by DiffServ Controller in order to set DSCP value to the specific flows,
e.g. video stream flow.

setSNMP() is used to configure basic parameters e.g. snmp community name, that are required by
GRs in order to function SNMP on it. setEvent() and setAlarm() are to set filters for GRs to
detect events.

3.5 CONCLUSIONS
In this section the RCF module of the FAIN AN was described. RCF partitions the resources among
the VEs. It is responsible for keeping the resource consumption of VEs within the agreed contract. In
addition it is responsible to perform Admission Control whether the creation of a new VE can be
admitted or not, based on the resource requirements of the new VE and the availability of the FAIN
AN resources. The RCF Architecture we introduce is a generic and flexible framework that can
support the control and management of various resources of the FAIN AN. We implemented an RCF
prototype that can control and manage the outbound bandwidth with the use of Linux TC. For that
purpose, two RCF classes was implemented, namely the Traffic Manager and Traffic Controller as
part of the VEM framework. Finally, we implemented two special RCF Classes, the DiffServ Manager
and DiffServ Controller that are used to dynamically configure the GR2000 gigabit router in order to
act as part of a DiffServ network.

Copyright  2003 FAIN Consortium May 2003
23

D7-Final Active Node Architecture and Design

4 DEMULTIPLEXING
In active network, an active node receives packet data and processes it. To realize it, packet data
should be transmitted to a proper environment for processing in the node. Therefore the active node
classifies receiving packet data at first. Then the active node transmits packet data to the proper
processing environment based on a categorized class. To classify the packet data, it must have an
identifier. For example, packet data might have a specific identifier such as a processing environment
ID or classification might be executed based on an IP header data. Someone sends packet data with the
environment ID but other one might send packet data without the environment ID. Therefore FAIN
active node has to deal not only the packet with the ID but also the packet without the ID. In addition,
even if an IP data-gram has an environment ID, when the IP data-gram is fragmented, fragmented IP
packet data doesn’t have the environment ID except a first IP packet data. Therefore active node must
handle fragmented packet data. Besides, in FAIN active network, packet data that should be executed
processing will be changed dynamically, therefore the active node has to support dynamic updating of
policies that include relation between conditions and handling procedures of the data that is classified
by the conditions.

The objective of FAIN demultiplexing framework is providing mechanism to realize dynamic
updating of demultiplexing policy and processing of packet data regardless of existence of specific ID
for processing environment for both receiving packet data and forwarding packet data.

The scope of FAIN demultiplexing framework includes providing an interface for dynamic updating
of demultiplexing policies and transmitting packet data to an appropriate processing environment after
classifying the data.

4.1 REQUIREMENT FOR DEMULTIPLEXING

4.1.1 Requirement for Active Packet format for Demultiplexing
According to previous surveys, following requirements are listed for packet format.

• Active packet format must include an identifier for distinguishing which data should be
dispatched to which VE/EE. For example, we need to decide whether we should send data to
VE-1 or privileged VE.

• In addition, active packet format also must include a size of an active packet and a size of an
active packet header.

4.1.2 Requirement for Demultiplexing Mechanism
• Demultiplexing mechanism must deal with identifier of VE, EE type of active packet for

distinguishing flows.

• Demultiplexing mechanism must send received data to a security component for executing
security check before transmitting data to a proper VE/EE.

• Demultiplexing mechanism must create an in channel for sending data to a VE/EE and create
an out channel for receiving data from a VE/EE for sending data to the outside node.

4.2 DEMULTIPLEXING FRAMEWORK
The packet data is delivered to a proper VE or service by a demultiplexing function. The packet data
includes both ANEP (Active Network Encapsulation Protocol) packet and other data packet(passive
packet). The ANEP packet delivers active packet data and the other packet delivers not active data but
data for being processed. Figure 4-1 depicts a block diagram of packet data delivery.

Copyright  2003 FAIN Consortium May 2003
24

Spyros G. DENAZIS
(E) Toshiaki, (C) Spyros, (R) Lawrence
Purpose: Introduction & Summary/Requirements and functionality/Design and Framework/ components, interfaces/Conclusion /References

D7-Final Active Node Architecture and Design

VE-ID / EE-ID / Cleint (Object reference or Port number)

Network (Linux Netfilter)

Active
Channel-(n)

Channel Manager

(1)

(4) (6)

(3)

Security
Data

Channel-(n)

Demultiplexer

(2)

(5)

(10)

(12)

(11)

(13)

(14)

(7) (15) (16)

(8)

(9) (17)

Figure 4-1: Block Diagram of Packet Delivery

Active packet data (ANEP) delivery: (1) At first a client requests a channel manager to create a new
active channel for receiving ANEP packet data by registering VE-ID, EE-ID and an object reference
of itself or a socket port number for receiving. (2) The channel manager creates an active channel by
registering an active consumer object, which includes the VE-ID, EE-ID and the reference or the
socket port number, into an internal table for active packets. (3) The Netfilter transmits received
ANEP packet data to the channel manager since the channel manager sets conditions to intercept
ANEP packets at the booting process. (4) The channel manager calls a security function for checking
the ANEP packet before sending it to a proper client. (5, 6) After executing the security check, the
channel manager sends the ANEP packet data to a proper client through an appropriate active channel
by getting a target to transmit from the table for active packets. (7) If there is ANEP packet data to
send to another node, the client sends ANEP packet data to the proper active channel. (8) The active
channel inserts the security information into the ANEP packet before sending it to the outside network.
(9) After that, the active channel transmits the ANEP packet data to the outside network.

Non active packet data delivery: (10) At first a client requests the channel manager to create a new
data channel for receiving data packet by registering flow conditions and object reference of itself or a
socket port number for receiving. (11) The channel manager sets the filter conditions, which are given
by the flow conditions, to the Netfilter. The filter condition contains which data packet should be sent
to the client. (12) Then the channel manager creates a data channel by registering a data consumer
object, which includes the flow conditions and the reference or the socket port number, into an internal
table for data packets. (13) The Netfilter transmits data packet to the channel manager since the
channel manager sets conditions to intercept data packets. (14, 15) The channel manager sends data
packet to a proper client through an appropriate active channel by getting a target to transmit from the
table for data packets. (16) If there is data packet for sending to another node, the client sends data
packet to the proper data channel. (17) The data channel transmits data packet to the outside network.

4.2.1 Active Channel
Figure 4-2 shows how to transmit an active packet (ANEP packet), which is shown in Figure 4-3, to a
proper receiver (client). When a new client is instantiated, it needs to register its VE-ID and EE-ID
with an object reference or a socket port number. The channel manager stores them into the database
for active channel. Table 4-1 shows the contents in the database for active channel. When the channel
manager receives the active packet, it checks the VE-ID and EE-ID, which are included as options’
data in the active packet as shown Figure 4-4 and Figure 4-5, and searches the database for finding the

Copyright  2003 FAIN Consortium May 2003
25

D7-Final Active Node Architecture and Design

target reference or the port number from the VE-ID and EE-ID for retransmitting the active packet.
After getting the target, the channel manager checks the target is an object reference or a socket port.
If the target is the object reference, the channel manager calls a proper method of the target reference.
If the target is the socket port number, the channel manager sends the active packet data to the proper
port by the UDP socket.

Network (Linux Netfilter)

Channel Manager

Demultiplexer

Database
Active Channel

Client-1 Client-2 Client-n

Active
Ch-1

Active
Ch-2

Active
Ch-n

Figure 4-2: Active Packet Transmission

Table 4-1: Database for the Active Packet

No. VE-ID EE-ID Target

1 1 2 Port = 9995
2 1 3 Reference = XYZ
3 2 2 Port = abc

- - - - - - - - - - - -
n L M Reference or Port

4.2.1.1 Active Packet Format
Figure 4-3 shows the ANEP packet format. We have adopted an ANEP packet format as a FAIN
active packet format. We have only added options for the FAIN Type ID. The explanation of each
field in the ANEP packet format is as follows;

• Version

It means the version of the header format in use. Currently the value of the version is one. This
field is 8 bits long.

• Flags

Copyright  2003 FAIN Consortium May 2003
26

D7-Final Active Node Architecture and Design

In version one, only the most significant bit (MSB) is used. If the MSB of this field is 1, the node
should discard the packet. If the MSB of this field is 0, the node tries to forward the packet. This
field is composed of 8bits long.

• Type ID

It means an evaluation environment of the data. The value of Type ID for FAIN must be
selected. For demo we suggest to use the number of 10561 as a FAIN TYPE ID.

• ANEP Header Length

This data specifies the size of ANEP packet header in 32 bit words. The ANEP header means
from the field of Version to the field of Options.

• ANEP Packet Length

This data specifies the size of the ANEP packet in 32 bit words

• Options

This field is used when there is an option data.

• Payload Data

Active code, policy data and data being processed etc. are considered as examples of payload
data.

 0 31
N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte
0 Version (8bit) Flags (8bit) Type ID (16bit)
1 ANEP Header Length (16bit) ANEP Packet Length (16bit)

2--m Options
m+1
- - -

n

Payload

Figure 4-3: ANEP Packet Format

4.2.1.2 VE-ID Option Data
Figure 4-4 shows a format of a virtual environment (VE) identifier. This option is a must when the
type ID in the ANEP packet is an identifier for FAIN type ID.

• FLG

The owner of EE-ID defines the value of flag (FLG).

• Option Type

The value of option type for environment identifier is 101. (For example)

• Option Length

The value of option length is 2 in 32 bit words (4 byte).

• VE ID

Copyright  2003 FAIN Consortium May 2003
27

D7-Final Active Node Architecture and Design

This data means an identifier for sending active packets to proper VE. This field is composed of
8bits. ANSP assigns a VE ID when a SP requests to create a new VE. But the value of zero is
reserved for future used and one is assigned for privileged VE.

 0 31
N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte
0 FLG Option Type Option Length
1 Virtual Environment (VE)-ID (32bit)

Figure 4-4: Virtual Environment Identifier

4.2.1.3 EE-ID Option Data
Figure 4-5 shows a format of an execution environment (EE) identifier.

• FLG

The owner of EE-ID defines the value of flag (FLG).

• Option Type

The value of option type for environment identifier is 102. (For example)

• Option Length

The value of option length is 2 in 32 bit words (4 byte).

• EE ID

This data means an identifier for sending active packets to proper EE. This field is composed of
32bit. Each VE owner assigns the EE ID.

 0 31
N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte
0 FLG Option Type Option Length
1 Execution Environment (EE)-ID (32bit)

Figure 4-5: Execution Environment Identifier

4.2.2 Data Channel
Figure 4-6 shows how to transmit a data packet to a proper receiver (client). When a new client is
instantiated, it needs to register flow conditions with an object reference or a socket port number. The
channel manager stores them into the database for data channel. Table 4-2 shows the contents in the
database for data channel. When the channel manager receives the data packet, it gets the flow
conditions, which means a source IP address, a destination IP address, a protocol number, a source
port number and a destination port number, by checking the header of the data packet and searches the
database for finding the target reference or the port number from the flow conditions for retransmitting
the data packet. After getting the target, the channel manager checks the target is an object reference or
a socket port. If the target is the object reference, the channel manager calls a proper method of the
target reference. If the target is the socket port number, the channel manager sends the data packet to
the proper port by the UDP socket.

Copyright  2003 FAIN Consortium May 2003
28

D7-Final Active Node Architecture and Design

Network (Linux Netfilter)

Channel Manager

Demultiplexer

Database
Data Channel

Client-1 Client-2 Client-n

Data
Ch-1

Data
Ch-2

Data
Ch-n

Figure 4-6: Data Packet Transmission

Table 4-2: Database for the Data Packet

No. Source_IP Dest_IP Protocol Source_Port Dest_Port Data Ch

1 sip-1 dip-1 p-1 sp-1 dp-1 Reference
2 sip-1 dip-1 p-1 sp-1 dp-2 Port

-
m i j k l m Ref./Port

4.3 CONCLUSION ON DEMULTIPLEXING
In this section, the architecture of demultiplexing (DeMUX) is described. DeMUX intercepts packet
data and dispatches it to an appropriate receiver client. It provides a virtual channel for each VE for
packet data transmission between DeMUX and receiver client. To realise the function, Channel-
Manager and Channel classes are implemented. The Cannel-Manager creates one virtual channel
object for each VE. The virtual channel includes multiple active channels and data channels. The
active channel is used for active packet data transmission and the data channel is used for non-active
packet data transmission. The definition of active packet data is whether it includes data for node
configuration or programs, or not. When a receiver client receives packet data from DeMUX, it needs
to register a target object that includes receiving method and flow definitions. Currently DeMUX
supports CORBA interface and simple socket interface as packet data transmission method.
Concerning about flow definitions, especially active packet data, the client can register VE identifier
and EE identifier that should be included in the ANEP packet as options’ data. In addition, in case of
non-active packet data, the client can register five tuples (Source IP address, Destination IP address,
Protocol number, Source port number and Destination port number) for classifying a flow. DeMUX
retransmits an intercepted packet data to the proper receiver client according to previous flow
categorization. In addition, it calls security check for active packet before transmitting and if the
security check falls in failure, it discards the active packet. Therefore DeMUX can provide flexible
and secure demultiplexing function to the receiver client.

Copyright  2003 FAIN Consortium May 2003
29

D7-Final Active Node Architecture and Design

5 SECURITY

5.1 INTRODUCTION
Programmable and active networks enable their users to extend and program network elements to
fulfil their specific communication needs. FAIN aims to develop a flexible, high performance and
secure active network node. FAIN architecture allows various active networking technologies to be
used in the same node with aim to be able to implement various services for its users in transport,
control and management plane.

Flexibility of such system raises serious security concerns. Mainly in active networking, security is an
area of intensive research already for more than half a decade. The security solutions in general can be
divided in two distinct approaches: architectural based and language based. Architectural based aim to
provide more or less complete security solutions like U. of Pennsylvania SANE [19][20] or Active
networking security working group security architecture [5][22]. Language based is relying on safe
language and interpreter design and achieve security through seriously limiting the ability of the
programs that can be injected in the network [31][33]. FAIN as approach using multiple technologies
can benefit from language based approaches but cannot rely only on them; general security
architecture has to be provided.

FAIN aims to develop a complex environment for flexible service provisioning and management of
these services; existing security approaches are targeted to more simple structured environments, do
not cover collaboration of multiple EEs, services and service components, neglect management issues,
do not provide clear view of system entities or cover only a part of the tasks that the security
architecture should perform.

Security architecture is a set of principles, services and mechanisms that are required to meet the needs
of its users, prevents intentional and unintentional threats and set of system elements that implement
the services. To define the needed principles, services and mechanisms we will introduce system
relationships and entities in section 5.2, threats, security relationships and architecture goals in section
5.3, discuss security issues in section 5.4, propose high level security architecture and introduce
system elements in section 5.5. Security architecture design and implementation will be presented in
section 5.6, general scenario of an active packet passing a node presented in section 5.7 with report on
system performance in section 5.8. Whole approach is evaluated in section 5.10 and architectural
applicability in the case of existing active networking approach is presented in section 5.9. Finally we
conclude with our conclusions and directions of future work in section 5.11.

5.2 SYSTEM RELATIONSHIPS AND ENTITIES
The basis of the node is defined with FAIN reference model [2][22], decomposing node in four layers:
router or hardware, node operating system (NodeOS), Virtual Environments (VE) and services.
NodeOS is a collection of basic node services, which performs tasks of demultiplexing, resource
control, active service provisioning, security and management. NodeOS functionality is exported
through NodeOS API to Execution Environments (EE), which resides in VEs. VEs are resource and
user related abstraction on the node; in a VE reside one or more EEs and services. Services are
collection of components performing an application for its users. Service and service components are
defined by a service descriptor which is resolved in the network and on the node in one or more code
modules which can be instantiated into certain EE(s) where the component(s) become a runtime
instance(s).

For example, FAIN node supports Java based Execution Environment (EE), High performance active
network node [26] and SNAP [33] as an EE. These environments can be used in synergistic way to
support or complement each other. High performance environment can be supported by Java based EE
for management and control of the former and SNAP is extended with the Java environment to
manage SNMP enabled devices.

For described model, on the network element, packets are interpreted as requests and evaluated on the
node, within a service in one or more components, and can result in zero, one or more packets on the

Copyright  2003 FAIN Consortium May 2003
30

Spyros G. DENAZIS
(E) Dusan, (C) Christos, (R) Bernhard
Purpose: Introduction & Summary/Requirements and functionality/Design and Framework/ components, interfaces/Conclusion /References

D7-Final Active Node Architecture and Design

output of the node. Requests or result of an evaluation can be either active or passive packets. We
consider as active packets those packets that contain ANEP header as defined in ANEP draft
standard [1]. Packet content or the state on the node can be changed during evaluation. Code or data in
the packet can result in action regarding the API defined by dedicated component Execution
Environment or NodeOS API.

Service can exist in a single node or can span over multiple nodes in the network. Packets exchanged
between communicating entities, can be processed only at the sender and receiver, or, depending on
the nature of the service, on any suitable node in between. For purpose of our discussion we will
assume a simple network structure as shown in the bottom of the figure 5-1. Structure itself is virtual;
there can be also passive nodes in the network as well.

Code modules extending programming environment of the node are result of service deployment in
the network and service resolution on the node. Such approach is called out-of-band because the code
is not transferred together with data; to gain additional flexibility FAIN uses also in-band approach in
Active SNMP service, reusing existing active networking approach, the SNAP [33]. But in FAIN case
majority of the code can be considered out-of-band.

From the system relationships we can deduce the following set of entities in the system: network
users, network nodes and the services. Execution environment in the processing model is a technical
term defining needed system elements for successful evaluation and it is not real system entity per se.
To be able to abstract the resources that the active network user has available on the node and its
services are using, FAIN use Virtual Environment abstraction (VE). VE represents resources on the
node and environment needed for the service operation. VE is a flexible abstraction; it can overlap
tightly with a service, a specific user or it can be used in the context of multiple services and users.

Figure 5-1: System entities and relationships

The relationships between entities are shown in figure 5-1. The figure shows two types of relationship:
one is the ownership showed with arrows and the other is the relationship between system entities on
the node regarding the resources shown with circles. The set of users on the left 'owns' resources on
the node. User C is an owner of the node and thus owner also of the privilege VE (pVE). pVE is a
special VE abstraction which holds basic node services, besides others also security related, as will be
explained later in section 5.5. User B is an example owner of a VE, which can run one, or more
services associated with a VE. Users D and E 'owe' same service; actually this case, and also other
related to services, it represents not direct service 'ownership' but the ownership of the packet
evaluating in the context of the service. Of course there can be as many VEs on the node as node can
handle in the sense of available resources.

On the right side of figure 5-1 system entities are shown; pVE corresponds to node owner, VE either
to service provider or group of related services, services can be either user or application related and

Copyright  2003 FAIN Consortium May 2003
31

D7-Final Active Node Architecture and Design

finally users of these services, which can be service, VE or node managers, users, observers etc. These
entities can be easily related to those defined in FAIN business model.

In the system there can be also a number of 'external' entities that support the system operation. Such
entities are for example code producers, certification and attribute authorities etc.

5.3 THREATS, SECURITY REQUIREMENTS AND ARCHITECTURE GOALS
Threats in described system are considerably extended regarding traditional 'passive' systems, where
evaluation is more or less related to forwarding a packet through the network element. But threat
consequences are no different as in traditional systems and are, as categorized in [38]: disclosure,
deception, disruption and usurpation. Reasonable selection of threat actions that can cause a threat
consequence applicable to a described system can be no other as presented in [21].

Entities in the system that can be a source of the threat action causing a series of threat consequences
are all entities presented in the section 5.2. pVE represents a threat to all other entities in the system.
While basic pVE services (security, resource control) can prevent threat actions between other entities
the threat represented by pVE can be prevented with strict control which nodes can process and
evaluate packages.

Basic security related problems can be seen in the following areas: startup of the node and connecting
it to the network, partitioning of resources of the node and in the network, deployment of new
services, related code, configuration and policies in the network and on the node, accessing, managing,
control and observing the services and its related data, control which data (packets) a service can
access, naming of the resources in the network, providing of traceability of the node state and
protection of the basic node resources.

Security architecture designed in FAIN has the following general goals and requirements:

• authorized use, protect network element and user resources in the network. Network element
resources can be functional, computational or communicational. User resources are the packet
content and the possible states on the network nodes. Only authorized users should be able to
access these resources, and only authorized nodes can process the packets,

• separation between different VEs and their related services regarding access and resource usage
should be enforced in the network and on the network elements,

• verification, code brought to the node has to be verified either statically or dynamically and has
to be protected on the node together with code related configuration and data against intentional
or unintentional changes,

• accountability of security related events, audit service should be provided on the nodes and in
the network,

• protect in transit, security architecture perimeter is a network element; communication between
network elements should be protected and provide in secure manner sufficient information about
communicating entities in the system for security architecture operation,

• common treatment regarding security of: (a) network elements, like end, intermediate,
management nodes, (b) VEs, services, components, (c) EEs and code modules, (d) and
communication in between and across multiple network elements, (e) same security
mechanisms should be used in the management, control and transport plane,

• transparency, operation of security architecture should be transparent to its users and
developers, either through well defined interfaces, protocol headers or architecture implicit
operation and should require minimal user intervention,

Copyright  2003 FAIN Consortium May 2003
32

D7-Final Active Node Architecture and Design

• flexibility, (a) multiple trust management approaches should be supported between entities in
the system, (b) multiple types of security policies should be supported, (c) security architecture
proposed should be general enough that it can be used for all developed technologies in FAIN
and also existing established technologies,

• sufficient and extensible, basic security services should be sufficient for safe network element
operation; but it should be possible to extend the security architecture by certain VEs or services
to fulfil their specific needs.

Security architecture goals can be achieved mainly with authentication, authorization and policy
enforcement, system, code and packet integrity service, code verification, limiting users resource
usage on the node and in the network, audit service, right choice of selected security mechanisms and
system design. These issues are discussed in the next section.

5.4 SECURITY ISSUES

5.4.1 Authorization and policy enforcement
All accesses to the node and user resources should be subject to authorization. Node and user
resources can be hardware like CPU, memory, storage and link bandwidth or functional like special
purpose files, routing tables, policy and credentials entries and databases, VEs and service related data
etc. Important resources are possible service states on the nodes, which can be shared among multiple
users, and user packet content.

Authorization is a process that provides an authorization decision about access of the subject to the
object. Decision is provided to enforcement engine. In general we assume that when the subject
accesses the object enforcement engine suspends the request and asks authorization engine for
authorization decision. Information passed to authorization decision is security context of the subject
and object, action and possible environment of the access. Based on the passed information the
authorization engine returns authorization decision that is then enforced by the enforcement engine.
Security context is all security relevant data available on the system regarding subject and object. Of
course proper authentication is needed to provide authorization.

Policies control which users can have access to certain resource and in what manner. Policies should
be detached from the system and should not be hardwired in the application. Because the used policies
in general can be various, the system should be flexible enough to support multiple kinds of policies.

Users in the context of policies can be defined either by their identity or attributes like roles or groups.
We will name both user attributes; users in the system should posses certain credentials, which express
these attributes. Multiple type of credentials should be possible to enable various ways of trust
management between users. Scalable approach should be provided in the system to enable nodes to
access user credentials. When transferring through the network credentials integrity must be provided.
If credentials are referenced or included in the packet such information must be bound to the packet
content. Replay protection for such packets should be provided.

It should be possible to generate and enforce certain policies by the system itself, independently of the
fain grain user policies. Such policies can be understood as mandatory access policies that enable
separation between system entities like VEs and services and prevent their unneeded interaction.

Certain kind of policies can require that the state of previous authorization decisions is known. System
should be able to define such state and to keep it available for later authorization decision
provisioning.

It is hard to believe that all policies and all users can be globally understandable. But we can assume
that the users and the policy can be known in single administrative domain or in the context of a
certain service. System should be able to provide functionality that can enable replacing of the user
credentials on the administrative domain borders.

Enforcement process must have classical attributes of a reference monitor: it has to be non-bypassable,
tamperproof and analysable [27]. Besides, as is correctly noted in [20], it has to be non-spoofable.

Copyright  2003 FAIN Consortium May 2003
33

D7-Final Active Node Architecture and Design

Security context of the mentioned subject and object has to be bound to them in such way that cannot
be forged in the system. We can add to this that authorization decisions made, based on the security
context, are valid only as much as is valid the data in the context. So the process of building a security
context has to be carefully examined to be able to provide authorization decisions based only on the
data we can trust.

5.4.2 Authentication
Authentication is a needed service for authorization and also for other security services in the system.
Authentication has to be provided per packet, connectionless, because of the assumed model of
communication.

The major problem of authentication service in active networking approaches is how to authenticate an
active packet passing many nodes. For authentication symmetric or asymmetric cryptography based
solutions can be used. Using symmetric cryptography solutions requires that the session key is
negotiated or provided to two or more parties in communication. Asymmetric based approaches do not
require such step but the trust has to be managed between the active packet sender and the nodes that
the packet traverses. Symmetric approaches do not provide non-repudiation; this fact is important if
two or more nodes use the same session key and any of them can become a source of the authenticated
packet. In such setup, if one node is compromised, this can be a serious security problem. Besides,
session key can be seen as a hard state on the node; if it is not available, communication will fail.
Symmetric techniques that negotiate separate session keys with each node in its path and provide
authentication data for every node in the packet are too costly in the terms of bandwidth and
negotiation time. Approach has same problems with packet integrity as using asymmetric techniques
as described in section 5.4.3.

Symmetric cryptography approaches are still very useful when used properly; neighbour nodes can
identify each other in this way after they have established trusted relationship and negotiated security
association (SA). Dependent on protection mechanisms used in SA they can provide besides
authentication of a peer also integrity and confidentiality for the packets exchanged. Such types of
communication we will call a session; they are useful for inter node communication or for
communication of a user with a node. Concept of sessions can be supported in various way, it can be
based for example on IPSec or SSL.

Data origin authentication is related to the data integrity; there can be no data origin authentication if
data integrity is not provided as well.

5.4.3 Packet integrity
Packet content can be legally changed in the network. In this context we will concentrate on active
packets; while also passive packets can be changed in certain services, care has to be taken not to
interfere with end-to-end security solutions like IPSec.

Changing the packet content raises the question of data origin; if the packet is originating on one node
but the content is added to the packet (for example, data is collected on nodes) or something is
removed (for example some lines of code) this data as a whole cannot be authenticated for a data
origin on the nodes that the packet passes any more. Logical consequence of the stated is to split the
packet in the part that can change, e.g. the part that is variable, and in the part that is static during the
packet lifetime in the network.

The variable part of the packet can be used by the service to store or modify the packet content. But
we still want to protect somehow this variable part from the unauthorized or malicious modifications.
First countermeasure is to control which nodes can process and evaluate such packet. With this
approach we can avoid unauthorized modification in between two authorized nodes. We will call such
protection per hop protection in the contrast to the protection, that can be applied end-to-end for static
parts of the packet. Per hop protection is similar to the sessions, introduced in section 5.4.2 and can be
understood as system level protection of active packets exchanged between two nodes. Second is, how
to control additions or modifications? Because of the diversity of approaches and internal service

Copyright  2003 FAIN Consortium May 2003
34

D7-Final Active Node Architecture and Design

knowledge of the data structure it is probably needed to shift this responsibility from the system layer
to the service layer.

If the active packet contains a code and data intermixed the integrity of such packets is hard to provide
and it is hard to decide which parts of the packet data is static and which variable. Protecting such
packets in between hops is helpful but not enough. We will propose later in the section 5.9 a solution
for an Active SNMP system.

5.4.4 System integrity
System integrity service is one of the core services that must be provided on network element. It has to
be provided from ground up, from the first piece of code run on the node. System integrity guarantees,
together with other security services, notably authorization, policy enforcement and code and service
verification, that the node will perform its intended function in an unimpaired manner.

The task of the system integrity is threefold: first, when the node programming environment is
extended, the state of the code after authorization and possible verification is stored safely, second,
during the node operation it enables mechanisms that enable preventing malicious, unintentional and
unauthorized system changes, and third, it has to keep previous states of the code and related data so
the extensions and modifications of the node environment can be traced or rolled back if required.

5.4.5 Code and service verification
Code and service verification is a security service, which verifies the correctness of a service and code
modules operation. We can divide the verification in two broad groups: dynamic and static. Static
verification is done prior the injection of the service in the network. Dynamic verification happens
prior or during the evaluation; it has to be extremely fast in contrast to the static verification.

As we said in section 5.2, majority of the code comes in a node out-of-band. For out-of-band
approaches it is possible to verify the code in the static way. Many kinds of verification are possible
like source code inspection, code testing, generating proofs [34], which can be verified on the node
prior to code installation and usage etc. For static verification it is important that the trust between the
verifier and the code user (node) is established.

Dynamic verification is usually performed by interpreters like in case of Java bytecode verification.
When the interpreter model is extended the verification has to be extended also. Dynamic verification
is important in the case of in-band deployment of the code.

Specific to service verification in FAIN is how the services are composed; many code modules can be
composed into single service when the service descriptor is resolved on the particular active network
node. While service can be verified for the desired properties at network level, final verification of the
service has to be done at the node level. For every piece of code verification is needed; a common
approach should be chosen because of the various active networking technologies FAIN is using.

5.4.6 Limiting resource usage
Resource usage is a hard problem because active service resource usage cannot be clearly determined
in advance; in today networks basic IP packet forwarding is proportional to the packet length but every
processing that has to be shifted from the hardware path to the network element processor is painful
for the network elements. This is true even more in active networking and undetermined resource
usage applies both to in-band and out-of-band approaches; neither can guarantee strict resource
bounds in all cases regarding the packet(s) that triggers the service.

Basic approach we are planning is limited resource usage per active network user; user resource box as
a collection of the available communicational or computational resources per user or class of service
has to be known in advance on the nodes in the network. If the limited resource usage can be applied
per user on the active node also the network resource usage cannot exceed the user resource limit.
There are two important issues in this approach: users’ resource usage has to be tracked in all drains of
resources per user and NodeOS must have dedicated resources available in advance to function

Copyright  2003 FAIN Consortium May 2003
35

D7-Final Active Node Architecture and Design

properly even in cases when all node resources are exhausted.

Regarding the active service, which is triggered by matching packets, the resource usage has to be
limited network wide; this can be achieved by tracking the packet integral resource usage count, or
how many nodes the packet has passed, and its proportional usage, how many packets the single
request produce on the node. In this case the packet available resource limit has to be divided in
between child packets.

5.4.7 Accountability
Accountability is important property of the system; it enables us to track and analyse possible security
breaches through audit service. Accountability should not be provided only on the node; active
services span many nodes and can be influenced by many external subsystems and should be in a
single administrative domain gathered in such a way that analysing can be possible from central point.

5.5 HIGH LEVEL SECURITY ARCHITECTURE
From security requirements discussion we can propose a high level security architecture as shown in
the figure 5-2. Architecture places requirements as presented in section 5.3 in the system discussed in
section 5.2.

Figure 5-2: High level security architecture

Basic security services are positioned in the privilege VE because of the following reasons: we want to
treat all possible technologies and their implementations, implementing VE and services in the one
and only one manner, reducing the risk of multiple implementations, and the services offered in the
pVE are protected again with the same services and mechanisms. This doesn't preclude VEs or
services from implementing their own security services or mechanisms when it is reasonable to do so.

Resource control is not really part of the security architecture. It is a needed element of any reasonable
network node; using such element, security architecture can efficiently enforce separation between
VEs and services regarding the resource usage.

5.6 FAIN ARCHITECTURAL MODEL AND SECURITY ARCHITECTURE
The core of the FAIN architecture is active network node. Basic functions of the NodeOS were
decomposed to the following subsystems: demultiplexing (DEMUX), resource control framework
(RCF), active service provisioning (ASP), management and security. Each subsystem is also related to
security:

• DEMUX subsystem is responsible for management of input and output channels to VEs and
services. At this point the security perimeter of the architecture starts and the security context of
the incoming packets is built. At the output channels the packets leave the perimeter and here

Copyright  2003 FAIN Consortium May 2003
36

D7-Final Active Node Architecture and Design

is the point where external security representation has to be added to the packet. On the other
hand DEMUX export interfaces to set up or tear down the channels; these interfaces are part of
NodeOS API,

• RCF subsystem is responsible for resource allocation and enforcement of the resource usage. It
enables separation of system entities regarding the communication and computation resources.
Guaranteed share of the resources has to be provided to pVE so the basic services can operate
uninterrupted. RFC exported interfaces enables resource reservation and report resource usage,

• ASP subsystem is responsible for deploying the code for the service operation to the node; it
has to cooperate with the security subsystem to ensure system integrity and static service code
modules verification,

• management subsystem is responsible for management of the basic node services, VEs its
services and service components. It exports interfaces for their initialization, setup, control,
suspension, observation and termination.

High-level security architecture was decomposed to system elements performing needed architecture
tasks and mechanisms:

• principal manager, which is responsible for principal related operations: adding to, removing
from and searching for principal in principal database. Principal entries are collection of principal
related data; principal attributes, list of his credentials and pointer to principal secure store,

• credential manger that manages principal related credentials in an uniform way irrespective of
credential type. It is responsible for parsing and validating credentials and extracting principal
related credential information; user attributes, credential time validity or possible policies
embodied in the credential. Credential manager provides also utilities for user credentials and
keystores generation,

• policy manager that manages in uniform way various policies on the node. Policy manager
provides also policy engine(s) that can provide authorization decision related to the particular
policy,

• security manager which is a central point of the subsystem. It is responsible for building of the
security context of the subjects and objects on the node; security contexts are kept in the security
subsystem and never leave the subsystem,

• authorization engine that provides authorization decision to node enforcement engines.
Authorization decision is based on one or more policy engine decisions. Authorization engine
also keep state of the authorization which can be exported to audit subsystem or stored if the
certain policies requires such state,

• enforcement layer, which enforces authorization engine decision. Enforcement layer is
separated into enforcement engines, where authorization decision is enforced and the mechanism,
which enables secure gathering of the subject and object information on the node,

• audit subsystem, which provides audit service on the node through audit channels to audit
database.

• system integrity subsystem that collects all code modules, service and EEs related data and
reacts to code or service changes, code time validity or code related policy changes,

• verification manager, which enables dynamic verification of the code or services,

• cryptographic subsystem, which offers needed mechanisms for all cryptographic operations,

• principal secure store which holds principal related cryptographic information and provides
asymmetric cryptography mechanisms together with cryptographic subsystem in a manner that
the principal related private keys never leave the store,

Copyright  2003 FAIN Consortium May 2003
37

D7-Final Active Node Architecture and Design

• external security representation subsystem that can build and extract principal (packet e.g.
request) related security context information in uniform manner and mechanisms to fetch the
principal related credentials on the node,

• connection manager, that can build in secure and trusted way the security associations with its
neighbouring nodes, to provide hop protection between nodes,

• integrity subsystem, that ensures packet integrity between two neighbour nodes.

5.7 SECURITY ARCHITECTURE DESIGN AND IMPLEMENTATION
FAIN active node supports various technologies; operating system used is Linux, the core of the node
is coded in Java and CORBA is used for communication between node subsystems through set of well
defined interfaces in IDL. Subsystems like SNAP, High Performance Network Node and Linux
subsystems like Netfilter and OS resource control features were wrapped with Java and CORBA to be
able to access, control and manage these environments.

From security perspective is most important that for main system abstraction component-oriented
model was used. Everything on the node, including base pVE services, VEs, EEs, services and their
components and the active packets are treated equally through this model. Modularity, same treatment
of all system components and fine granularity of the approach are beneficial to the security.

5.7.1 Building components security context
For each component in the system during component initialisation and startup security context of the
component is built. As shown in the figure 5-3, the process of service or VE startup is started with
transition and labelling. Relevant pointers to VE, service and parent VE data are attached and if
specific component policy is specified, this policy is set. The security context data is stored in security
context database in the node security area, each component gets during initialisation a node local
unique opaque id which points to the context.

Figure 5-3: Security context, VE and service startup

Copyright  2003 FAIN Consortium May 2003
38

D7-Final Active Node Architecture and Design

5.7.2 Enforcement layer, authorization and policy enforcement
When the components communicate the CORBA interceptor is used to transparently pass the security
identifier (SID) from the subject to object. When a component interface or its certain ability is
accessed they are protected by authorize call which is passed to component authorize method which
calls the security manager interface for authorization with SIDs of the communicating components,
action and possible environment of the call as parameters.

Authorization engine compares first the VE and service identifiers and if they are identical, the action
and possible environment of the call is evaluated in the policy engine, specified by policy type.
Authorization decision is returned to the caller.

Active packet is treated in the context of the node in exactly the same way as a component. When his
external representation, described in section 5.7.3, is accessible, security context of a packet is built.
Packet security context is used as in case of any component to provide authorization and policy
enforcement regarding packet related request to system resources. In the same manner access to the
packet or parts of the packet can be controlled on the node.

Security again benefits from component-oriented model and object oriented environment. When
policies are written for basic components and the authorizations are in place, all inherited components
have to take care only about their extensions to the model, which are component specific. The
developer of the component has to take care that its abilities can be protected; the task of the
management environment is to prepare proper policies regarding their security model.

Sessions and per hop protection in between nodes are treated in similar way as in case of components
regarding the security context. Their security context is created from connecting entity credentials and
assigned to proxies on the node. In the case of per hop protection the security context is assigned to
specific channels related to the node intercommunication services. Example of such service is
connection manager case explained in section 5.7.5. Otherwise we also support sessions to the node,
which are used in this case to support management stations and their connections to the node. For such
connections we use SSL and CORBA; one or more connections are possible with different security
context between management station(s) and the node. Security context of such sessions is attached to
the component ports returned to the client acting as a proxy for connected user. Context itself is build
from user supplied credentials during SSL session negotiation (X.509 certificates).

5.7.3 External security representation
As a basis for external security representation we use the ANEP [1] encapsulation protocol. Solution is
applicable to any active networking approach that can be encapsulated with ANEP protocol.
Regarding the discussion in section 5.4 we have defined six new options to carry security related
information over untrusted connections. These options carry VE and service identifier, hop protection
and credentials option related information, service variable data and resource usage information. From
original ANEP options in [1], only source and destination addresses are used.

Hop protection is defined by Security Association (SA) identifier, which points to right association
with a neighbour node, sequence field that protects against replays and keyed hash. Keyed hash covers
the entire ANEP packet except the keyed hash itself. The hop protection protects all active packets
exchanged between two neighbour active nodes. As a system layer protection, these fields are
removed from the packet after successful check; only information about previous hop node is kept for
the packet. If the packet leaves the node new hop option is build regarding the next hop SA.

Credential option is defined by credential identifier and type, location field, specifying where the
credentials can be fetched, target field where the user can specify specific targets as nodes, system
layer or a packet itself, optional time stamp which protects against replays and the digital signature.
The digital signature covers only static data of an active packet: first 32 bits of ANEP header,
protecting typeId of active network nodes, source address, VE and service Id, ANEP payload and
credential option itself except digital signature data. Time stamp in the credential option is additional
measure of protection against misbehaved or subverted node services. Per hop replay protection in this
case is not sufficient. For such a service is easy to store and replay the packet later. Roughly

Copyright  2003 FAIN Consortium May 2003
39

D7-Final Active Node Architecture and Design

synchronized node clocks are needed for such protection in the network. There can be zero, one or
more credential options in a single active packet. On each passing node credential option related
credentials are fetched, certification path validated and digital signature in the option verified. Digital
signature mechanism enables authentication of data origin, provides data integrity service for the
covered data end-to-end and enables non-repudiation. From credential option(s), if present in the
packet, a security context(s) is built on each passing node, which is later used for authorization and
policy enforcement. Credential types can be various, from X.509 certificates or attribute
certificates [18], SPKI [30] certificates or Keynote credentials [24].

Credentials can be fetched in multiple ways, if not included directly in the packet: either from
DNS [28], LDAP [23] or any other suitable store. In our case we have designed and implemented
simple protocol that enables fetching credentials from the previous hop node. In this way, it is sending
entity responsibility to supply all needed credentials that can be validated later on the nodes that
packet traverse. To be able to supply credentials on the intermediate nodes we have designed and
implemented node credentials cache. After successful validation, the credentials are cached on the
node for the time of their validity or regarding the cache policy about cache size and maximum time
period of the cache entry. Caching credential has also other benefits; if the cache entry is valid, there is
no need to validate the credentials. In this way we can reduce required digital signature validation to
only one per credential option in the packet, which result in significant speed improvement, after the
first principal packet has passed the node. Additionally we cache also bad credentials in the separate
cache in the cases when the credentials cannot be verified. Packets with such credentials are discarded
immediately. The same mechanism could be used with a supporting protocol embodied in service for
exchange of bad credentials and preventing temporally or permanently access to the node for certain
principals with very low cost per packet.

VE and service identifiers are used by demultiplexer to divert the packets to the right service. Variable
option is used by the service to store the data that can change in the network, ether its state, collected
data etc. Resource related option is at the moment only a simple counter of the passed nodes.

5.7.4 Cryptographic subsystem and secure store
For cryptographic subsystem we have used Java based and Sun JCE compliant cryptographic library.1
The part of cryptographic operations is performed inside secure store that wraps the digital signature
related operations and Java keystore functionality in a way that users’ private keys never leave the
store. Only pVE security subsystem components have access to the stores; user stores can be managed
directly by the users but are additionally protected with the password.

5.7.5 Connection manager
Connection manager is responsible for setting up Secure Associations (SA) between neighbour nodes.2
It exports interfaces so that the SAs can be managed either manually or by triggering key exchange by
the Network Management System. Additionally, protocol was designed to exchange the keys
automatically. Protocol reuses the same mechanisms and possible credentials as discussed in section
5.7.3 and Station to Station protocol as described in [36]. Protocol is modified to this extent that entire
protocol messages are covered by digital signature in credential option. Messages are addressed to the
channel that doesn't provide hop protection but access to it is authorized. Two nodes, as protocol
entities establishing a SA, has to supply credentials, that contain suitable authorization information
regarding the channel policy, to succeed.

5.7.6 Verification manager
For static verification digital signature mechanism was chosen as the most common one. Static
verification is used in the process of out-of-band code deployment to the node in conjunction with

1Bouncycatle Java Crypto library, http://www.bouncycastle.org.
2In the sense of the network topology in figure 5.1, which represents a virtual topology, such topology
has to be build and managed dynamically. Such work is not covered by security architecture.

Copyright  2003 FAIN Consortium May 2003
40

D7-Final Active Node Architecture and Design

Node level ASP manager. The cryptographic hash of the code is digitally signed and code digital
certificate issued by either code producer, verifier, or trusted archive . The verification manager
verifies the credentials certification path and the signature; the authorization decision about possible
code deployment is made with common developed authorization mechanism regarding the local node
code repository policy.

Dynamic verification can be added as part of Verification manager functionality as described in
section 5.10 for Active SNMP system.

5.8 GENERAL ACTIVE PACKET SECURITY EVENTS
In general case we can divide active packet security events in three parts: entry-level checks,
evaluation level checks and exit level checks.

Entry level checks steps are the following: after an active packet is diverted by demultiplexing
subsystem, if it recognized as active packet, the packet is passed to security subsystem. Based on SA
identifier in the hop protection option, right SA is selected and sequence replay protection is checked.
Option keyed hash is verified and if verification is successful the resource option is checked for
maximum number of hops. After that credential option is parsed, credentials are fetched from the
previous node if they are not in the credentials cache already. If credentials are successfully validated
they are stored in the cache and the digital signature in the option is verified. Credential timestamp if
present is compared to the local clock. Security context is built from this credential option. The
procedure is repeated for every credential option in the packet. VE and service identifiers in the packet
are compared to those stated in the credentials. If they match, packet as a request is authorized against
the security context of the input channel. At least one security context must be authorized positively
for the packet, otherwise packet is dropped. If the incoming channel requires code verification the
code is verified. If the packet passes all checks it is returned to the demultiplexer, which sends it to the
service.

Evaluation level checks are performed if the packet evaluation results in access to NodeOS interfaces,
service state or packet itself. In these cases actions are authorized and service or node policy enforced
as described in the section 5.7.2.

Exit level checks. Basically, when the packet is sent by the service to exit channel demultiplexing
subsystem invokes security send check interface and the packet resource counter is increased, right SA
regarding the packet next hop destination is selected and the hop option is built and inserted in the
packet. The packet is returned to the demultiplexing and sent to the wire.

In the context of the exit level checks there also other checks possible. The exit channel can have a
policy set that can be evaluated regarding the packet security context(s). Resource counter is divided
among outgoing packets when the evaluation on the node results in multiple packets.

5.9 SECURITY ARCHITECTURE PERFORMANCE
We are mostly interested in security architecture performance in the case when the active packet
passes the node. For this purpose we assume that the suitable VEs and services are already setup on
the node and that the user can access secure store and his credentials and related key pair to be able to
create ANEP packets and corresponding credential options in the packet. Originating node should
have already established SA with his neighbour node. On the nodes that the packet passes security
costs are related to the general scenario as described in section 5.8.

Testing environment was setup on commodity PC, with Intel P4 2.2 GHz processor with 512 MBit
RAM, Red Hat Linux 8.0, kernel 2.4.18-14, Java SDK 1.3.1_3, Bouncy Castle crypto-library version
1.17 and network node related FAIN code.

Copyright  2003 FAIN Consortium May 2003
41

D7-Final Active Node Architecture and Design

Figure 5-4 shows the security related cost of an active packet passing the active node. Active packet in
used case contains basic ANEP header [1], hop option, option for VE and service identifier, one full
credential option, resource option and zero length variable option and payload. Hop option keyed hash
is HMAC-SHA-1 [32] on the receiving and sending side. Credential used in example case is X.509
based certificate with RSA encryption with MD5 hash signature. V3 X.509 extensions were used to
encode user attributes and VE and service identifiers. Signature in the credential option, computed on
originating node, was RSA encryption with SHA-1 hash, RSA key length used was 768 bits.
Certification path length was one.

On the left hand side of Figure 5-4 is a case where user credential is contained in the packet and is
validated on the node together with all other checks explained in section 5.8. Hop part represents costs
of validating hop option on receiving side and building a new hop option on sending side.
Encoding/decoding represents costs of decoding a packet and encoding it with new hop option. Other
costs are related to the process of building a security context on the node, verifying user statements
about VE and service Ids regarding those in credential and access control decision regarding security
context of the input channel with simple policy. Signature costs are costs of validating a credential and
verifying the digital signature in the packet. In this case we can pass over the node 396 packets per
second.

Figure 5-4: Security related packet costs

On the right hand side of the above figure, the packet related security cost of exactly the same
operations is explained, but in case when the user credential is already cached on the node. Security
costs are lowered for factor of three and 1190 packets per second can be passed over the node.

Packet related costs are not drastically related to the RSA key size in current setup: in the case of
RSA512 the node can pass 1340 and in case of RSA1024 1003 packets per second.

Per hop costs are, as can be seen from the figure 5-4, much lower then signature related costs. As said
in section 5.4.2, per hop protection also authenticate the sending node; approach is usable for inter
node communication, like routing updates etc. The node can handle more than 7000 per-hop protected
requests.

While the number of packets that can be passed over the node is relatively small it is hard to compare
it to reported results in active networking community. The results reported are for more simple packet
structures as in our case and are in range from 6000 to 11000 packets per second in similar
environment reported for ANTS [6] and Bees [21]. But there were no security related cost calculated
or reported. The size of the variable option has an impact on the decoding/encoding costs and per- hop
protection costs, which are proportional to time needed to compute hash of the packet data. Payload
size additionally increases costs to calculate the hash used to verify the digital signature in the packet.

Comparing the results for example with OpenSSL [38] library shows that the OpenSSL library is more
than two times faster than the Bouncy castle library for digital signature verification (1428/3550 per
sec). Using cryptographic accelerators like Broadcom based BCM5821 [39] show additional speed
improvements with very light utilization of main CPU (8142 signatures verification per sec, less then

Copyright  2003 FAIN Consortium May 2003
42

D7-Final Active Node Architecture and Design

1% CPU). Using native libraries or accelerators should improve performance of security architecture
regarding the active packets to few thousands per seconds.

5.10 ARCHITECTURE APPLICABILITY
The security architecture designed and implemented in FAIN should be applicable to any active
networking approach. To evaluate our assumption we have applied the security architecture to the case
of Active SNMP, also developed in FAIN [29].

Active SNMP is a SNAP [33] based solution for controlling and managing active node resources.
SNAP is used in this solution as a carrier and a finite state machine to program a series of active
network nodes through SNMP enabled network devices.

SNAP itself provides high level of safety and it even provides resource usage guarantees per packet.
But the approach is as safe as much it is limited in its ability of actions that can be result of the packet
evaluation on the node. In our case the evaluation of SNAP packet can result in composition with a
system, that is known to have security problems [25] and the actions requested can be security critical.
Every action should be authorized and the policy for the action enforced on the nodes that the packet
traverse.

There are two distinct problems in integrating SNAP activator in the FAIN framework. Firstly, how to
provide protection for SNAP packets while they are in-transit over the network. SNAP follows a pure
active networking approach and contains intermixed code and data in the same packet. SNAP packets
can legally change in the network during the evaluation on the node. Therefore, for the packet as a
whole, its data origin cannot be cryptographically verified on the nodes that the packet passes. Second
issue is, how to integrate SNAP daemon into the node environment and how to use FAIN based
mechanisms for the authorization and policy enforcement.

SNAP packet integrity issues were tackled in the following way: after compiling a SNAP program the
originating node produces a fingerprint of the program, extracting from the program the static part of
SNAP packet data. Static parts are SNMP commands and related data, which will be invoked on the
node during the packet evaluation. The fingerprint is stored in the ANEP packet payload while the
entire SNAP packet is put into variable option. Originating node builds a credential option and
digitally signs the static parts of the packet, including the fingerprint in the packet payload.

At the intermediate nodes the general scenario of the packet passing the node is exactly the same as
described in the section 5.8. Packet fingerprint with known data origin is submitted to verification
subsystem together with the SNAP program itself, fingerprint of the program is produced again and
compared to the one that was verified. If they match, the packet will be injected in the system,
otherwise it will be dropped. Verification in this way ensures that the security critical parts of the
SNAP code have not changed in the network; the commands and the data, their position and
occurrence is protected against unauthorized modifications.

In this way the general protection of the packet as designed in FAIN is achieved: the SNAP packets
can be protected in the network with per hop protection, so only trusted nodes can process the packet,
and the end-to-end authentication is possible with the data origin authentication of program fingerprint
and other packet options and verification of the fingerprint.

Integration with the FAIN node services are in part covered by the integration of the SNAP daemon
with the management framework. In this way the SNAP daemon is treated as any other node
component also regarding security issues, e.g. of its installation, initialisation and management. SNAP
daemon environment was extended on the node with a trap system that intercepts SNAP packet
requests and invokes actions on the node corresponding to these requests. Additionally two helper
components were designed and implemented that take care of resubmitting and intercepting the
packets going in and coming from SNAP daemon. Those two components also take care of
synchronizing the SNAP packet evaluation with its security context, built from the active packet
external representation. In this way, SNAP packet actions can be authorized in the general way, as
described in section 5.7.2 SNAP packet security context is compared with a security context of the
trap system and authorization decision enforced.

Copyright  2003 FAIN Consortium May 2003
43

D7-Final Active Node Architecture and Design

5.11 EVALUATION OF THE SECURITY ARCHITECTURE
Security architecture was evaluated through number of properties, namely flexibility, security,
reliability, performance and scalability.

We were addressing flexibility in many parts of security architecture design: addressing the problem
from general point of view so the architecture should be applicable to all active networking
approaches, even existing one as shown in section 5.10. With the choice of unidirectional
authentication with digital signature mechanism and public key cryptography and design of credential
option supporting multiple type of credentials it is possible to support different trust management
approaches. Multiple credentials related options are possible in a single packet so described
relationships can be even broader, spanning multiple domains. On the domain borders it is possible to
replace user credentials by trusted services with domain credentials, which can be used in other
domains. User involvement in the security can be made minimal; regarding the service, its parameters
and business model, it should be enough that they are negotiated in advance and suitable credentials
issued regarding the user initiated key pair. Access to, in our case to user secure store, should be
enough to enable user to access the service and use it in accordance with the contract negotiated.
Architecture can be used in transport, management and control plane; though its usage can be limited
because of the performance issues in transport plane, as we will discuss later.

The choice to build the security architecture at the NodeOS layer and transparent to the services
enhances reliability of the system. Architecture is designed and implemented once instead of multiple
times for different protocols or on different system layers. Similar is true for integration of the
component model and security. All system components are treated equally regarding the security
issues for the installation, initialisation, termination and runtime operations. Besides RCF can
guarantee reserved share of the computational and communicational resources as discussed in section
5.4.6 which helps the system to operate reliable even when node resources are scarce. Separation of
VEs and services also adds to reliability of a system as a whole: if a service in a VE is possibly
compromised this fact should affect this service only and in no way other services in the same or in
other VEs.

Performance evaluation as presented in section 5.10 shows, that initial performance should be
sufficient for applications in management and control plane; performance is not adequate for transport
plane without improvements in software coded and used, cryptographic accelerators or trade offs.

From scalability point of view the mechanisms selected, namely per hop protection and end-to-end
protection, scale well. Per hop protection can handle sufficient number of neighbour nodes and
requests. End-to-end protection, because it is unidirectional, can be used while passing large number
of nodes. The real problem is performance related because of the cost of digital signature verification.
The system can support different types of credentials and trust management approaches. Multiple
types of policies could be used even policies like Keynote.

From security point of view we can evaluate the presented architecture from security related high level
architecture goals. Authorized use can be enforced for important system and users’ resources,
separation between VEs and services is enforced by the system itself. Active packets can be protected
in transit; this feature is implemented only in Java based EE so the transport plane of the PromethOS
EE is not supported. But both environments, PromethOS and Active SNMP with either commercial
router as Hitachi GR2000 or Linux based router are managed with active packets through component
based node environment and are thus secured with the same security mechanisms as the rest of the
node. Verification of the code deployed to the node is in static case done with inter working with node
level ASP. Dynamic verification cases can be supported as shown in the case of Active SNMP system.
Common treatment is achieved through the unified component model, same mechanisms used for
securing sessions and active packets, common authorization and policy enforcement based on the
security context and common verification mechanism. Because of the performance issues the all three
planes cannot be treated equally at the moment. With example of Active SNMP we have shown that
the base security services should be sufficient and that the system can be extended with additional
security mechanisms as SNAP program fingerprinting and verification.

Copyright  2003 FAIN Consortium May 2003
44

D7-Final Active Node Architecture and Design

Finally security architecture can be applied to all three type of nodes developed in FAIN; Linux router
with Java based EE, PromethOS node extended with FAIN basic services and hybrid node with
Hitachi GR2000 router, FAIN developed node and Active SNMP system. All three nodes can be
supported by security architecture in management and control plane, transport plane support, though
with low performance, is possible with Java based EE. Security architecture network experiments with
two types of nodes; Linux router and hybrid node were done in FAIN setup pan-European testbed.

5.12 CONCLUSIONS
FAIN security architecture was designed as general and flexible system. Strong security on a flexible
and heterogeneous network node is possible and we have achieved most of our basic goals. Through
experiments we have shown that security architecture as designed and implemented can be applied to
three types of nodes at least in management plane and security architecture performance should be
sufficient for operations in control plane. But there is still a lot of research, implementation work and
experiments that needs to be done. Node component model should be formalised together with the
security architecture operations. Flat security model assumed regarding system entities in interaction
should be extended to multiple entities and proper model proposed to treat them as compound
principals. The security state of the node that can be exported through authorization engine should be
kept on the node and continuously analysed; the same mechanism should be used for security related
protocols and operation of security subsystems as verification manager, system integrity subsystem,
connection manager etc. Authentication in the case of active packets has performance problems and
more solutions, preserving existing flexibility, should be proposed, designed and evaluated.

Copyright  2003 FAIN Consortium May 2003
45

D7-Final Active Node Architecture and Design

6 EXECUTION ENVIRONMENTS

6.1 JAVA EE
This chapter presents the JAVA execution environment, being the implementation of the node level
management layer. Details about the definitions of key interfaces can be found in appendix A.1.

6.1.1 Introduction
The JAVA execution environment is an implementation of the concept of execution environments as
described in chapter 2.3. It provides a runtime support for service components implemented in JAVA
[14] together with support for inter-component communication based on CORBA [13]. The runtime
environment consists of a collection of generic classes and some helper classes. The generic classes
can be extended by component implementations and offer an internal interface to the framework as
well as call-back methods which can be overridden.

The access to the CORBA ports is secured by SSL. Clients have to provide certificates used for
authentication. All interactions with a CORBA port can then be checked against policies maintained
by the respective security context. Using CORBA portable interceptors and portable object adapters
together with servant locators it is possible to maintain the clients’ identity throughout a chain of
interactions.

In particular the generic classes offered by the JAVA execution environment have been extended
towards a node level management framework as presented in more detail below. The JAVA execution
environment is most suitable for service components implemented in JAVA and using CORBA but
can equally be used to implement wrappers for legacy systems and allows for alternative inter-
component communication besides CORBA.

The domain of the JAVA execution environment is the support of portable, easy to develop service
components, usually on the control or management layer but also on the transport layer for low packet
rates. However, the JAVA execution environment isn’t good for directly running components targeted
at high-performance packet processing.

In the following the framework classes forming the JAVA execution environment and some basic
services implemented therein will be presented. The framework classes implement the concepts
presented in chapter 2.3. They can be used to derive specific implementations for particular service
components.

6.1.2 Implementation
Figure 1 shows the hierarchy of the classes that make up the implementation of the JAVA execution
environment. In the following they will be described in more detail.

6.1.2.1 Basic Component
This class implements the concept of the basic component as outlined in chapter 2.3.1. It will setup the
component’s initial port and provides an internal interface to the derived implementation to add or
remove additional specific ports. This is done by providing a port description. Later, when clients try
to get access to a specific port this description will be used to create a port entity bound to the client.
There are special methods to add or remove CORBA ports. The method for the creation of a port
entity can be overridden by the derived implementation in order to provide a specific handling for
particular kinds of ports not based on CORBA.

The internal interface provides methods for getting the unique identifier of the component and the
name of the owner. Further, there is a callback method for the initialisation of the component called by
the appropriate component manager during the creation of the component. This method can be
overridden when special steps have to be taken by the derived implementation. At this point the
specific ports should be added.

Copyright  2003 FAIN Consortium May 2003
46

D7-Final Active Node Architecture and Design

Basic Component

Component Manager Template Manager

Resource Manager

Execution Environment

JAVA Execution Environment Manager

Virtual Environment Manager Virtual Environment

SNAP Execution Environment

Security ContextSecurity Manager

SNAP Execution Environment Manager

JAVA Execution Environment

PromethOS Execution Environment Manager PromethOS Execution Environment

ChannelChannel Manager

DiffServ ControllerDiffServ Manager

Traffic ControllerTraffic Manager

Configurable Component

Port

IIOPPort

SNMPPort

has +1

Figure 6-1: Class hierarchy for JAVA execution environment

6.1.2.2 Port
This class is a generic superclass for port classes. It defines two methods for allocating and freeing the
represented port, which should be overridden by the specific subclasses. In general, when a port is
allocated a reference to the port is created and an implementation is bound to the reference. In the case
of a CORBA port, for example, the reference would be an IOR and the implementation a servant.

6.1.2.3 IIOP Port
This class represents a CORBA port. It makes use of the portable object adapter to create port
references. Together with a servant locator the references are mapped to the appropriate ports’
implementations. Using a servant locator allows to perform access control prior to invoking the ports’
implementations.

6.1.2.4 SNMP Port
This class represents an SNMP port. Components can use such ports to set or get values from a MIB
based on an object identifier. Additionally, an SNMP port will receive traps with a defined enterprise
identifier and invoke a call-back on the respective port’s implementation. In contrast to the IIOP port
the SNMP port’s reference is only valid in the same execution environment and cannot be exported.

6.1.2.5 Configurable Component
This class implements the concept of the configurable component as outlined in chapter 2.3.2. It is
derived from the basic component class and additionally implements the configuration port plus the
handling of properties and property observers. The internal interface provides methods for setting,
getting, and changing properties as well as call-back methods for the events of changes in the state of
properties.

Copyright  2003 FAIN Consortium May 2003
47

D7-Final Active Node Architecture and Design

Further, this class implements the handling of connections between ports of the represented
component instance and ports of other component instances. There is a call-back method, which will
be called by the framework when ports are about to be connected. This method should be overridden
in order to store the address of the target port and to implement specific handling of connecting to non-
CORBA ports.

6.1.2.6 Component Manager
This class implements the concept of the component manager as outlined in chapter 2.3.3. It is derived
from the configurable component class and additionally implements the component manager port.
Internally it cares about the management of component instances and associated profiles. It defines
call-backs for the creation, activation, deactivation, and deletion of instances, which have to be
overridden by the derived implementations.

6.1.2.7 Resource Manager
This class implements the concept of the resource manager as outlined in chapter 2.3.5. It is derived
from the component manager class and additionally implements the resource manager port. Internally
it cares about the management of supported resource dimensions and the current resource usage.
Further, it sends notifications to registered clients when particular thresholds are crossed. It defines
internal methods for defining supported dimensions and updating the current usage.

6.1.2.8 Virtual Environment
This class implements the concept of the virtual environment. It is derived from the configurable
component class and additionally implements the template manager port as outlined in 2.3.4.
Whenever a virtual environment is created via the virtual environment manager it will get references
to its associated execution environments. Those references will be used to dispatch requests
concerning the management of templates to the appropriate execution environment.

6.1.2.9 Virtual Environment Manager
This class is derived from the component manager class and manages instances of virtual
environments. It extends the resource manager port by providing a method for retrieving instances
based on the virtual network identifier.

6.1.2.10 Security Context
This class is derived from the configurable component class. It offers a port for checking the access to
other ports based on the identity of the current client. It maintains policies which define particular
identities and their access rights.

6.1.2.11 Security Manager
This class is derived form the component manager class and manages instances of security contexts.
For more details on the internals of the security manager see chapter 5.

6.1.2.12 Execution Environment
This class implements the concept of the execution environment on a generic level. It is derived form
the configurable component class and as does the virtual environment implements the template
manager port. It provides the storing of templates and their descriptions; specific implementations can
be derived from this class and override the call-backs for the installation and de-installation.

6.1.2.13 JAVA Execution Environment
This class is derived from the execution environment class and employs class loaders for the
installation of templates.

Copyright  2003 FAIN Consortium May 2003
48

D7-Final Active Node Architecture and Design

6.1.2.14 JAVA Execution Environment Manager
This class is derived from the resource manager class. When a new JAVA execution environment is
activated the manager will start a new process on the operating system level. The manager will
monitor the CPU and memory usage of the process and care about the compliance with the
environment’s resource profile. In the current implementation the manager will simply kill the
environment process in the case that the resource usage exceeds the defined quotas.

6.1.2.15 PromethOS Execution Environment
This class is derived from the execution environment class. It wraps a PromethOS kernel-space
execution environment and maps requests concerning the management of templates to the PromethOS
interface. Additionally there are wrapper classes for PromethOS components and respective
component managers. For more details on the internals of the PromethOS execution environment see
chapter 6.2.

6.1.2.16 PromethOS Execution Environment Manager
This class is derived form the component manager class. It simply manages instances of PromethOS
execution environments.

6.1.2.17 SNAP Execution Environment
This class is derived from the configurable component class. It represents a SNAP daemon started as a
process. Though called an execution environment it currently doesn’t support the management of
templates. The SNAP execution environment features the execution of active packets and uses SNMP
for communication with other component instances. Thus, it is also called “active SNMP activator”.
For more details on the internals of the active SNMP activator see chapter 6.3.

6.1.2.18 SNAP Execution Environment Manager
This class is derived form the component manager class. It simply manages instances of SNAP
execution environments.

6.1.2.19 Channel
This class is derived from the configurable component class. It is used to forward packets from the
network to component instances and to take packets back and send them to the network. A channel is
created per virtual environment. Particular component instances or execution environments belonging
to the virtual environment can connect their ports with the ports of the respective channel. This can be
done for the exchange of data packets as well as of active packets. Receiving component instances
have to specify a condition based on what the channel would forward packets to them. Currently the
channel class supports ports for CORBA communication and plain UDP sockets.

6.1.2.20 Channel Manager
This class is derived from the component manager class and manages channel instances. It uses
operating system specific means (e.g. Linux Netfilter) to intercept packets from the forwarding path
and dispatches them to a channel instance with a matching condition. For more details on the internals
of the demultiplexing done by the channel manager see chapter 4.

6.1.2.21 DiffServ Controller
This class is derived from the configurable component class and offers a port for configuring packet
handling based on the model of differentiated services [10].

Copyright  2003 FAIN Consortium May 2003
49

D7-Final Active Node Architecture and Design

6.1.2.22 DiffServ Manager
This class is derived form the component manager class and manages instances of diffserv controllers.
In the current implementation it demonstrates how to wrap the functionality provided by a legacy
router (Hitachi GigabitRouter2000) [11]. In order to receive configuration requests this class offers an
SNMP based port for communication with the SNAP execution environment. For more details on the
internals of the diffserv manager see chapter 3.

6.1.2.23 Traffic Controller
This class is derived from the configurable component class and offers a port for configuring packet
handling based on different queuing models.

6.1.2.24 Traffic Manager
This class is derived form the component manager class and manages instances of traffic controllers. It
also demonstrates how to wrap functionality of a legacy system but instead of using a hardware router
it makes use of the Linux traffic control [12]. For more details on the internals of the traffic manager
see chapter 3.

6.1.3 Use Cases
The prototype implementation of the JAVA execution environment and the integrated basic services
and wrappers is used in various scenarios for demonstration purposes, in particular

• a video-on-demand scenario demonstrating the interworking of the management layer and the
PromethOS execution environment;

• a web-TV scenario demonstrating the interworking of the management layer, the
demultiplexing, and active service components;

• a differentiated services scenario demonstrating the interworking of active packets executed in
the SNAP execution environment, the management layer, and the diffserv controller running
in the JAVA execution environment interfacing with legacy router hardware.

Some basic use cases will be informally presented here and are parts of the aforementioned scenarios.

6.1.3.1 Booting the Management Layer
Booting the management layer is done by starting the privileged virtual environment and installing the
basic services like management of environments, security, demultiplexing channels, traffic, etc. The
privileged virtual environment will then publish the reference to its initial port on a well know TCP
port.

6.1.3.2 Creating a Virtual Environment
A virtual environment is created by the node owner for a service provider so that the latter can deploy
services for its customers on the node. After getting the reference to the privileged virtual
environment’s initial port the template manager port is accessed. There the initial port of the virtual
environment manager is retrieved and the component manager port is accessed. At this port a new
virtual environment is created and activated.

When a virtual environment is created a resource profile has to be specified. The profile defines all
required resources to be attached to the new virtual environment. The virtual environment manager
will contact the respective resource managers to create and activate the required resources.

Copyright  2003 FAIN Consortium May 2003
50

D7-Final Active Node Architecture and Design

6.1.3.3 Deploying a Service
Typically, a service provider will deploy services in its virtual environments and make them available
to its customers. Deploying is done by getting a reference to the initial port of the service provider’s
virtual environment. To get this reference the virtual environment manager has to be contacted like
described in the previous use case.

Then the template manager port of the virtual environment is used to install one or more service
components, which involve(s) the instantiation of the respective component managers. Later the
component managers will be used to create and activate instances of the service components. The
initial configuration of a service is done by accessing the individual components and setting their
properties and interconnecting them.

6.1.4 Conclusion
This chapter presented a collection of classes that make up the JAVA execution environment. This
environment provides support for service components implemented in JAVA and using CORBA or
SNMP for communication. Further, it is extensible for other types of communication; for example, the
channel class implements ports based on plain UDP sockets for other components to connect to.

This collection of classes is used to implement the node level management layer based on the
requirements and concepts as defined in chapter 2. Additionally, it serves as an extensible framework
allowing to derive specific service components without having to care about aspects like access
control, resource monitoring, component deployment and activation, etc. For environments, which
aren’t implemented in JAVA, for example a hardware router or a kernel-based environment, wrappers
can be used to map the respective abstractions into the node level management layer.

This chapter also presented some basic use cases, which are part of the bigger demonstration
scenarios.

Copyright  2003 FAIN Consortium May 2003
51

D7-Final Active Node Architecture and Design

6.2 PROMETHOS EE
In the past, the functionality of routers was very limited, namely forwarding packets based on the
destination address. Recently, new network protocols and extensions to existing protocols have been
proposed and implemented, requiring new functionality in modern routers at an increasingly rapid
pace. However, present day commercially available routers typically employ a monolithic, closed
architecture, which is not easily upgradeable and extensible to keep up with new innovations.

When PromethOS has been designed, the following requirements were set before in order to overcome
these limitations:

• Modularity. The router architecture is designed in a modular fashion with components coming
as plugins, which are modules that are dynamically loaded into the kernel and have full kernel
access without crossing address spaces. Dynamical loading and installation of plugins into the
operating system kernel at run-time allows for flexible code development and deployment.
Plugins are code modules that implement specific router functionality. For example, a router
plugin might implement encryption functionality.

• Flexibility. For each plugin class, multiple plugin instances can be created. Different
configurations of the same plugin can co-exist simultaneously in the kernel, with plugin
instances sharing the same code but operating on their own data. Plugins may be instantiated
as often as required. An instance is a specific run-time configuration of a singular plugin.
Quite often, it is required to have several plugin instances of one plugin in the kernel, e.g.
packet scheduling. There, a packet scheduler may work in different configuration, hence
different instances, for several interfaces. State-of-the-art packet schedulers are configured
hierarchically. Quite often, the several modules are used which work in different hierarchical
levels. At different levels, the instances of one plugin may be configured differently.

• Interfaces. A consistent and simple interface must be provided such that the plugins may
easily be programmed. This also includes the reaction of plugins to signals. PromethOS
provides a standard set of signals in order to provide interoperability of plugins.

• Packet classification. By defining filters, incoming data packets are classified to belong to a
data flow and by binding a plugin instance to such a flow, all matching packets will be
processed by the corresponding plugin instance. Efficient mapping of specified flows and the
possibility of binding flows to specific plugin instances are required. Usually, filters specify
sets of flows. For example, a filter may classify a TCP data flow from network 172.16.7.0/24
to the host 172.16.0.65. Filters may classify packets according to end-to-end application
flows. A 6-tuple may specify filters: <Source Address, Destination Address, Protocol, Source
Port, Destination Port, Interface>. Every element of a 6-tuple may be specified as irrelevant.
For the former example, a filter is specified as: <172.16.7.0/24, 172.16.0.65/32, TCP, *, *, *>.
Obviously, a filter for end-to-end application flows needs a filter specification according to the
aggregate level: a single flow requires the specification of all parameters.

• Performance. An efficient data path is guaranteed by implementing the complete data path in
kernel, preventing costly context switches, and by using efficient mechanisms for packet
classification.

• Integration in Linux. The implementation needs only minimal changes to the existing Linux
source code and can easily be integrated into newer releases.

We have implemented our framework based on the Linux 2.4 kernel. We have selected this platform
because of its portability, freely available source code, extensively documented, wide-spread use as a
state-of-the-art experimental platform by other research groups and by its continuously growing
acceptance in industry. Due to its modularity and extensibility, we are convinced that our proposed
framework makes it a useful tool for researchers in the field of programmable router architectures and
protocol design.

Copyright  2003 FAIN Consortium May 2003
52

Spyros G. DENAZIS
(E) Lukas, (C) Cornel, (R) Dusan
Purpose: Introduction & Summary/Requirements and functionality/Design and Framework/ components, interfaces/Conclusion /References

D7-Final Active Node Architecture and Design

6.2.1 Architectural Overview
A PromethOS node consists of components running in the Linux kernel space and those running in the
Linux user space. In kernel space, data path service components for efficient packet processing are
located, i.e. PromethOS plugins that act on data of every or nearly every packet. In user space,
interfaces to the management framework (Virtual Environment Manager, VEM) are located.

iptables

Network Stack

Netfilter

User Space

Kernel Space

PromethOS plugins

PromethOS
Target

Figure 6-2: Netfilter and PromethOS

The main objective of our proposed architecture is to build a modular and extensible networking
subsystem that enables to deploy and configure packet processing components (PromethOS plugins)
for specific flows. Figure 6-2 illustrates our dynamically extensible router architecture.

The most important components are as follows:

• Netfilter classifies packets according to filter rules at various hooks. Packets matching a filter
are passed to registered kernel modules for further processing. To control kernel space
environments, user space tools must be provided. In Linux, the user space tool iptables is the
standard way for handling Netfilter kernel space functionality.

• The plugin framework provides an environment for the dynamic loading of plugin classes, the
creation of plugin instances as well as their configuration and execution.

• The plugin loader is responsible for requesting plugins from remote code servers which store
plugin classes in a distributed plugin database.

• The PromethOS User Space Library interfaces the PromethOS environment to the Virtual
Environment Manager.

6.2.2 Netfilter Framework
The netfilter framework [rusty_russel:netfilter] provides flexible packet filtering mechanisms which
are performed at various hooks inside the network stack. Kernel modules register callback functions
that get invoked every time a packet passes the respective hook. The user space tool iptables allows
defining rules that are evaluated at each hook. A packet that matches these rules is handed to the target

Copyright  2003 FAIN Consortium May 2003
53

D7-Final Active Node Architecture and Design

kernel module for further processing. The netfilter framework together with the iptables tool provide
the minimum mechanisms required to load modules into the kernel, specifying packet matching rules
evaluated at hooks, and the invocation of the matching target module.

However, netfilter has a serious restriction since all loadable modules must be known at compile time
to guarantee proper kernel symbol resolution for the linking process. Thus, only kernel modules that
have been statically configured can be loaded into the networking subsystem. This is a significant
limitation since we envision a router architecture that allows loading arbitrary new components at
runtime.

6.2.2.1 Netfilter Architecture
Netfilter, developed and implemented by Rusty Russell, provides a framework for packet filtering.
Every protocol supported by Netfilter specifies several hooks, for example, IPv4 defines 5 hooks. A
hook allows the interception of packet flows along the kernel internal packet path. Kernel extensions
may register at one or several of these hooks. Netfilter calls these extensions every time a packet
arrives at a hook. Such an extension may inspect the packet, modify it, ask Netfilter to accept it or to
drop it or to enqueue it for user space. Figure 6-3 provides an overview of the Netfilter framework for
IPv4. Netfilter is documented in detail on http://netfilter.samba.org.

[1] [ROUTE] [3] [4]

[5]

[2]

INPUT

Local User Processes

[ROUTE]

OUTPUT

Figure 6-3: Netfilter Architecture for IPv4

6.2.2.2 Extensions to Netfilter
As a basis, Netfilter provides a framework to which kernel extensions may be bound. However,
Netfilter requires the extensions to be available at compile time, i.e. kernel extensions must be
specifically compiled per kernel build. Therefore, in order to implement the above mentioned
requirement “flexibility”, a suitable extension is need which the kernel space to install plugins at run-
time without the need to be specifically built for one kernel only. This is what PromethOS provides,
i.e. mechanisms to load plugins and bind them to specific flows at runtime. An overview of Netfilter
together with PromethOS is provided in Figure 6-2.

The following functionality has been implemented:

• A new Netfilter table into which filter expressions may be specified. These filters may bind
plugins bound to flows.

Copyright  2003 FAIN Consortium May 2003
54

D7-Final Active Node Architecture and Design

• A new Netfilter target3. By this target, plugins are managed and controlled at run-time. This
target dispatches packets to the appropriate plugin instances and classifies packets for flows.

• iptables as the user space tool has been extended such that the new arguments can be passed to
the new Netfilter target.

• Control functionality is provided to query statistical information.

6.2.3 PromethOS Netfilter-Table
To easily separate PromethOS flows from normal filters, and to allow the filters to be hooked to every
available hook, a new Netfilter-table, promethos, is implemented. This table registers during load time
at the Netfilter framework.

PromethOS plugins should be able to be activated at every hook in the Netfilter framework.
Therefore, the table must register at every hook. However, this pre-registering consumes resources
during run-time: every hook gets run for every packet. So, to optimise, the superfluous hooks are to
be removed.

The PromethOS Netfilter-table is implemented as a single Linux kernel module. At module
initialisation-time, this module registers at the appropriate places in the Netfilter framework. Figure
6-4 provides an overview with the example of an IPv4 protocol-hook configuration.

PromethOS

PromethOS

PromethOS

PromethOS

PromethOS

Local Process

Figure 6-4: PromethOS Netfilter-Table Hooks

Flow entries in the PromethOS table point to a specific Netfilter-Target, which is named
PROMETHOS. This target provides the data structures that are necessary for the management of
PromethOS plugins. Control functionality is provided that keeps track of the loaded plugins and their
instances.

3 The Netfilter-target provides the PromethOS framework. The PromethOS framework controls packet
dispatching and plugin installation.

Copyright  2003 FAIN Consortium May 2003
55

D7-Final Active Node Architecture and Design

For this issue, the target exports two interfaces. One is used at initialisation time of the plugin to
register; the other one is called at the time a plugin stops and gets unregistered. By these mechanisms,
PromethOS is aware of the status of loaded plugins.

6.2.4 Plugin Framework and Execution Environment
The plugin framework manages all loadable plugins and dispatches incoming packets to plugins
according to matching filters. When a plugin initially gets loaded into the kernel, it registers its virtual
functions with the plugin framework. Once a packet arrives and needs to be processed by a plugin, the
framework invokes the previously registered plugin-specific callback function. Since plugins register
their entry-points, the entry functions do not need to be known at compile time, and for this reason the
plugin framework can load and link any plugin into the kernel. Every PromethOS plugin offers an
input and output channel (in accordance with [40]) representing a control and reporting port. The
control port is used for managing the PromethOS plugin (such as configuration); the reporting port is
read-only to collect status information from the plugin.

6.2.4.1 Plugin Classes and Instances
For the design of plugins, we follow an object-oriented approach. A plugin class is a dynamically
loadable Linux kernel module that specifies the general behavior by defining how it is initialized,
configured, and how packets need to be processed. A plugin instance is a runtime configuration of a
plugin class bound to a specific flow. An instance is identified by a node unique instance identifier. In
general, it is desirable to have multiple configurations of a plugin, each having its own data segment
for internal state. Multiple plugin instances can be bound to one flow, and multiple flows can be bound
to a single instance. Through a virtual function table, each plugin class responds to a standardized set
of methods to initialize, configure, reconfigure itself, and for processing packets. All code is
encapsulated in the plugin itself, thus the plugin framework is not required to know anything about a
plugin's internal details. Once a packet is associated with a plugin, the plugin framework invokes the
processing method of the corresponding plugin, passing it the current instance (data segment) and a
pointer to the kernel structure representing the packet (struct sk_buff).

6.2.4.2 Control from User Space
PromethOS and its plugins are managed at load-time by providing configuration parameters and at
run-time through the control interfaces via the /proc file system.

When the PromethOS plugin framework initially gets loaded, it creates the entry /proc/promethos.
Below this entry, the control and reporting ports of individual plugins are registered. PromethOS
plugins are loaded by iptables which we extended with semantics required for the PromethOS plugin
framework.

The communication to control plugins and report messages between user space and plugins follows a
request-reply approach. A control message is addressed to the appropriate plugin by passing the plugin
instance identifier as a parameter and the plugin then responds with a reply. The PromethOS
framework interfaces between the user space management tools and the PromethOS plugin. When the
proc file system is accessed for reading, the framework calls the print() function of the plugin to
retrieve the information provided by the user. If the /proc file system is accessed for writing, the
PromethOS framework passes the information received to reconfig() function of the PromethOS
plugin.

6.2.5 PromethOS User Space Library
The PromethOS User Space Library deals with interfacing the VEM to the PromethOS internal
management framework that is responsible for creating kernel space Execution Environments (EE),
loading and unloading of PromethOS plugins as well as inserting them into the chain of plugins for
creating the data path service. The PromethOS User Space Library is based on the iptables as it has
been extended for PromethOS as well as on the interfaces created by the PromethOS kernel
Framework, i.e. it connects to these interfaces and transmits the control and management requests by

Copyright  2003 FAIN Consortium May 2003
56

D7-Final Active Node Architecture and Design

VEM.

6.2.6 Summary, Outlook and further work
PromethOS provides a high-performance PromethOS EE in the Linux 2.4 kernel space. The NodeOS
functionality by PromethOS manages the creation and instantiation of the Virtual Environment object,
the PromethOS EE and of the PromethOS plugins. The VE is used for resource management.
Assigned to the VE, several PromethOS EE instances can be created. These EEs are attached to the
hooks provided by the PromethOS Netfilter table, which in turn attaches itself to the hooks provided
by the Netfilter framework. Inside an EE, PromethOS plugins are chained to create the active service.
A PromethOS plugin must have one input port, may export a control interface, and may provide one to
several output ports. These ports are used to allow for service-internal dispatching to different strings
of modules.

The PromethOS User Space Library encapsulates the complexity of managing PromethOS in a library
that can be linked to control applications as it has been done with the VEM in the context of the
Integrated Video on Demand scenario.

Currently, Resource Control is carried out only in terms of rudimentary accounting. Further research
on in-kernel space resource constraint enforcing need to be carried out to allow foreign, untrusted code
to be safely installed and run on a PromethOS node.

Copyright  2003 FAIN Consortium May 2003
57

D7-Final Active Node Architecture and Design

6.3 ACTIVE SNMP ACTIVATOR

6.3.1 Introduction to SNAP EE
This section describes a new service control mechanism using SNMP across a network for controlling
and managing service activities within and around FAIN active nodes. In our approach, once a VE is
given the authority to access the requested network resources, services can be provided by any SNMP-
enabled network devices e.g. FAIN active nodes. Finite state machines are implemented by active
packets; these machines can then program a series of SNMP-enabled network devices in a
synchronised manner, and provide a means for rollback: should any request for a network resource
fail, then the fulfilled requests made earlier are released. Using such kind of active packet mechanism,
it will be possible to implement complex network reconfigurations; for instance, it can create IPSec
tunnels and modify routing table entries to use it. The system uses the Safe Network with Active
Packets (SNAP) programming language to implement the finite state machines. It offers the facilities
to issue SNMP commands that can be applied to network devices. Integration of SNAP Activator with
Security and DeMUX is provided for by the ANEP-SNAP Packet Engine (ASPE) (see later sections
for details).

6.3.2 System Design Goals

6.3.2.1 Interceptor Paradigm
Active network management is the application area for the Active SNMP Activator (also known as the
SNAP Activator) system. Active networking is an interceptor paradigm. It is difficult to develop
applications that rely upon intercepting data packets because the interceptor must decode each data
packet and its intention must be understood. In contrast to traditional network management, what is
needed for effective network management is an in-band management capability. Each flow will
negotiate its next hop before it goes there. It will be seen that SNAP and SNMP can come close to
achieving this: the SNAP packet will precede the data and go to the next hop, it will then establish a
route for the data that will follow it. The information used by the SNAP packet to choose the route will
state the intention of the data flow. For example:

• The data flow may be an HTTP request for a large resource to be delivered to the requesting
machine.

• The data flow may be the start of a large system backup: sending large amounts of data to the
accepting machine.

In both cases, the data flow will be asymmetric; in the former case, it will require a larger capacity in
the reverse direction; in the latter, in the forward direction. The information that states the requesting
machine's intent is only available at the edge of the network where the request is made - only the local
network administration knows the capability and priority of its machines for a limited resource. The
statement of intent is contained in an active packet that attempts to match its source with the sink of
the data flow. The active packet can revise and choose how the source and sink impedances are
matched.

6.3.2.2 Active Packets & Active Extension Technology: SNAP & SNMP
SNAP is a programming language that provides active packets at high level of safety. Essentially,
SNAP packets are UDP packets with assembly codes embedded. As a SNAP packet traverses through
the network, simple computations4 such as to add and remove data to a stack within the packet can be
performed. This is a genuinely active mode of operation. It will be seen that the application of SNAP
within active network management is as a finite state machine that follows the progression of a
reconfiguration of a network. Finite state machines do not need a complex runtime environment and

4 SNAP programming language is an assembly language and it cannot perform any computations that are comparable in complexity to that of
a C or Java program; nor can it support the wide range of data types that are available in these languages.

Copyright  2003 FAIN Consortium May 2003
58

Spyros G. DENAZIS
(E) Walter, (C) Lawrence, (R) Celestin
Purpose: Introduction & Summary/Requirements and functionality/Design and Framework/ components, interfaces/Conclusion /References

D7-Final Active Node Architecture and Design

SNAP will prove to be sufficient. SNMP has been chosen as the active extension technology to work
with SNAP for a number of reasons:

• It is the de-facto language of network management.

• SNMP v.3 provides cryptographically strong role-based access control.

• An extensible MIB and programmable SNMP v.3 agent have become available for
conventional operating systems.

• Machines that run conventional OS are now capable to act as network routers as well.

The extensible MIB allows complex operations to be simplified to one macro instruction. In SNMP,
the GET and SET commands can be thought of as operation codes for a programming language: LOAD
and STORE. One could think of the object identifiers in the extensible MIB as memory locations. We
have written simple programs in SNAP for testing the operational state and branching to different
operation sequences in the Diffserv Scenario.

6.3.2.3 SNAP Packet Format
1 2 3 4

IP Destination
IP Source

Resource Bound Port
Entry Point Code Size
Heap Size Stack Size

Code (~ bytes)

Heap (~bytes)

Stack (~bytes)

Figure 6-5: SNAP Packet Format

• Resource Bound

Similar to the use of hop count, the resource bound limits the number of hops that a SNAP packet
can propagate.

• Port

The port to which this particular SNAP packet should be delivered (default: 7777).

• Entry Point

Indicates at which instruction execution is to begin.

• The Code, Heap and Stack

The Code field keeps a sequence of bytecode instructions; the Heap keeps large values such as
byte arrays and / or tuples (an array of small integers); the Stack keeps small values such as
integers or addresses.

6.3.3 System Design

6.3.3.1 Injectors
The SNAP Injector injects SNAP programs into the network to reconfigure network devices. The
SNAP Injector will decide whether or not to inject code once it has intercepted a request for a data
flow from its own network. The Injector intercepts and interprets some part of an application protocol.
For example, the injector may intercept NFS (Network File System) requests, obtain the user

Copyright  2003 FAIN Consortium May 2003
59

D7-Final Active Node Architecture and Design

identification contained within the NFS request and use that to priorities the use of bandwidth to
deliver data. It can also make use of the MAC addresses, the IP addresses, and the current network
topology in its own administrative domain. In effect, it monitors the state of its own network and its
connection with external networks. When a new network condition develops, an injector will attach
control information to the data flows it hopes to control:

• Appearing flows - A new network condition is engendered by a new data flow and the control
information will be attached to the new flow.

• Disappearing flows - An injector may know that a flow, or a set of flows has finished: a
machine or user or another network may have disappeared from the network.

The SNAP Injector in SNAP Activator will inject code. SNAP code will be sent to the same host as
the data that triggered the network event. All active SNAP-enabled routers will intercept these packets
as they traverse the network. As a general rule, SNAP packets should precede the data packets in the
network, so that the data packets will not be able to traverse the network until the SNAP packets have
a created a route for them.

6.3.3.2 Interceptors
Intercepting SNAP packets is more complicated than injecting them. These are the constraints: 1) the
code has to be executed as quickly as possible, so that the packet can be quickly forwarded and
minimise latency during the establishment of the data flow; 2) the functionality required will need to
make use of active extensions on the node; 3) active extensions require blocked I/O; 4) blocked I/O
cannot be performed in the same thread as the execution of the SNAP packet, because it would add too
much latency. SNAP packet interception is performed at the SNAP daemon and the SNAP Interceptor.

6.3.3.3 Active Extensions
SNAP provides a facility to access services within the SNAPD: CALLS (call service). A service is a C
function. This will be used to dispatch the SNMP commands embedded in the SNAP program. SNAP
also provides a facility to read variables maintained by the SNAPD: SVCV (service variable collect).
This will be used to return the state of SNMP variables. In this way, an SNMP command can be issued
on one thread and the result can be returned, stored within the SNAPD and dispatched as the result in a
subsequent SNAP packet.

6.3.3.4 System Architecture
Interceptors will be SNAPD running on active routers, they will listen on several SNAP control ports.
At the time of writing, the SNAP interpreters are not part of a system that has packet spooling, which
is still an experimental of the Linux kernel [11]. Figure 6-6 presents the architecture of SNAP
Activator.

Copyright  2003 FAIN Consortium May 2003
60

D7-Final Active Node Architecture and Design

SNAP Activator

SNAP Interpreter
(snapi)

SNAP Register (MIB)
(4)

Node Trap Handler SNAP
Daemon
(snapd)

Injector

SNAP Assembler
(snapas)

Trap Dispatcher

Trap Receiver

DiffservController

(2)

(1)

(5)

(6)

Event
Handler
(snmpd)

 (7)

 (8)

ASPE

 (3b)

(3a)

Figure 6-6: SNAP Activator Block Diagram

SNAP packet flow: (1) the SNAP Assembler takes a SNAP program written in SNAP assembly
language, and produces a wire-format binary SNAP packet; (2) binary SNAP packets are injected to
the SNAP daemon by the SNAP Injector; (3a) if the SNAP packet’s destination matches with the local
node address, the SNAP daemon will simply forward the packet to the local SNAP Interpreter for
packet processing; (3b) else if the SNAP packet’s destination is elsewhere (i.e. destination address
does not match with the local address), the SNAP packet will be processed by the SNAP daemon in
the same way as stated in (3a), additionally the SNAP daemon will generate a copy of this SNAP
packet (that will be forwarded to the ASPE for ANEP encapsulation), the copy will then be forwarded
to its next hop via the ANEP-SNAP Packet Engine (ASPE) and DeMUX (see later sections for
details); (4) the SNAP code of the SNAP packet is executed at the SNAP Interpreter, local values will
be set in the SNAP Register; we have implemented this SNAP Register as a MIB for the Difffserv
Scenario, as a consequence object identifiers (OID) will be set in this MIB; (5) a trap is raised and will
be captured by the Node Trap Handler; (6) the Trap Receiver passes the trap to the Trap Dispatcher;
(7) the Trap Dispatcher is responsible for dispatching traps to their corresponding Event Handler; (8)
the Event Handler receives the trap and reads the value (e.g. the OID) that was set in the SNAP
Register, desired action based on the value that was set in the Register will be performed by the Event
Handler.

Copyright  2003 FAIN Consortium May 2003
61

D7-Final Active Node Architecture and Design

6.3.4 Introduction to the ANEP-SNAP Packet Engine (ASPE)

6.3.4.1 Active Network Authentication Challenges
In conventional networks, one of the major focuses in authentication is to authenticate a client whilst
he or she is requesting for some services. Such type of authentication is defined to be end-to-end
authentication: an end user – who is requesting for a service – must be authenticated by a remote
server or by an intermediate active node. Authentication in active networks should include end-to-end
authentication as well as hop-to-hop authentication: active packets must be authenticated at the
recipient i.e. an intermediate active node or a remote server etc. based on the identity of the node on
which the packets were last modified. Both end-to-end and hop-to-hop authentication are needed in
active networks due to the dynamic nature of active packets [5]: active packets that carry code are
injected for the purpose of service control, and these active packets are then intercepted and their
embedded codes are executed at some intermediate active nodes (i.e. the modifying nodes) before
reaching the desired destination e.g. a remote server. At each modifying node, the results of code
execution may be added to the active packet before the packet is forwarded to the next hop. So, the
contents of an active packet may vary at each modifying node whilst the packet is in-transit across
different domain. Thus, end-to-end and hop-to-hop authentication (as well as node and link integrity
protection) are needed in active networks; otherwise intermediate active nodes might process active
packets that were originated from spoofed nodes or have been contaminated by spoofed intermediate
nodes on the network.

6.3.4.2 Existing Solutions
1) Traditional Authentication Techniques

Traditional authentication techniques or existing systems that include authentication mechanisms such
as Kerberos, IP security protocol (IPSEC), transport layer security (TLS) etc. involve either or a
combination of or all of the knowledge, possession, and biometrics authentication factors. These
techniques are generally considered to be sufficient for protecting the end-to-end authenticity of
network entities (e.g. clients, nodes etc.) in conventional networks. However, as these techniques were
not originally developed for hop-to-hop authentication they are insufficient for active network
authentication: for instance, should these traditional authentication techniques be employed in a hop-
to-hop manner: each hop would have to authenticate active packets arriving from its neighbour; but
then unless all intermediate nodes can be trusted, the end-to-end authenticity of the active packets
cannot be covered [5].

2) PLAN: A Packet Language for Active Networks

Hicks who developed a packet language for active networks (PLAN) [7] at the Computer and
Information Science (CIS) Department at University of Pennsylvania (UPENN) had recommended the
use of cryptographic techniques for active packets authentication. There are two types of
cryptographic techniques for authentication: symmetric and asymmetric. Symmetric authentication
requires every modifying node to share a key for signing active packets once modifications have been
applied; this is not feasible unless all nodes are trusted on a network. Asymmetric authentication uses
a private key for signing, but as the source’s private key would always be kept locally on the source
node, the modifying nodes would not be able to reproduce the source’s signature after modifications
have been applied. Alternatively, each node can sign packets by using its own private key on the
modifications it has made on the packet; but then the old signature i.e. the source’s signature that was
generated by the source may be overwritten; moreover, digitally signing each of the modifications on
each active packet at each modifying node may generate an undesirable performance overhead on
intermediate modifying nodes5.

3) SANTS: Secure Active Node Transfer System

5 Digital signatures are expensive to compute: a 500 MHz Pentium can generate 100 1024-bit RSA signatures per second. Also, a 1024-bit
RSA signature would take up 128 byte, which is the same size as a standard SNAPPING active packet program [3][4].

Copyright  2003 FAIN Consortium May 2003
62

D7-Final Active Node Architecture and Design

Murphy and others has proposed to use digital signatures as well as credential references to protect the
end-to-end and hop-to-hop authenticity of active packets (and their clients) in secure active node
transfer system (SANTS) [5][6]. In their approach, active node transfer system (ANTS) [6] packets are
encapsulated into active network encapsulation protocol (ANEP). The ANEP format is modified in
SANTS: the ANEP Payload field is separated into a static and a variable area for keeping static (i.e.
the MD5 hash identifier of the active codes) and variable (i.e. network resource bound) data
respectively.

There are several technical issues must be resolved before the type of approach proposed by Murphy
could become practical.: ANEP packet header format has to be modified in SANTS in order to keep a
list of credential references of the modifying nodes, as a result active nodes must therefore be re-
configured in order to recognise these variable length packets at packet interception; thus it is
important to address how active node would handle packets of variable length. Also, the splitting of
active packets must be performed efficiently: in the SANTS approach, they would have to analyse an
ANTS packet, then separate the contents of the packet into static and dynamic parts before
encapsulating these parts separately into ANEP. Their approach may generate a significant
performance overhead should the process (of analysing ANTS packets, deciding which parts of the
packets are static and which parts are dynamic, then splitting the packets and re-unifying the packets at
a recipient node) is repeated at every single modifying node for every single ANTS packet.

6.3.4.3 Authentication in the SNAP EE
As discussed in earlier chapters, SNAP [4] developed by some developers at UPENN is used as the
active packet language in SNAP Activator (also knows as Active SNMP Activator). SNAP Activator
generates SNAP packet programs that carry various SNMP commands. SNAP packet programs are to
be executed on FAIN active nodes for the purpose of service control. It should be noted that, as SNAP
is designed to be a light-weight and simple active packet language, SNAP itself provides no facility
for authentication at all. UPENN claims that a SNAP packet program is safe to execute without even
examining it: given that SNAP packet program does not contain any primitives to exert control over
local nodes or other packets [4]; it is therefore important to provide the necessary security facilities to
protect the authenticity of SNAP packet programs in FAIN. To integrate with DeMUX and to solve
the security threats of SNAP, SNAP packet programs that are generated by SNAP Activator are
encapsulated by ANEP. ANEP-encapsulation of SNAP packet programs is performed at the ANEP-
SNAP Packet Engine (ASPE). The SNAP-encapsulated ANEP packets are known as ANEP-SNAP
packets.

6.3.5 Requirements of the ASPE
As a general rule, a SNAP packet must provide the following information to the ASPE: a) the VE ID
that the SNAP packet owns, b) the EE ID, c) its destination address and d) the SNAP packet ID; also
Security should provide a Security ID (SID) for each processed (secured) SNAP packet.

1) End-to-End Protection
Recalling from the previous discussion on the authentication challenges faced by authentication
systems in active networks, in order to enforce both end-to-end and hop-to-hop authenticity, we
propose to determine the static data of SNAP packet programs, and then to encapsulate these data in a
separate field of ANEP. The ASPE examines the contents of SNAP packet programs and encapsulates
the static contents of a SNAP packet into the payload of an ANEP packet. We define the SNMP
commands that are carried in SNAP packet programs to be the static data, whereas the dynamic data
are those that are being kept in SNAP packet programs’ stack and heap. Note that these static data are
generated at the source (i.e. a SP which represents a client) and will not be modified whilst the packet
is in transit (e.g. the same SNMP command will be executed at each traversing node). As a
consequence, this field will be digitally signed by the source’s private key (the digitally signing is
performed at SEC), and the signature will be verified by each of the intermediate modifying nodes as
well as by the remote server at the desired destination. In such way the end-to-end authenticity of the
packet program would be covered.

Copyright  2003 FAIN Consortium May 2003
63

D7-Final Active Node Architecture and Design

2) Hop-to-Hop Protection

The entire of a SNAP packet program is encapsulated into the ANEP Option 5. Note that the data in
the stack and the heap of SNAP are to be modified at each hop (e.g. the results of code execution at
each modifying node and the current node address may be push back onto the stack), also the packet’s
network resource bound may be decremented. A SHA hash code is generated for the SNAP packet and
is appended to Option 5. When an ANEP-SNAP packet arrives at a node, the SNAP packet will be
extracted from Option 5, and a hash code of the extracted SNAP packet will be generated. This new
hash code will be compared to the hash code that is appended to Option 5 to ensure the integrity of the
SNAP packet that is currently in-transit across different domains. In such way we would be able to
provide hop-to-hop protection to SNAP packets. As discussed earlier, cryptographic techniques are not
suitable for protecting the authenticity of the dynamic data of active packets; as a result, SEC will
enforce integrity protection on the packet to protect the packet from illegal modifications whilst the
packet is in transit.

6.3.6 ANEP-SNAP Packet Format
An ANEP-SNAP packet has the following format:

 0 31

N 4N + 0 Byte 4N + 1 Byte 4N + 2 Byte 4N + 3 Byte
0 Version Flags TYPE_ID
1 ANEP_HL ANEP_PL
2 FLG_OP_TYPE_1 OP_LENGTH_1
3 VE_ID (4 bytes)
4 FLG_OP_TYPE_2 OP_LENGTH_2
5 EE_ID (4 bytes)
6 FLG_OP_TYPE_3 OP_LENGTH_3
7 SCHEME_ID (4 bytes)
8 DST_IP (4 bytes)
9 FLG_OP_TYPE_4 OP_LENGTH_4

10
11

SID (8 bytes)

12 FLG_OP_TYPE_5 OP_LENGTH_5
13
m

SNAP Packet (~ bytes)

m+1-
m+21 SNAP Packet Hash Code (20 bytes)

M+22 PAYLOAD_LENGTH
n SNAP Packet Static Command (~ bytes)

Figure 6-7: ANEP-SNAP Packet Format

• FLG_OP_TYPE_5

The flag for SNAP packets (Option 5) is 1005.

• OP_LENGTH_5

The length of a SNAP packet is variable, but is always within the 4-byte boundary.

• SNAP Packet Hash Code

A 20-byte hash code of the SNAP packet.

• PAYLOAD_LENGTH

The length of the SNAP static command.

Copyright  2003 FAIN Consortium May 2003
64

D7-Final Active Node Architecture and Design

6.3.7 System Architecture

DeMUX
DeMUX

SNAP EE

SNAP Activator
SNAP Activator

ASPE

SNAP Activator

SNAP Analyser

Communication Manager

Disgester

SNAP Encapsulator
(6)

SNAP De-Encapsulator
(9)

(2), (3)

(4)

(5)

(1
)

DeMUX

(7
)

(8
)

(10)

(13)

(11), (12)

(1
4)

Figure 6-8: Block Diagram for ANEP-SNAP Packet Flow

ANEP-SNAP packet flow: (1) SNAP Activator generates a SNAP packet; (2)&(3) the SNAP
Analyser determines the VE ID, EE ID, destination address, SNAP Packet ID and the SNAP static
command from the SNAP packet; (4) the Communication Manager uses the SNAP Packet ID as a
reference to extract the corresponding Security ID (SID) of this SNAP packet from its database, if no
SID is found then this SNAP packet will be treated as a fresh packet, as a result Option 4 will be set to
zero; (5) the Digester generates a hash code for this SNAP packet; (6) the SNAP Encapsulator
encapsulates the analysed SNAP packet (and its hash code) and its static command into ANEP Option
5 and the Payload field respectively, the SNAP Encapsulator then assigns the VE ID, EE ID,
destination address and the SID of this SNAP packet to Option 1 to 4 respectively.

When an ANEP-SNAP packet arrives at its next hop, (9) DeMUX dispatches the packet to the SNAP
De-Encapsulator (after successful security checks), the SNAP De-Encapsulator extracts the SNAP
packet (and its hash code) from Option 5; (10) the Digester calculates a hash code for the SNAP
packet, and matches this recently generated hash code with the hash code that is extracted from Option
5; if the two hash codes match then the packet’s integrity has not been compromised whilst the packet
was in-transit; (11)&(12) if the destination of the ANEP-SNAP packet is not local then the SNAP
Analyser will extract the SNAP packet ID and the Security ID from the SNAP packet and Option 4
respectively, (13) the Communication Manager keeps this ID-SID pair in its database, (the ID pair is
needed by the SNAP Encapsulator for ANEP-SNAP encapsulation - see step 4); (14) the SNAP De-
Encapsulator passes the SNAP packet to SNAP Activator. The same process is repeated at every
traversing node.

Copyright  2003 FAIN Consortium May 2003
65

D7-Final Active Node Architecture and Design

6.3.8 Conclusion
We have outlined in this section the underlying concepts and the fundamental requirements of SNAP
Activator and ASPE. The interceptor paradigm of SNAP Activator makes it an ideal application for
service control in FAIN active networks. However, as SNAP is designed to be a light-weight protocol
additional security measurements must be applied to SNAP systems before SNAP can be used as a
practical active packet language for service control among FAIN active routers. We have addressed
the needs to enforce hop-to-hop authentication as well as end-to-end authentication in active networks
due to the dynamic nature of SNAP active packets. Hop-to-hop authentication should be applied to the
dynamic data of active packets and is defined as: each recipient to authenticate the received active
packets based on where the packets were last modified; whereas end-to-end authentication should be
applied to the static data of active packets and is defined as: the recipient to authenticate the received
active packets based on the source’s identifiers on the packets. Digital signatures are used for
protecting the end-to-end authenticity of the static parts of active packets; whereas hop-to-hop
authenticity is enforced by integrity protection. The integrity and authenticity of SNAP packets are
protected by ASPE and Security Manager. We have described the architecture of SNAP Activator and
ASPE in this section, we have described the interaction between SNAP Activator and ASPE with
other FAIN components such as DeMUX and SEC by illustrating the data and control path between
each component.

Copyright  2003 FAIN Consortium May 2003
66

D7-Final Active Node Architecture and Design

7 CONCLUSIONS
The FAIN Active Node architecture introduced an entirely new concept; the combination and
coordination of different Execution Environments that represent different technologies which are then
used to host service components and interact with each other as part of the overall service operation.
This has been achieved through the definition of a reference model that combines EEs, VEs, and
service components.

In order to realise this reference model an object oriented management framework has been proposed
that provides a number of classes with methods that allows EEs to be deployed in VEs, in turn, service
components to be deployed and linked with existing services in EEs and exports control interfaces of
these components for their configuration. The operation of the EEs, and in turn of the services that
running in them, is regulated by the FAIN resource control framework based on the VE abstraction
which is used as a principal for accounting and resource allocation and partition. Moreover all the
operations take place in a secure environment that has been created based on the flexible FAIN
security architecture, which provides authentication, authorisation of the use of resources and
verification of packets.

The FAIN node architecture and its components have been implemented and a number of different
EEs residing in different operational planes and interworking with each other have been created the
functionality and mechanisms of which achieve the design goals. The JavaEE, residing in the
management plane, binds together all the FAIN node components as well as the other EEs. The
PromethOS EE, residing in the transport plane, acts as a high performance EE and supports
component-based architectures. Finally, we have created an Active SNMP that resides in the control
plane and is used to control the behaviour of services that may exist in other EEs.

All the aforementioned functionality has been deployed, evaluated and tested in the FAIN testbed by
means of a number of practical scenarios. The scenarios that originated from this workpackage were
the Diffserv scenario, the Video on Demand scenario and the Web Service Distribution scenario. Their
detailed description may be found in D9.

Copyright  2003 FAIN Consortium May 2003
67

D7-Final Active Node Architecture and Design

8 REFERENCES
[1] D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W. Jackson, Angelos D. Keromytis, Gary

J. Minden, and David Wetherall. Active network encapsulation protocol (anep). Active Network
Group draft, July 1997. http://www.cis.upenn.edu/~switchware/ANEP/.

[2] S. Denazis, T. Suzuki, T. Becker, D. Gabrielcic, A. Lazanakis et al., Revised Active Network
Architecture and Design,” FAIN Deliverable 4, May 2002

[3] D. X. Song, A. Perrig, “Advanced and Authenticated Marking Schemes for IP Traceback”,
INFOCOM 2001, Vol. 2, pp. 878-886.

[4] SNAP (Safe and Nimble Active Packets) http://www.cis.upenn.edu/~dsl/SNAP/

[5] S. Murphy, “Strong Security for Active Networks”, IEEE OpenArch 2001

[6] D. J. Wetherall, “ANTS: a toolkit for building and dynamically deploying network protocols”,
OpenArch 1998, San Francisco, CA, April 1998, pp.117-129, IEEE.

[7] M. Hicks, “A Secure PLAN”, IWAN 1999, July 1999, vol.1653

[8] D. Raz, “An Active Network Approach for Efficient Network Management” IWAN99, July 99,
http://www.cs.bell-labs.com/who/ABLE/

[9] Ch. Garbrecht, C. Klein, A. Galis et al., “Requirements Analysis & Overall AN Architecture”,
FAIN Deliverable 1, May 2001

[10] S. Blake, D. Black, M. Carlson et al., “An Architecture for Differentiated Services”, IETF RFC
2475, December 1998, http://www.ietf.org/rfc/rfc2475.txt

[11] Hitachi Internetworking, http://www.internetworking.hitachi.com

[12] B. Hubert et al., “Linux Advanced Routing & Traffic Control HOWTO”, http://lartc.org

[13] Object Management Group, “Common Object Request Broker Architecture”,
http://www.omg.org/technology/documents/corba_spec_catalog.htm

[14] Sun, http://java.sun.com

[15] Bert Hubert “Linux Advanced Routing & Traffic Control HOWTO”

[16] S. Floyd, V. Jacobson “Link-sharing and Resource Management Models for Packet Networks“
IEEE/ACM Transactions on Networking, Vol. 3 No. 4, August 1995

[17] D. Scott Alexander, Kostas G. Anagnostakis, William A. Arbaugh, Angelos D. Keromytis, and
Jonathan M. Smith. The price of safety in an active network. Technical Report Penn Technical
Report MS-CIS-99-04, University of Pennsylvania, February 1999.

[18] ITU-T X.509 (2000) | ISO/IEC 9594-8:2000 - information technology - open systems
interconnection -the directory: Public-key and attribute certificate frameworks. Final Draft
International Standard, June 2000.

[19] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis, and Jonathan M. Smith.
Security in active networks. In Secure Internet Programming: Issues in Distributed and Mobile
Object Systems, Lecture Notes in Computer Science State-of-the-Art. Springer-Verlag, 2000.

[20] Active Networks Security Working Group. Security Architecture for Active Nets, May 2001.

[21] Tim Stack, Eric Eide, and Jay Lepreau. Bees: A secure, resource-controlled, java-based execution
environment, December 2002.

[22] FAIN team. Active node architecture and design. FAIN Public Deliverable D2, May 2001.

[23] M. Wahl, T. Howes, and S. Kille. RFC 2251: Lightweight directory access protocol (v3).
Standards Track, December 1997.

Copyright  2003 FAIN Consortium May 2003
68

http://www.cis.upenn.edu/~switchware/ANEP/
http://www.cs.bell-labs.com/who/ABLE/
http://www.ietf.org/rfc/rfc2475.txt
http://www.internetworking.hitachi.com/
http://lartc.org/
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://java.sun.com/

D7-Final Active Node Architecture and Design

[24] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. RFC 2704: The
KeyNote trust-management system, version 2, September 1999.

[25] CERT. Multiple vulnerabilities in many implementations of the simple network management
protocol. Advisory CA-2002-03, February 2002.

[26] Dan Decasper, Guru Parulkar, Sumi Choi, John DeHart, Tilman Wolf, and Bernhard Plattner.
A scalable high performance active network node, October 1998.

[27] DoD Trusted computer system evaluation criteria. DoD Standard, December 1985.

[28] D. Eastlake and O. Gudmundsson. RFC2538:storing certificates in the domain name system
(dns). Standards Track, March 1999.

[29] Walter Eaves, Lawrence Cheng, Alex Galis, Thomas Becker, Toshiaki Suzuki, Spyros Denazis,
and Chiho Kitahara. SNAP based resource control for active networks. In IEEE GLOBECOM
2002 Proceedings, November 2002.

[30] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. RFC 2693: SPKI
certificate theory, September 1999. Network Working Group.

[31] Michael Hicks and Angelos D. Keromytis.A secure PLAN. In Proceedings of International
Workshop for Active Networks (IWAN) 1999, pages 307-314, June/July 1999.

[32] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication.
RFC2104, Informational, February 1997.

[33] Jonathan T. Moore, Michael Hicks, and Scott Nettles. Practical programmable packets. In
INFOCOM 2001 proceedings, April 2001.

[34] George Ciprian Necula. Compiling with proofs. PhD thesis, School of computer science, Carnegie
Mellon University, September 1998.

[35] Murphy S., Lewis E., Puga R., Watson R., and Yee R. Strong security for active networks. In
IEEE OPENARCH 2001 Proceedings, April 2001.

[36] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley
and Sons, Inc., second edition, 1996.

[37] R. Shirey. RFC 2828: Internet security glossary, May 2000. Internet Engineering Task Force.

[38] OpenSSL, http://www.openssl.org

[39] Broadcom based cryptographic accelerator, http://www.broadcom.com/products/5821.html

[40] L. Peterson et al., Active Network Working Group, NodeOS Interface Specification.

[41] FAIN Project Deliverables – www.ist-fain.org/deliverables

• D1-Requirements Analysis & Overall AN Architecture

• D2-Initial Active Network and Active Node Architecture

• D3-Initial Specification of Case Study Systems

• D4-Revised Active Network Architecture and Design

• D5-Specification of Revised Case Study Systems

• D6-Definition of evaluation criteria and plan for the trial

• D14-FAIN Overview

• D8-Final Specification of Case Study Systems

• D9-Evaluation Results and Recommendations

Copyright  2003 FAIN Consortium May 2003
69

http://www.openssl.org/
http://www.broadcom.com/products/5821.html

D7-Final Active Node Architecture and Design

• D40-FAIN Demonstrators and Scenarios

Copyright  2003 FAIN Consortium May 2003
70

D7-Final Active Node Architecture and Design

APPENDIX A

A.1 INTERFACE DEFINITIONS OF THE JAVA EXECUTION ENVIRONMENT
This chapter features definitions of the key interfaces (also known as CORBA ports) of the JAVA
execution environment. Since the JAVA execution environment is used to execute the node level
management layer it also exhibits the details of the component model.

A.1.1 Identification
All components are identified by a unique name. Further they get a security identifier, which is
mapped, to a particular context by the security manager. When a client wants to interact with a
component it first has to get access to the desired port and the client has to authenticate itself. This can
be done implicitly using certificate information from the underlying SSL layer or explicitly by
specifying the client’s identity and credentials.

// IDL
 typedef string tInstanceID;
 typedef sequence <tInstanceID> tInstanceIDList;
 typedef long long tSID;
 typedef sequence <octet> tOctetList;
 struct tCredential {
 string name;
 tOctetList key;
 };
 typedef sequence <tCredential> tCredentialList;
 typedef string tIdentityName;
 struct tIdentity {
 tIdentityName name;
 tCredentialList credentials;
 };

A.1.2 Properties
Components may have a number of properties representing their configuration. A property is a pair of
a name and a value.

// IDL
 typedef string tPropertyName;
 typedef sequence <tPropertyName> tPropertyNameList;
 struct tProperty {
 tPropertyName name;
 any value;
 };
 typedef sequence <tProperty> tPropertyList;

A.1.3 Ports
Components are accessed and interconnected by ports. Ports can be used for exchanging information
or to model this exchange. Ports are also useful to express dependencies among components. A port is
created when a client requests access to it. Thus, a component’s implementation can keep track of who
is accessing which port.

A port has an identifier valid in the context of the holding component as well as a reference to the
component itself. A port is described by its kind (i.e. actor or reactor), an address (i.e. the endpoint for
data exchange like an IP address, a memory address, an IOR, etc.), a format (i.e. the protocol used for
data exchange like IP, ATM, IIOP, HTTP, etc.), and a name.

Copyright  2003 FAIN Consortium May 2003
71

D7-Final Active Node Architecture and Design

// IDL
 typedef string tPortFormat;
 typedef string tPortType;
 typedef string tPortName;
 typedef string tPortID;
 typedef any tPortAddress;
 enum tPortKind {
 Actor,
 Reactor
 };
 struct tPortDescription {
 tPortKind kind;
 tPortFormat format;
 tPortType type;
 tPortName name;
 tPropertyList capabilities;
 };
 typedef sequence <tPortDescription> tPortDescriptionList;
 struct tPort {
 tPortID id;
 tInstanceID component;
 tPortAddress address;
 tPropertyList details;
 tPortDescription description;
 };
 typedef sequence <tPort> tPortList;

A.1.4 Interface iComponentInitial
At the initial port of a component its name, security identifier, and supported ports can be retrieved. In
order to get access to a port the client has to authenticate itself. There is also an operation to explicitly
end the usage of a port.

// IDL
 interface iComponentInitial {
 tInstanceID getID ();
 tSID getSID ();
 tPortDescriptionList getPortDescriptions (
 in tIdentity who
);
 tPort accessPort (
 in tPortName name,
 in tIdentity who
);
 tPort accessPortWithDetails (
 in tPortName name,
 in tIdentity who,
 in tPropertyList details
);
 void loosePort (
 in tPortID id,
 in tIdentity who
);
 };

Copyright  2003 FAIN Consortium May 2003
72

D7-Final Active Node Architecture and Design

A.1.5 Interface iConfiguration
A configurable component exposes a port for configuration issues. At this port it is possible to get and
set properties as well as to register for property observation. The name and owner of the component
can be set or retrieved.

Additionally, the ports of a component can be connected to other ports. Before connecting a port a
client has to get access to it. There are methods for getting previously access ports, for connecting and
disconnecting ports, and for getting ports connected to a specific port.

A component can be started and stopped. This is particularly useful for moving components: first stop
the component, then get the component's properties, delete the component, re-instantiate the
component at a different location, set the previously retrieved properties, and finally start the new
component.

// IDL
 interface iConfiguration {
 void init (
 in tInstanceID id,
 in tIdentity owner,
 in tPropertyList setup
);
 void addProperty (in tProperty property);
 void removeProperty (in string name);
 tProperty getProperty (in string name);
 tPropertyList getPropertyMatch (in string prefix);
 void changeProperty (in tProperty property);
 void addOrChangeProperty (in tProperty property);
 tPropertyList getState ();
 void setState (in tPropertyList properties);
 void registerPropertyObserver (
 in iConfigurationObserver observer,
 in tPropertyNameList names
);
 void deregisterPropertyObserver (
 in iConfigurationObserver observer,
 in tPropertyNameList names
);
 void suspend ();
 void resume ();
 boolean isSuspended ();
 void setID (in tInstanceID id);
 void setOwner (in tIdentity owner);
 tIdentity getOwner ();
 tPortList getPorts ();
 tPort getPortByName (in tPortName name);
 tPortList getConnectedPorts (
 in tPortID port
);
 void connectPort (
 in tPortID origin,
 in tPort target
);
 void disconnectPort (
 in tPortID origin,
 in tPort target
);

Copyright  2003 FAIN Consortium May 2003
73

D7-Final Active Node Architecture and Design

 };

A.1.6 Interface iConfigurationObserver
The configuration of a component may be observed by interested clients. An observer has to
implement call-back operations in order to get notifications about changes of specific properties or the
set of properties as a whole. The call-back interface can be registered at the respective component.

// IDL
 interface iConfigurationObserver {
 oneway void propertyChanged (
 in tProperty old,
 in tProperty new
);
 oneway void propertyAdded (in tProperty new);
 oneway void propertyRemoved (in tProperty old);
 };

A.1.7 Interface iTemplateManager
A template manager manages templates (e.g. JAVA classes, object files, etc.) for component
instances. This comprises the installation, removal, and updating of templates. A template manager is
implemented by a virtual environment representing a specific service provider or by an execution
environment. A special template manager is implemented by the privileged virtual environment
representing the node provider.

When installing a new template on a node a list of properties describing the template has to be
provided. The description contains:

o the identifier of the virtual environment in which the service should be installed, i.e.
the identity of the according provider,

o the identifier of the execution environment type in which the service should be
installed,

o the path to the code archive,

o the entry point of the component manager acting as a factory for instances of the
installed template, and

o more service specific information to be used by the component manager.

The template manager will instantiate the component manager and initialise it with the given property
list. The component manager can now use an execution environment specific API to reflect the
installation inside the execution environment. As a result of the installation procedure a name
identifying the template will be returned. This name can be used to get the reference to the respective
component manager in order to create instances of the service. Further, there is an operation to get the
template's description given the template's name.

When a template is uninstalled the corresponding component manager has to be destroyed. It is
specific to the service whether running component instances are destroyed, too. When a template is
updated the corresponding component manager has to be re-instantiated. Whether this affects running
component instances is again service specific.

// IDL
 typedef string tTemplateLocation;
 typedef string tTemplateID;
 typedef sequence <tTemplateID> tTemplateIDList;
 struct tTemplateDescription {
 string name;
 string version;

Copyright  2003 FAIN Consortium May 2003
74

D7-Final Active Node Architecture and Design

 string mainClassName;
 string mainCodePath;
 string eeIdentifier;
 string vnIdentifier;
 tPropertyList properties;
 };
 typedef sequence <tTemplateDescription>
 tTemplateDescriptionList;
 interface iTemplateManager {
 tTemplateID install (in tTemplateDescription description);
 tTemplateID installSetOwner (
 in tTemplateDescription description,
 in tIdentity owner
);
 void deinstall (in tTemplateID id);
 string getReference (in tTemplateID id);
 iComponentManager getManager (in tTemplateID id);
 iComponentInitial getManagerInitial (in tTemplateID id);
 tTemplateDescriptionList getDescriptions ();
 tTemplateDescription describe (in tTemplateID id);
 tTemplateIDList findByDescription (
 in tTemplateDescription description
);
 void update (
 in tTemplateID id,
 in tTemplateDescription description
);
 };

A.1.8 Interface iComponentManager
A component manager is used to manage instances of components. This comprises the creation,
activation, discovery, deactivation, deletion, and update of instances. For the creation of an instance a
resource profile has to be specified. This profile defines the instance’s resource requirements and is
used by the manager to check the availability of resources.

When resources are available and an instance was created it may be activated. During activation the
instance will be initialised by the component manager. The owner will be set to the identity of the
caller as determined during authentication. The name and setup properties are passed on to the created
component. The component will initially be in stopped state.

Updating is useful if a new template was installed. During an update a component will be stopped and
its state as represented by its properties will be saved. Then a new instance will be created from the
updated template, initialized with the previously saved properties, and finally started.

// IDL
 struct tComponent {
 tInstanceID id;
 iComponentInitial initial;
 };
 typedef sequence <tComponent> tComponentList;
 interface iComponentManager {
 tInstanceID createInstance (in tPropertyList profile);
 tInstanceID createInstanceSetOwner (
 in tPropertyList profile,
 in tIdentity owner
);

Copyright  2003 FAIN Consortium May 2003
75

D7-Final Active Node Architecture and Design

 void deleteInstance (in tInstanceID id);
 void activateInstance (
 in tInstanceID id,
 in tPropertyList setup
);
 void deactivateInstance (in tInstanceID id);
 tPropertyList dumpInstance (in tInstanceID id);
 void suspendInstance (in tInstanceID id);
 void resumeInstance (in tInstanceID id);
 boolean isInstanceSuspended (in tInstanceID id);
 string getInstanceReference (in tInstanceID id);
 iComponentInitial getInstanceInitial (in tInstanceID id);
 tComponentList getInstances ();
 tComponentList getInstancesByOwner (in tIdentity owner);
 void updateInstances (in tInstanceIDList ids);
 void updateAllInstances ();
 };

A.1.9 Interface iResourceManager
A resource may have different dimensions (e.g. CPU time and memory for processing) and there may
be multiple units for a particular dimension (e.g. kilobytes, megabytes, etc.). The usage of a resource is
expressed as a sequence of triplets including the dimension, the unit, and the actual value.

A resource manager is a special component manager. It creates and deletes resources, i.e. instances
with associated resource quotas. In general it is possible that resources offer specific ports, e.g. a file
resource could offer operations for reading and writing. However, there may be resources without any
port, in this case the resource manager just manages names and returns a null reference as initial
interface in the resource's component description.

Resource managers additionally provide operations for getting the supported dimensions and units as
well as for converting between units. When a resource is created properties are used to define the
desired resource quotas. The quota supported parameters are specific to the managed resource and part
of the specification of a resource manager.

// IDL
 typedef string tUnit;
 typedef sequence <tUnit> tUnitList;
 typedef string tDimensionName;
 typedef sequence <tDimensionName> tDimensionNameList;
 struct tDimension {
 tDimensionName name;
 tUnitList units;
 };
 typedef sequence <tDimension> tDimensionList;
 struct tUsage {
 tDimensionName dimension;
 tUnit unit;
 double value;
 };
 typedef sequence <tUsage> tUsageList;
 interface iResourceManager : iComponentManager {
 tUnitList getUnits (in tDimensionName name);
 tDimensionNameList getDimensionNames ();
 tDimensionList getDimensions ();
 tUsage convert (in tUsage usage, in tUnit newUnit);
 };

Copyright  2003 FAIN Consortium May 2003
76

D7-Final Active Node Architecture and Design

A.1.10 Interface iResourceMonitor
A resource manager may offer a port for monitoring created resources and the overall availability of
the managed resource. Monitoring can be done by polling or by registering a call-back interface for
getting notifications when a threshold is reached.

A previously created resource can be monitored by specifying the resource's name. A special name is
supported to represent the amount of unused managed resources. There are upper and lower
thresholds, which will raise a notification when reached from below or above, respectively. A
hysteresis value can be specified to prevent unwanted flooding with notifications when the usage is
varying around the threshold. For upper thresholds a notification will only be sent when the current
value dropped below the mark minus the hysteresis value and raised again above the mark. For lower
thresholds a notification will only be sent when the current value raised above the mark plus the
hysteresis value and dropped again below the mark.

// IDL
 typedef string tThresholdID;
 interface iResourceMonitor {
 tInstanceID getRemainderID ();
 tUsageList getCurrentUsage (
 in tInstanceID resource,
 in tDimensionNameList dimensions
);
 tThresholdID addUpperThreshold (
 in tInstanceID resource,
 in tUsage mark,
 in double hysteresis,
 in iResourceObserver observer
);
 tThresholdID addLowerThreshold (
 in tInstanceID resource,
 in tUsage mark,
 in double hysteresis,
 in iResourceObserver observer
);
 void adjustThreshold (
 in tThresholdID thresholdID,
 in double mark,
 in double hysteresis
);
 void deleteThreshold (in tThresholdID thresholdID);
 };

A.1.11 Interface iResourceObserver
Clients may have interest in the current usage of a resource. To get a notification when a previously
defined threshold was reached the client can implement a call-back port.

// IDL
 interface iResourceObserver {
 oneway void upperThresholdReached (
 in tThresholdID threshold,
 in tInstanceID resource,
 in tUsage currentUsage
);
 oneway void lowerThresholdReached (
 in tThresholdID threshold,
 in tInstanceID resource,

Copyright  2003 FAIN Consortium May 2003
77

D7-Final Active Node Architecture and Design

 in tUsage currentUsage
);
 };

A.1.12 Interface iMonitoredResourceManager
The manager for monitored resources combines the functionality of the resource management and
monitoring ports without defining any new operations.

// IDL
 interface iMonitoredResourceManager :
 iResourceManager,
 iResourceMonitor
 { };

A.1.13 Interface iVirtualEnvironmentManager
A manager for virtual environments is a special resource manager and is used to create and destroy
virtual environments (VEs). When a VE is created the associated resources have to be specified. This
may include a demultiplexer channel to which service component instances inside the VE can be
connected later. The VE manager has to ensure that the resources consumed by components assigned
to the VE (via their owner) will not exceed the overall VE quota.

The VE manager offers an operation for retrieving a VE based on its virtual network identifier. This
identifier is specified in the initial setup during the creation of a VE and is used to determine to which
virtual network a VE belongs. Further, there is an operation for making other resource managers
known to the VE manager.

// IDL
 interface iVirtualEnvironmentManager :
 iMonitoredResourceManager
 {
 tComponent getInstanceByVirtualNetworkID (in string ID);
 void attachManager (
 in tTemplateDescription description,
 in iComponentInitial initial
);
 void detachManager (in tTemplateDescription manager);
 };

A.2 IMPLEMENTATION OF PROMETHOS
PromethOS is implemented under Linux 2.4. The source code can be found on ftp://ftp.kernel.org or
one of its mirrors. We apply the patches as required for kernel pre-emption. These patches can be
found on http://www.tech9.net/rml/linux.

In the remainder of this section, we introduce the programming concepts as required for programming
PromethOS plugins. We start with an introduction to the framework and highlight the issues that need
to be addressed for programming a plugins. However, for sake of simplicity we restrict the exemplary
explanation to IPv4.

A.2.1 PromethOS Netfilter-Table: iptables_promethos.c
The PromethOS table is defined in the file linux/net/ipv4/netfilter/iptables_promethos.c. Hereafter, we
explain the details of this table.

PromethOS has been implemented as a Linux Kernel Module. Thus, the module provides the standard
interface to loading Linux kernel modules, i.e. module_init(init) and
module_exit(fini), where init and fini identify the respective functions defined in the

Copyright  2003 FAIN Consortium May 2003
78

D7-Final Active Node Architecture and Design

PromethOS table-module. At initialisation-time of the kernel module, the function init() is called,
while at removal-time, the function fini() is called. Thus, the following explanations refer to code
implemented in the init() or fini() functions.

In init(), PromethOS needs to register its table at every Netfilter hook. This is required such that
filters within the PromethOS table may evaluate packets at every hook-location of the path. The
following statement in the file gives the definition of the hook-registration.

#define PROMETHOS_VALID_HOOKS \
 ((1 << NF_IP_PRE_ROUTING) | \
 (1 << NF_IP_POST_ROUTING) | \
 (1 << NF_IP_LOCAL_IN) | \
 (1 << NF_IP_FORWARD) | \
 (1 << NF_IP_LOCAL_OUT)

In this statement, we define five hooks where the PromethOS table needs to register itself. The hooks
themselves (NF_IP_PRE_ROUTING, NF_IP_POST_ROUTING, NF_IP_LOCAL_IN,
NF_IP_FORWARD, NF_IP_LOCAL_OUT) are defined in the appropriate include-file of Netfilter.

The interface for the registration of the PromethOS Netfilter-table takes place by launching a
predefined function call:

ipt_register_table(&packet_promethos);

This call should be self-explanatory. However, we explain the structure in more detail hereafter:

struct ipt_table packet_promethos = {
 { NULL, NULL },
 “promethos”,
 &initial_table.repl,
 PROMETHOS_VALID_HOOKS,
 RW_LOCK_UNLOCKED,
 NULL };

This structure defines all information Netfilter requires for a new table. It defines the name of the
table, the valid hooks – here; they are specified by PROMETHOS_VALID_HOOKS – as well as the
initial state of the PromethOS table by specifying a pointer to the appropriate data structure
(&initial_table.repl). ipt_register_table() is called in the init() function of the
PromethOS.

Once the table has been registered, each hook needs to be specified. This specification (provided next)
specifies the hooks, the hook priorities and the functions to be called. Besides that, the protocol needs
to be specified as well.

struct nf_hook_ops ipt_opts[] = {
{{ NULL, NULL }, ipt_hook, PF_INET, NF_IP_PRE_ROUTING,
NF_IP_PRI_PROMETHOS },
{{ NULL, NULL }, ipt_hook, PF_INET, NF_IP_POST_ROUTING,
NF_IP_PRI_PROMETHOS },
{{ NULL, NULL }, ipt_hook, PF_INET, NF_IP_FORWARD,
NF_IP_PRI_PROMETHOS },
{{ NULL, NULL }, ipt_hook, PF_INET, NF_IP_LOCAL_IN,
NF_IP_PRI_PROMETHOS },
{{ NULL, NULL }, ipt_hook, PF_INET, NF_IP_LOCAL_OUT,
NF_IP_PRI_PROMETHOS } };

In this structure, ipt_hook specifies the function to be called, PF_INET defines the protocol
family, NF_IP_PRE_ROUTING, NF_IP_POST_ROUTING, NF_IP_FORWARD,
NF_IP_LOCAL_IN and NF_IP_LOCAL_OUT define the hooks and NF_IP_PRI_PROMETHOS

Copyright  2003 FAIN Consortium May 2003
79

D7-Final Active Node Architecture and Design

specifies the hook priority. In the init() function of PromethOS, this structure is used to register
the function ipt_hook() at the appropriate hooks by launching the call to
nf_register_hook(&ipt_ops);.

Arriving packets are processed in the function ipt_hook(). In this function, the packet is
dispatched to the tables by launching the function call ipt_do_table(). This function sends the
packet to the appropriate target. We quote the function from the source code, which is self-
explanatory.

static unsigned int ipt_hook(unsigned int hook,
 struct sk_buff **pskb,
 const struct net_device *in,
 const struct net_device *out,
 int (*oknf)(struct sk_buff *))
{
 return ipt_do_table(pskb, hook, in, out, &packet_promethos,
 NULL);
}

In the fini() function, the hooks need to be unregistered; the following code fragment carries out
this action:

for (I = 0; I < sizeof(ipt_ops)/sizeof(struct nf_hook_ops); i++)
 nf_unregister_table(&ipt_ops[i]);
ipt_unregister_table(&packet_promethos);

We assume this code fragment would be self-explanatory.

A.2.2 PromethOS Netfilter-Target: ipt_PROMETHOS.c
The PromethOS target is implemented in file linux/net/ipv4/netfilter/ipt_PROMETHOS.c. Hereafter,
we explain the important issues.

The PromethOS Netfilter-target is implemented as a Linux kernel module. So, the standard interfaces
for modules must be followed. We do not explain them explicitly but focus on the implementation
aspects.

PromethOS provides two macro definitions (promethos_init(), promethos_exit()), which
are used by every PromethOS plugin to register itself. Internally, these macros are resolved to
promethos_register() and promethos_unregister(). These functions are used for
internal registration in the framework of PromethOS. They provide the following interface:

unsigned int promethos_register(char *promethosp,
 promethos_target_func_t t,
 promethos_config_func_t c,
 promethos_config_func_t rc,
 promethos_print_func_t p);

unsigned int promethos_unregister(char *promethosp);

The parameters are defined as follows:

• promethosp : provides the name of the plugin

• t : specifies the target function to be called for every packet

• c : identifies the configuration function that is called at initialisation time of a plugin

• rc : specifies the re-configuration function that is called when the user submits a re-
configuration request by the /proc-filesystem interface.

Copyright  2003 FAIN Consortium May 2003
80

D7-Final Active Node Architecture and Design

• p : identifies the print function. This function is called when the user requests the plugin to
report its current, gathered information via the /proc-filesystem.

For performance reasons, PromethOS dispatches packets to PromethOS plugins identified by the
mechanisms of a hash functions (ghash.h of Linux, which usually needs some patches applied as
distributed together with PromethOS). Two separate hash tables are implemented:

static struct target_table promethos_table;
static struct instance_table promethosi_table;

The corresponding structures are imported from the include file ipt_PROMETHOS.h which in turn
uses the definitions provided by ghash.h. These two hash tables are used to locate the PromethOS
plugins according to their name (promethos_table), or according to their instance number
(promethosi_table) respectively. The instance number of a PromethOS plugin is known only
after the call to the function checkfonfig(), a function that controls for proper initialisation of the
PromethOS plugins. This function is called at load-time of the PromethOS plugin. It launches the
PromethOS-config function.

A.2.3 Plugin Implementation
A framework should ease the development of components running within a framework. Therefore,
emphasize was put on the clear and simple interface specification for PromethOS plugins.

A PromethOS plugin is requested only to include the appropriate PromethOS header file, and to
provide the following functions; they are explained in great detail afterwards:

• load()

• unload()

• target()

• config()

• reconfig()

• print()

A.2.3.1 load()
The load function of a plugin is provided such that additional initialisation may be carried out. This
function is run exactly once during load-time of the PromethOS plugin. So, it is appropriate for
plugin-global initialisation issues if required.

A.2.3.2 unload ()
The unload function is called during the removal of a PromethOS plugin. It may be used for the
release of plugin-global resources for example.

A.2.3.3 target()
The target function is called for every packet of a flow. So it is called if a flow specification matches
internally to the PromethOS table. To this function, the complete information is passed that
accompanies a packet kernel internally. Thus, the function may evaluate or modify according to its
own requirements.

A.2.3.4 config()
The config function is called for every plugin instance creation together with the respective
configuration string. This configuration information is passed either by the /proc-filesystem

Copyright  2003 FAIN Consortium May 2003
81

D7-Final Active Node Architecture and Design

interface or by iptables.

A.2.3.5 reconfig()
The reconfig function is called every time a user process writes into the management interface
provided by the /proc-filesystem. By this function, run-time re-configuration of a PromethOS plugin
can be carried out. PromethOS passes the complete string of information as specified to the /proc-
filesystem interface to the reconfig function. The reconfig function may be used further for reporting
statistical information per instance.

A.2.3.6 print()
The print function is used to report data per plugin. This function is the only optional one, i.e. instead
of this function; a predefined value may be specified to initialisation interface of PromethOS. This
function can be used to report all information of a plugin by a single call.

Copyright  2003 FAIN Consortium May 2003
82

D7-Final Active Node Architecture and Design

A.2.4 Example Plugin Explained
Hereafter, we explain an exemplary implementation of a dummy plugin. However, we restrict the
explanation to the points not mentioned previously.

#include <linux/netfilter_ipv4/promethos.h>
static int __init load()
{
 /* do some plugin initialisation stuff */
 return 0;
}

static void __exit unload()
{
 /* do plugin cleanup */
}
unsigned int promethos_dummy_target(struct sk_buff *pskb,
 unsigned int hooknum,
 const struct net_device *in,

const struct net_device *out,
unsigned long instance)

{
 /* process the packet */
 return IPT_CONTINUE;
}

The target function is called for every packet that the dispatcher sends to the plugin instance. It is the
target function that decides how the Netfilter framework should proceed with the packet. The
following return values are possible:

IPT_CONTINUE Continue processing the packet along the chain of configured plugins

NF_ACCEPT Accept the packet for further processing on the next layer

NF_DROP Refuse the packet from further processing

NF_STOLEN Declare the packet as plugin internally consumed

NF_QUEUE Make Netfilter enqueue the packet for user space

NF_REPEAT Repeat the actual hook.

unsigned int promethos_dummy_config(const char *config, unsigned long instance)
{
 /* do something */
 return 1;
}

The parameter config contains the string as specified by the user process. The instance
identifies each instance of a plugin.

unsigned int promethos_dummy_reconfig(const char *config,
 unsigned long instance)
{
 /* do something */
 return 1;
}

unsigned int promethos_dummy_print(unsigned long instance,
 char *buffer,
 long bufferlength)
{
 /* fill buffer and return buffer length consumed */
 return 1;
}

Copyright  2003 FAIN Consortium May 2003
83

D7-Final Active Node Architecture and Design

The print function is called every time PromethOS requests the plugin to report internal state
information. A pre-allocated buffer is passed to the plugin. The parameter bufferlength
specifies the size of the buffer.

promethos_init(“DUMMY”,
 load,
 promethos_dummy_target,
 promethos_dummy_config,
 promethos_dummy_reconfig,
 promethos_dummy_print);
promethos_exit(unload);

The promethos_init() and promethos_exit() specify the interfaces as required for
registration of a plugin. As introduced previously, they are both defined as macros in the header file.

A.2.5 The PromethOS User Space Library
The PromethOS User Space Library encapsulates the complexity for programming and configuring the
PromethOS framework. It is used within FAIN to integrate the PromethOS framework with the VEM.
In table Interface Definition 1, the full interface definition of the PromethOS User Space
Library is provided.
#ifndef _PROMETHOS_LIB_H_
#define _PROMETHOS_LIB_H_

#include "promethos_lib_defs.h"

struct co_specification_s
{
 unsigned int no_out_ports; /* No. of output ports available */
 boolean ctrl_port_exported; /* TRUE if the component exports a ctrl intf. */
 char config[LOCAL_SIZE + 1]; /* initial configuration string as required for
 PromethOS plugins */
};

typedef struct ve_descriptor_s ve_descriptor_t; /* VE : Virtual Environment */
typedef struct ee_descriptor_s ee_descriptor_t; /* EE : Execution Environment */
typedef struct co_descriptor_s co_descriptor_t; /* CO : Component */
typedef struct co_specification_s co_specification_t;

typedef struct demuxSpec_s demuxSpec_t; /* Additional specification of
 demultiplexing criteria if
 FAIN had any; -> not yet
 implemented! */

typedef struct resource_descriptor_s resource_descriptor_t;

#ifdef _PROMETHOS_LIB_C_
#include "promethos_lib_ve.h"
#include "promethos_lib_ee.h"
#include "promethos_lib_co.h"
#endif /* _PROMETHOS_LIB_C_ */

/* IP Hooks */
/* They are taken from include/linux/netfilter_ipv4.h */
/* They should be directly included from there!!!! */

/* After promisc drops, checksum checks. */
#define NF_IP_PRE_ROUTING 0
/* If the packet is destined for this box. */
#define NF_IP_LOCAL_IN 1
/* If the packet is destined for another interface. */
#define NF_IP_FORWARD 2
/* Packets coming from a local process. */
#define NF_IP_LOCAL_OUT 3
/* Packets about to hit the wire. */
#define NF_IP_POST_ROUTING 4
#define NF_IP_NUMHOOKS 5

#define ANYHOST -1U

Copyright  2003 FAIN Consortium May 2003
84

D7-Final Active Node Architecture and Design

#define ANYPORT -1U

typedef enum hook_descriptor_e
{
 PREROUTING = NF_IP_PRE_ROUTING,
 LOCAL_IN = NF_IP_LOCAL_IN,
 FORWARD = NF_IP_FORWARD,
 LOCAL_OUT = NF_IP_LOCAL_OUT,
 POSTROUTING = NF_IP_POST_ROUTING
} hook_descriptor_t;

ve_descriptor_t *createVE(void);

ee_descriptor_t *createEE(ve_descriptor_t *VE);

co_descriptor_t *createCO(
 ee_descriptor_t *EE, /* EE the new component should belong to */
 char *componentName, /* component to load, only plugin name, e.g WV
 for the promethos_WV plugin */
 co_specification_t *co_spec); /* component specification */

pi_error_t deleteVE(ve_descriptor_t *VE);
pi_error_t deleteEE(ee_descriptor_t *EE);
pi_error_t deleteCO(co_descriptor_t *CO);

pi_error_t demuxCO(
 co_descriptor_t *CO, /* component for which the demux
 * Condition must be met */
 char *inputInterface,
 char *sourcePort,
 char *sourceIP,
 char *outputInterface,
 char *destinationPort,
 char *destinationIP,
 char *protocol,
 demuxSpec_t *additionalDemux
);

pi_error_t demuxEE(
 ee_descriptor_t *EE, /* EE for which the demux
 * Condition must be met */
 hook_descriptor_t hook, /* to which hook to attach to */
 char *inputInterface,
 char *sourcePort,
 char *sourceIP,
 char *outputInterface,
 char *destinationPort,
 char *destinationIP,
 char *protocol,
 demuxSpec_t *additionalDemux
);

pi_error_t addPort(
 co_descriptor_t *connect_to, /* component to connect to */
 co_descriptor_t *to_connect, /* component to connect */
 int portNo); /* output port No. of connect_to */

pi_error_t delPort(
 co_descriptor_t *co, /* component to acct on */
 int portNo); /* output port to free */

pi_error_t setmemLimits(ve_descriptor_t *VE, /* Memory */
 limit_t *limit_min, limit_t *limit_max);

pi_error_t setcpuLimits(ve_descriptor_t *VE, /* Processor Cycles */
 limit_t *limit_min, limit_t *limit_max);

pi_error_t setb_wLimits(ve_descriptor_t *VE, /* Bandwidth */
 limit_t *limit_min, limit_t *limit_max);

pi_error_t getmemLimits(ve_descriptor_t *VE, /* available Memory left */
 limit_t *limit);

pi_error_t getcpuLimits(ve_descriptor_t *VE, /* available Processor Cycles left */
 limit_t *limit);

Copyright  2003 FAIN Consortium May 2003
85

D7-Final Active Node Architecture and Design

pi_error_t getb_wLimits(ve_descriptor_t *VE, /* available Bandwidth left */
 limit_t *limit);

#endif /* _PROMETHOS_LIB_H_ */

Interface Definition 1: PromethOS User Space Library

The PromethOS User Space Library is compiled and linked into a standalone library. It can be used to
connect an arbitrary application to the PromethOS framework provided that this language supports a
C-linking style.

struct co_specification_s
{
 unsigned int no_out_ports; /* No. of output ports available */
 boolean ctrl_port_exported; /* TRUE if the component exports a ctrl intf. */
 char config[LOCAL_SIZE + 1]; /* initial configuration string as required for
 PromethOS plugins */
};

Every PromethOS plugin consists of a single input port and a specified number of output ports, which
could be infinite theoretically. Co_specification_s represents the component specification. The values
must be specified before a single component gets instantiated.
typedef struct ve_descriptor_s ve_descriptor_t; /* VE : Virtual Environment */
typedef struct ee_descriptor_s ee_descriptor_t; /* EE : Execution Environment */
typedef struct co_descriptor_s co_descriptor_t; /* CO : Component */
typedef struct co_specification_s co_specification_t;

typedef struct demuxSpec_s demuxSpec_t; /* Additional specification of
 demultiplexing criteria if
 FAIN had any; -> not yet
 implemented! */

typedef struct resource_descriptor_s resource_descriptor_t;

The data structures defined above represent opaque data types to the user of the PromethOS User
Space Library. Internally, they are used for the objects mentioned in the associated comments. These
data structures are used as arguments and results mentioned in the methods described next. They have
been implemented as opaque data types to the user such that only pre-defined interfaces may be used.

/* IP Hooks */
/* They are taken from include/linux/netfilter_ipv4.h */
/* They should be directly included from there!!!! */

/* After promisc drops, checksum checks. */
#define NF_IP_PRE_ROUTING 0
/* If the packet is destined for this box. */
#define NF_IP_LOCAL_IN 1
/* If the packet is destined for another interface. */
#define NF_IP_FORWARD 2
/* Packets coming from a local process. */
#define NF_IP_LOCAL_OUT 3
/* Packets about to hit the wire. */
#define NF_IP_POST_ROUTING 4
#define NF_IP_NUMHOOKS 5

#define ANYHOST -1U

#define ANYPORT -1U

typedef enum hook_descriptor_e
{
 PREROUTING = NF_IP_PRE_ROUTING,
 LOCAL_IN = NF_IP_LOCAL_IN,
 FORWARD = NF_IP_FORWARD,
 LOCAL_OUT = NF_IP_LOCAL_OUT,

Copyright  2003 FAIN Consortium May 2003
86

D7-Final Active Node Architecture and Design

 POSTROUTING = NF_IP_POST_ROUTING
} hook_descriptor_t;

The constant values used in the PromethOS User Space Library interface definition are based on those
defined in the netfilter framework. For simplicity reasons, they have been redefined in this interface
definition file.

In the PromethOS User Space Library, of major importance is the data structure describing the hook
(hook_descriptor_t) where the PromethOS EEs must be attached to. The specification of the hook
according to hook_descriptor_t (PREROUTING, LOCAL_IN, FORWARD, LOCAL_OUT,
POSTROUTING) corresponds to the hooks as shown in Figure 6-2. The hook_descriptor_t is used for
the specification where a PromethOS EE should be hooked to in the method demuxEE() as explained
below.
ve_descriptor_t *createVE(void);

A virtual environment (VE) is instantiated internally to PromethOS. The data structure representing
the VE is returned in case of success. Otherwise, NULL is returned.

ee_descriptor_t *createEE(ve_descriptor_t *VE);

Within a VE, PromethOS EEs are instantiated by calling createEE. As an argument, the previously
instantiated VE must be provided. On success, the EE-object is returned.

co_descriptor_t *createCO(
 ee_descriptor_t *EE, /* EE the new component should belong to */
 char *componentName, /* component to load, only plugin name, e.g WV for
 the promethos_WV plugin */
 co_specification_t *co_spec); /* component specification */

The createCO() method loads, if required, and instantiates the specified component (PromethOS
plugin) within EE that is provided as an argument to the method. By the componentName argument,
the PromethOS plugin to load is specified. Note that only the plugin name and not the file name must
be specified. The component specification (co_spec) is used by this method for defining the facilities
the PromethOS plugin provides. On success, the method returns the instantiated component, i.e. the
object representing the instantiated component.

pi_error_t deleteVE(ve_descriptor_t *VE);
pi_error_t deleteEE(ee_descriptor_t *EE);
pi_error_t deleteCO(co_descriptor_t *CO);

By the methods deleteVE(), deleteEE() and deleteCO() the VE, the EE and the component (CO) as
specified by the arguments are deleted and removed, if appropriate. Error codes are reported if
removal fails. If objects still contain components or execution environments, they are removed by
these methods.

pi_error_t demuxCO(
 co_descriptor_t *CO, /* component for which the demux
 * Condition must be met */
 char *inputInterface,
 char *sourcePort,
 char *sourceIP,
 char *outputInterface,
 char *destinationPort,
 char *destinationIP,
 char *protocol,
 demuxSpec_t *additionalDemux
);

By the method demuxCO(), fine granular demultiplexing methods can be specified per component.

Copyright  2003 FAIN Consortium May 2003
87

D7-Final Active Node Architecture and Design

The method expects the previously instantiated component objects as the first argument. By the next
seven arguments, the demultiplexing is specified according to the notion expected by the iptables tool.
The argument additionalDemux is not used currently. Is defined for future, internal demultiplexing.
For example the FAIN ANEP header-Flag could be specified there. Results are signaled by the return
value.
pi_error_t demuxEE(
 ee_descriptor_t *EE, /* EE for which the demux
 * Condition must be met */
 hook_descriptor_t hook, /* to which hook to attach to */
 char *inputInterface,
 char *sourcePort,
 char *sourceIP,
 char *outputInterface,
 char *destinationPort,
 char *destinationIP,
 char *protocol,
 demuxSpec_t *additionalDemux
);

By the method demuxEE(), the previously instantiated EE is first attached to a hook of the Netfilter
framework, and the demultiplexing for data flows to be directed to that EE is specified. The
arguments are identical to those explained for demuxCO() (see above).
pi_error_t addPort(
 co_descriptor_t *connect_to, /* component to connect to */
 co_descriptor_t *to_connect, /* component to connect */
 int portNo); /* output port No. of connect_to */

pi_error_t delPort(
 co_descriptor_t *co, /* component to acct on */
 int portNo); /* output port to free */

By the method addPort(), components are interconnected. The component specified by to_connect is
connected to the one specified by connect_to. As a third argument, the port number (portNo) used by
the output port is specified. Results are signaled by the return value. By the method delPort(),
component interconnections are removed. The component from which the outbound connection to the
next component is specified by co, the output port number to remove the connection from by portNo.
Results are signaled by the return value of the method.
pi_error_t setmemLimits(ve_descriptor_t *VE, /* Memory */
 limit_t *limit_min, limit_t *limit_max);

pi_error_t setcpuLimits(ve_descriptor_t *VE, /* Processor Cycles */
 limit_t *limit_min, limit_t *limit_max);

pi_error_t setb_wLimits(ve_descriptor_t *VE, /* Bandwidth */
 limit_t *limit_min, limit_t *limit_max);

pi_error_t getmemLimits(ve_descriptor_t *VE, /* available Memory left */
 limit_t *limit);

pi_error_t getcpuLimits(ve_descriptor_t *VE, /* available Processor Cycles left */
 limit_t *limit);

pi_error_t getb_wLimits(ve_descriptor_t *VE, /* available Bandwidth left */
 limit_t *limit);

Per VE, the constraints can be set for consumption of memory, cpu-cycle and network-bandwidth by
the set-methods. A credit system is used. The unused credits can be retrieved by the get-methods.

A.2.6 Example Use of PromethOS Plugin Framework
To give the reader a feel for the simplicity and elegance with which plugins can be put into operation,
we illustrate the commands necessary to load and configure a WaveVideo [17] plugin performing
video scaling. Note that these commands can be executed at any time, even when network traffic is
transiting through the system. As mentioned above, we use a PromethOS-enhanced iptables program

Copyright  2003 FAIN Consortium May 2003
88

D7-Final Active Node Architecture and Design

that interacts with the iptables framework. In the extension of iptables, we implement calls to the
insmod program, which serves as the primary tool to install Linux kernel modules.

- Loading and registering plugin:

 # iptables -t promethos -A PREROUTING -p UDP -s 129.132.66.115\

 --dport 6060 -j PROMETHOS --plugin WV --autoinstance –-config \
65536

This command adds a filter specification to the PromethOS plugin framework, requesting to install
the WV plugin at the PREROUTING hook, and creating an instance of this plugin to perform video
scaling at 65536 Byte/s. If the plugin framework is not yet loaded, the module dependency resolution
of Linux installs it on demand.

1. Upon successful completion of the plugin loading and instantiation, the plugin framework
reports the plugin instance number:

PromethOS plugin instance is 1

2. By this instance number, the plugin control port can be accessed:

 # echo '#1' 131072 > /proc/promethos/net/management

This reconfigures the WV plugin to scale the video to a maximum output of 131072 Byte/s.

3. The configuration of the PromethOS table can be retrieved with iptables:

 # iptables -t promethos -L

 Chain PREROUTING (policy ACCEPT)

 target prot opt source destination

 PROMETHOS udp -- 129.132.66.115 anywhere udp dpt:6060 WV#1

4. The plugin and the framework may be removed from the kernel by the standard mechanisms
provided by iptables and the Linux kernel module framework.

This example demonstrates the seamless integration of the PromethOS plugin framework in
Linux, allowing to load arbitrary code at runtime.

A.2.7 Example Use of the PromethOS User Space Library
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "promethos_lib.h"
int main(int argc, char **argv, char **envp)
{
 ve_descriptor_t *ve = NULL;
 ee_descriptor_t *ee = NULL;
 co_descriptor_t *co1 = NULL;
 co_descriptor_t *co2 = NULL;
 co_specification_t co_1_spec = {};
 co_specification_t co_2_spec = {};
 co_spec.no_out_ports = 5; /* five output ports are provided */
 co_spec.ctrl_port_exported = FALSE;/* no export a control interface */
 strcpy(co_spec.config, "1.2.3"); /* just a dummy configuration */
 co_2_spec.no_out_ports = 1; /* only one output port is provided */
 co_2_spec.ctrl_port_exported = TRUE; /* a control interface is exported */
 strcpy(co_2_spec.config, "65536"); /* plugin specific configuration */

 if ((ve = createVE()) != NULL) { /* create the VE */
 if ((ee = createEE(ve)) != NULL) { /* create an EE within the VE */
 demuxEE(ee, /* EE for which the demultiplexing should happen */

Copyright  2003 FAIN Consortium May 2003
89

D7-Final Active Node Architecture and Design

 PREROUTING, /* attach to which hook */
 NULL, /* source interface */
 NULL, /* source port */
 NULL, /* source IP */
 NULL, /* destination interface */
 "26473", /* destination port */
 NULL, /* destination IP */
 "UDP", /* protocol */
 NULL); /* additional demux specification */

 if ((co1 = createCO(ee, "LOG", &co_spec)) != NULL)
 {
 printf("Installed and instantiated the PromethOS LOG plugin!\n");
 if ((co2 = createCO(ee, "WV", &co_2_spec)) != NULL)
 {
 printf("Installed and instantiated the PromethOS WV plugin!\n");
 if (addPort(co1, co2, 1) == OK)
 {
 printf("Configured the two components such that co1->co2!\n");
 }
 }
 else
 fprintf(stderr, "createCO(%p, \"test_2_component\", %p) failed\n",
 ee, &co2);
 }
 else
 fprintf(stderr, "createCO(%p, \"test_component\", %p) failed\n",
 ee, &co1);
 }
 else
 fprintf(stderr, "createEE(%p) failed\n", ve);
 }
 else
 fprintf(stderr, "createVE() failed\n");

 deleteEE(ee); /* remove the EE */
 deleteVE(ve); /* remove the VE */

 return 0;
}

Table 3: Example Code of the PromethOS User Space Library

In Table 3, an example use of the PromethOS user space library is provided. The comments available
in the source code make together with the self-explaining method-names make the source code self-
documenting.

Copyright  2003 FAIN Consortium May 2003
90

	FAIN OVERVIEW
	VIRTUAL ENVIRONMENTS & MANAGEMENT
	Introduction
	Requirements
	Design
	Basic Component
	Configurable Component
	Component Manager
	Template Manager
	Resource Manager
	Special Managers

	Conclusion

	RESOURCE CONTROL FRAMEWORK
	Introduction
	Requirements
	RCF Design

	RCF Main Functionalities
	Admission Control
	Admission Control Model

	Resource Control
	Resource Control Model
	Components and Interfaces

	Model RCF Implementation
	Traffic Control and Management for Linux
	DiffServ Control and Management for a Gigabit Router
	Diffserv Controller for the Gigabit Router GR2000
	Interface for a Gigabit Router (GR)

	Conclusions

	DEMULTIPLEXING
	Requirement for Demultiplexing
	Requirement for Active Packet format for Demultiplexing
	Requirement for Demultiplexing Mechanism

	Demultiplexing Framework
	Active Channel
	Active Packet Format
	VE-ID Option Data
	EE-ID Option Data

	Data Channel

	Conclusion on Demultiplexing

	SECURITY
	Introduction
	System relationships and entities
	Threats, security requirements and architecture goals
	Security issues
	Authorization and policy enforcement
	Authentication
	Packet integrity
	System integrity
	Code and service verification
	Limiting resource usage
	Accountability

	High level security architecture
	FAIN architectural model and security architecture
	Security architecture design and implementation
	Building components security context
	Enforcement layer, authorization and policy enforcement
	External security representation
	Cryptographic subsystem and secure store
	Connection manager
	Verification manager

	General active packet security events
	Security architecture performance
	Architecture applicability
	Evaluation of the security architecture
	Conclusions

	EXECUTION ENVIRONMENTS
	Java EE
	Introduction
	Implementation
	Basic Component
	Port
	IIOP Port
	SNMP Port
	Configurable Component
	Component Manager
	Resource Manager
	Virtual Environment
	Virtual Environment Manager
	Security Context
	Security Manager
	Execution Environment
	JAVA Execution Environment
	JAVA Execution Environment Manager
	PromethOS Execution Environment
	PromethOS Execution Environment Manager
	SNAP Execution Environment
	SNAP Execution Environment Manager
	Channel
	Channel Manager
	DiffServ Controller
	DiffServ Manager
	Traffic Controller
	Traffic Manager

	Use Cases
	Booting the Management Layer
	Creating a Virtual Environment
	Deploying a Service

	Conclusion

	PromethOS EE
	Architectural Overview
	Netfilter Framework
	Netfilter Architecture
	Extensions to Netfilter

	PromethOS Netfilter-Table
	Plugin Framework and Execution Environment
	Plugin Classes and Instances
	Control from User Space

	PromethOS User Space Library
	Summary, Outlook and further work

	Active SNMP Activator
	Introduction to SNAP EE
	System Design Goals
	Interceptor Paradigm
	Active Packets & Active Extension Technology: SNAP & SNMP
	SNAP Packet Format

	System Design
	Injectors
	Interceptors
	Active Extensions
	System Architecture

	Introduction to the ANEP-SNAP Packet Engine (ASPE)
	Active Network Authentication Challenges
	Existing Solutions
	Authentication in the SNAP EE

	Requirements of the ASPE
	ANEP-SNAP Packet Format
	System Architecture
	Conclusion

	CONCLUSIONS
	REFERENCES

