Revised Specification of Case Study Systems

Project Number:
Project Title:

|ST-1999-10561-FAIN
Future Active | P Networks

Revised Specification of Case Study Systems

CEC Deliverable No:
Deliverable Type:
Dissemination:
Deliverable Nature:
Contractual date:

Actual date;

WP4-FHG/FOK US-040-D5-Int

PU

PU

R

April 2002 (asupdated in Project Quarterly Reports)

Date of submission to European Commission

Editor:

File Name
Contributors:
Version:

Version Date:
Internal Distribution:
Deliverable Status:

Célestin Brou

WP4-FHG/FOK US-040-D5-Ext.doc

WP4

4.0

Wednesday, 15 May 2002

WP1, WP2, WP3, WP4, WP5 (add/delete as appr opriate)
Approved

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems

Copyright & 2000-2003 FAIN Consortium

The FAIN Consortium consists of:

Partner Status Country
UCL Partner United Kingdom
JSIS Associate Partner to UCL Sovenia

NTUA Associate Partner to UCL Greece
UPC Associate Partner to UCL Span

DT Partner Germany
FT Partner France
HEL Partner United Kingdom
HIT Partner Japan
SAG Partner Germany
ETH Partner Switzerland
FHG/FOKUS Partner Germany
IKV Associate Partner to Germany
FHG/FOKUS
INT Associate Partner to Span
FHG/FOKUS
UPEN Partner USA

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems

The FAIN Consortium

University College London (UCL)
Josef Stefan Ingtitute (JSIS)
Nationa Technica University of Athens (NTUA)
Univerditat Politecnica De Catalunya (UPC)
T-Nova Deutsche Telekom InnovationsgeselIschaft mbH (DT)
France Télécom / R&D (FT)
Hitachi Europe Ltd. (HEL)
Hitachi Ltd. (HIT)
Siemens AG (SAG)
Eidgendssi sche Technische Hochschule Zirich (ETH)
Fraunhofer-Gesellschaft zur Férderung der angewandten Forschung e.V. (FHG/FOKUS)
IKV++ Technologies AG (IKV)
Integracion Y Sistemas De Medida, SA (INT)
University of Pennsylvania (UPEN)

Project Management

Alex Gdis
University College London

Department of Electronic and Electrical Engineering,

Torrington Place

London WCI1E 7JE

United Kingdom

Td ++44-(0) 207- 679 5738
Fax +44 (0) 207 388 9325
E-mail: agdis@ee.ucl.ac.uk

Authors
Thomas Becker (FHG) Bertrand Mathieu (FT)
ElisaBoschi (FHG) Jens Meinkohn (DT)
Matthias Bossardt (ETH) Franci Mocilar (JSIS)

Yiorgos Bouloudis (NTUA)

Celestin Brou (FHG/FOKUS) — WP4 Leader

(Editor)
Yannick Carlinet (FT)
Lawrence Cheng (UCL)

Jurgen Dittrich (IKV++)

Spyros Denazis (HEL)- WP3 |leader
Ducan Gabrijelcic (JS1S)

Christian Garbrecht (DT)

Alex Gdlis (UCL)- WPL1 leader
Juan Luis Mafias Gonzalez (INT)
Peter Graubmann (SAG)

Drissa Houatra (FT)

Cornel Klein (SAG)- WP2 leader
George Karetsos (NTUA)

Chiho Kitahara (HIT)

Stamatis Karnouskos (FHG/FOKUYS)
Antonis Lazanakis (NTUA)

Eckhard Modller (FHG)

Tuan-Quoc Nguyen (DT)
Yiannis Nikolakis (NTUA)
Evelyn Pfeuffer (SAG)
Bernhard Plattner (ETH) - WP5 Leader
Mehran Roshandel (DT)
Lukas Ruf (ETH)

Epi Salamanca (UPC)

Arso Savanovic (JSIS)

Joan Serrat (UPC)

Jonathan M. Smith (UPEN)
Kiminori Sugauchi (HIT)
Toshiaki Suzuki (HEL)

Alvin Than (UCL)

Christos Tsarouchis (HEL)
Mercedes Urios (INT)

Julio Vivero (UPC)

Christoph Weckerle (IKV++)
Ermolaos Zimboulakis (NTUA)

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems

Copyright @ 2000-2003 FAIN Consortium May 2002

Deliverable Title Pagelof 7

Executive Summary

This document (D5) is the second of a set of deliverables (D3, D5, D8) that reports periodical
advancement of the work achieves in WP4. An early version of the deliverable D4 was issued as
R14/R15/R16 Internal Reports in early March 2002. This Work Package is responsible for
implementing an operator solution and case studies. A Policy-Based Active Network management
(PBANM) and Active Service Provisioning (ASP) are being developed the entire project long with
continuous refinement of the existing. A 2tiers based architecture has been identified earlier when
designing the two systems as well synergy to realise an integrated active network architecture together
with the active node being developed by WP3 team.

The two 2tiers architecture’s assumption adopted in WP4 identified two levels of concern regarding
the PBANM and the ASP: elements level functionality and network wide one, which have the same
components but different semantics. The element level functionality managed a single active node
while the second one deal with FAIN architecture network wide. That has been fully documented in
D3 that report initial design of the Management system Architecture. However the architecture has
been review as the design evolved. One the mgor changed is the generdisation of the management
delegation from the NIP to the SP and integration of open issues' solutions into the FAIN architecture.

As earlier prototypes focus on an active node management on which it was somehow more natura to
resolve efficiently problems raise up by policy based active management and service provisioning, we
prioritise to concentrate on the element level management and project solutions network wide. Thus in
this report element level components are well designed as well as most of their network peers.
However the network level resource manager, the inter-domain management components have been
postponed for Y 3 for time constraint and high priority of code production for planed milestone. Indeed
a lot has been achieved at both levels and will be presented in report R21 that complements D5. A
practica organisation of both documents alows avoiding duplication as much as possible of their
contents.

Description of Deliverable

D5 contains the revised specification of Case Study Systems achieved since Y1 in FAIN. This
deliverable is an extenson and consolidation of the D3 — “Initial Specifications of the FAIN Case
Studies’. It will be updated and consolidated in the year 3 as D8.

It is derived from R14, R15 and R16 describing respectively at the FAIN Element, Network level
Management and the Active Service Provisoning Systems for Active Networks. The document
focuses on design of the Policy Based Management system initially described in D3.

Following this introduction, a brief overview d the FAIN project is given to review the main contents
in D3. Chapter 2 presents the main architectura refinements as well as a mapping of the actual rolein
the architecture to the FAIN Enterprise Model. Chapter 3 presents a globa overview of the
management system together with the description of generic components within the 2-tiered
architecture. Chapters 4, 5 and 6 constitute the main design of the element-level management,
network-level management and the Active Service Provisioning (ASP) respectively.

Keywords

Copyright @ 2000-2003 FAIN Consortium May 2002

Ddiverable Title

Page 2 of 8

Active Network, Active AN Management, Active Service Provisoning, XML, Policy Based

Management, Agent Technology, DPE, QoS Delegation.

Change History

Initial Draft Jan 4", 2002, Version 1.0
2" draft February 28" 2002

39 draft B March 11, 2002

4" Draft C April 30, 2002

5" for internal review 14,2002

a b~ WD PP

Copyright @ 2000-2003 FAIN Consortium

May 2002

Deliverable Title Page30of 9

Copyright @ 2000-2003 FAIN Consortium May 2002

Deliverable Title Page 4 of 10

Table of Contents

1 INTRODUCTION. .ciirirerereresessssessssassssesssssssssessssssssssssssssessssessssessssssssssssssssssssssesssssssssssssssssssssssssssssssessssessssesssessns 1
L1 FAIN OVERVIEW. ...ouriiiereeereseressesessessssessssssssssssssessssssssssssssssssssssssssessssessssassssassssasssssssssnsssssssssssssssssssssssessssessnsesnssasans 1
111 Active NetWOrking 1SSUES IN FAINciiiiciretreerree et
1.1.2 Componentsinthe FAIN Active NOdEe...........cccovoerrernennennerneceneenns
1.1.3 FAIN Active Management Components.
1.1.4 Designcharacteristicsfor FAIN Prototype NOUES..........cccvieeririiieneseie e sesse st sseas 4
2 ARCHITECTURE REFINEMENT ..ottt sttt s sess sttt 5
21 GLOBAL ARCHITECTURAL REFINEM ENTcuitiuretureteresseressesessssessssessssessssessssessssssssssssesssssssssssesssessssssssssssssssssssesees 5
22 MANAGEMENT BY DELEGATION ...ucutteuteuteueestusesessessssessesessssessssesssssssssesssssssssessssssssssssssssssssssesssessssssnssssssssssssssanes 7
221 Inter-PDP policy CONflICt FESOIULION.......c.ciireeeerccecte sttt s st se s 10
2.2.2 RESOUICE IMANAGEYeeureiererereseresesssesesesssesesesssesesessnss 10
2.2.3 Management DOOLStrapPING PrOCESS.......crurirrererereesetrerissseresessssssesesssssssssssssessessssssssesssssessssssssesssssssesssees 11
23 MAPPING THE MANAGEMENT FRAMEWORK AND FAIN ENTERPRISE MODELccovvurererreressensesessesssesesenenees 11
3 OVERVIEW OF THE MANAGEMENT SYSTEM ARCHITECTURE ... 13
31 MANAGEMENT SYSTEM SUB-SY STEMS....eruriueerieeereresseressesessssessssesssssssssssssssssssssssssssssssssssssssessssesssssssssssssssssssssesns 13
32 THE 2-TERSPBA USE CASES....c.ouiierireereeereeeresseseseesesssssts st esstsessssessssesessesesssssssssssssssssssasssssssssssssnsssnssssnssssnsssssesns 14
3.3 COMPONENTS OVERVIEW. ...cotiuieurereeressesesseseasesesesssssssssesssssssssssssssessssessssesessssassssssssssssssassssssssssessssssnssssnssssnssssnsens 20
4 RIAEMS (PBANEM) DESIGN ...ooiiiriiirieertisineieineisenetsests st ssessssesss s sessssssssesssessssesssssssssssssssssssnsssssssns 2
A1 EMS USE CASES...oitriuiireuireeireusesetseseesesssses s st s et R et b bbbttt
411 COMPONENES OVENVIEW.....c.euceeteeceeteisiesseetssssssssssssssssessssesssssessssssssesssssssssssssssssessssssssssssssssessssssssessssssssssssssesas
42 EMS COMPONENTS DESCRIPTIONcutiuteriusertusertssestessssssssessessssessssessssesessessssssssssssssssssssssssssssssssssasssssssssssssssssssssens
421 ANSP Proxy Component in Element Level
4.2.2 PDPMQGE COMPONENT.....ciiiiiiiiieeeeeeesee et
4.2.3 QOSPDP COMPONENT.....ciiiuiririirieeesreeeseeests e et
QOoSPEP Component
4.25 PEPDemux Component
426 Delegation PDP COMPONENL.........couerieerriemtreeersesessesessessssessssessessssessssesssssss s esssessssessssssssssssessesessssees
4.2.7 Element level Delegation PEP component
4.2.8 Conflict ChECK COMPONENL........cceuiiiiietriieeie ettt ss st ss b s s b s s s bbb s s st e s s s assesnanaetas
4.2.9 MONITOrING COMPONENL.......oiuiiiereiererereseereseeseeeesseeessseessssessssessssesessessesesse s ssessseessssesesassesesessntsssssssasssesssennes
5 R15 PBANM (NL-MS) DESIGN ..ottt ss s sttt ssssssaes 62
51 NETWORK LEVEL MANAGEMENT SYSTEM USE CASES.......cntueuteretrenssressssessssessssessesessessssesssssssssssssassessssssssssnees 62
52 COMPONENTS DESCRIPTION
521 ANSP Proxy Component in NEtWOIrK LEVELccceiirieirsreersecse vttt ssssesssssessssens 63
522 PDPMgr Component
523 QoSPDP Component
524 QoSPEP Component
525 Network [evel Delegation PDP ... sesssssssessssesssssssssssessssesssesssssssssssaes 68
526 Delegation PEP at the NL
527 Conflict Check COMPONENT AL NLc.cviuiiierieirieiieesi s nsnaes 72
5.28 MONITOIrNG SYSEEMINL. ..ottt bbbt bbbt a et b s s s b s s st s s sens 73
R16 ACTIVE SERVICE PROVISIONING — ASP ...ttt sess s sessssesssssssessssessssssssassesas 74
B.1 ASP USE CASES....ciuriueeeueerttresstsesstseastseastsesessessssassesessessssessssssssassessssesasbesabeese b eae s sesessebee b e e e b ee s b ee s bbb bbbt esaes
6.1.1 releaseservice
TN O o 1= [0S Y/ o U
6.1.3 removeservice
6.1.4 withdraw service
6.1.5 manage ServiCeiNSIAl@tiONS........ccovvireriririrerreres st ssse e sss st se s s s nesesssssesenens 79
6.2 COMPONENTSDESCRIPTION. c..cevutteetsesesesesssssessesessssssssssssssssessssessssesssssssssssssssssssssssssssessssssssssssssssssssssessssessssessnsesnnes 79

Copyright @ 2000-2003 FAIN Consortium May 2002

Deliverable Title Page5of 11

6.2.1 NEIWOIK ASP MBNAGES ..ottt ses et e b bbb 79
6.2.2 Node ASP Manager
6.2.3 COUE MBNAGEScceiereeeeieeiieeetie s sese e s bbbt
6.24 SErviCe registry COMPONENT......ccou ittt ses st
6.25 Thelocal Service Registry........
6.26 Local Service Repository...........
6.2.7 SErviCE REPOSITONYciucveereceresece et sens
6.28 TheLocal Service Creation Engine (SCE)
T CONCLUSION ..ouiiiiirieeintieitiseseisessisese st sessssess sttt ea bR E b e bbb et h bbbttt 93
8 APENDICES. ...ttt e £ ARt A
O REFERENCES ...ttt bbb bbb 97

Tableof Figures

FIGURE 1: MANAGEMENT OF ACTIVE NETWORKSIN FAIN ..ottt s senenes
FIGURE 2: FAIN ACTIVE NODE......cttttiiteeteeesteeese et ettt e ee s et st e e st s sesssenessssssnsnsssssasaes
FIGURE 3: ACTIVE NETWORK MANAGEMENTc.ctturmementmrmeeeneneeneeenenseseesnsnens

FIGURE 4 - OVERALL MANAGEMENT AND ASP STATIONS DEPLOYMENT
FIGURE 5: POLICY-BASED ACTIVE MANAGEMENT ARCHITECTURE AT THE NL AND EL ..ot 8
FIGURE 6. DELEGATION OF MANAGEM ENT FUNCTIONALITY AT THE ELEMENT LEVEL
FIGURE 7 — FRAMEWORK MAPPING TOTHE FAIN ENTERPRISE M ODEL
FIGURE 8 — MANAGEMENT FRAMEWORK SYSTEM RELATIONS........ouotueteureinsieeneseasssssesesssessesessssssesessssssesenes

FIGURE 9— NETWORK MANAGEMENT FRAMEWORK GENERIC USE CASE DIAGRAMccouetueereereetseseeeseseseessssesessessens
FIGURE 10— PROVISION POLICY ACTIVITY DIAGRAM.....ccetiritetetrerisietsesessss s sessss st ssssssessssesssssns
FIGURE 11 — REQUEST DECISION THROUGH SIGNALLING ACTIVITY DIAGRAM
FIGURE 12 — DELEGATE MANAGEMENT FUNCTIONALITY ACTIVITY DIAGRAM
FIGURE 13— PROVISION POLICY INACTIVE PACKET ACTIVITY DIAGRAMcetiuiieieieieieieieisisie et tesseststesssssssssssssssesenns
FIGURE 14— AUTOMATICALLY RECONFI GURE AFTER FAULT ACTIVITY DIAGRAM....ccectrtireininreenennenes

FIGURE 15— GENERAL EMS USE CASE DIAGRAM......cctuiutinturneeitseesseesss e s snens

FIGURE 16 — PBANEM REQUEST DECISION THROUGH SIGNALLING ACTIVITY DIAGRAM
FIGURE 17 — PROVISION POLICY IN ACTIVE PACKET ACTIVITY DIAGRAM....ccoeiueieieteieteteisieieiereisteiesssetesesssssssessssssnesenns
FIGURE 18 — AUTOMATICALLY RECONFIGURE AFTER FAULT ACTIVITY DIAGRAM......cccisurueietnreeeieiereieierensssesiessaesenenenas
FIGURE 19: USE CASES OF THE ANSP PROXY AT ELEMENT LEVEL
FIGURE 20: CLASS DIAGRAM OF THE ANSP PROXY IN ELEMENT LEVEL ...cvvututeeirereieeirereeiessesessieiseseessssssessssssssesssssens
FIGURE 21 —PDPM GRUSE CASES......cuiiiteieireeueteesetisisssesesssessesesssessestsssessssessssssssssssesssstssssssssssssesssstsssessssesssssesssssesessssssssess
FIGURE 22— PDPM GR CLASS DIAGRAM
FIGURE 23 — PDP COMPONENT USE CASES.....cutrtrreruereriesesesessesssssssesesssessssessssssessassessssessssssssssssessssssssessssessssessesssessssesssssans
FIGURE 24 — PDP COMPONENT CLASS DIAGRAMottiiiueterreteeremresessresesessssssessassessesesssessssessssssssssssessssesssssessessesssnesssssens
FIGURE 25— PEP COMPONENT USE CASES......cccotntireiinreenseenenensens

FIGURE 26 — PEP COMPONENT CLASS DIAGRAM
FIGURE 27 — PEPDEMUX USE CASES......ccctnitreereeneeseneeeeesseens

FIGURE 28 — PEPDEMUX CLASS DIAGRAMcuttiuiutietiueueieieteieieteseseiete e seiese st b sesesetesesessbebessssbesesesssesesesesesesesesesesssssesasasns
FIGURE 29: ACCESS RIGHTSFOR NODES......c.cetteueueueteieueuetereuesetesssesesesesasasssssasesssssasasesns
FIGURE 30: PERIOD OF ACCESS RIGHTS......cceiitreereeeeseesseeseenas

FIGURE 31: MAIN USE CASES OF THE DELEGATION PDP
FIGURE 32: THE DETAILED USE-CASES OF “ CONFIGURE” IN DELEGATION PDP........cccirirrerieeereneieieeseese e
FIGURE 33: POLICY ENFORCEMENTcoustutteereeeetsesestassessesessssssesssssessesesssessssssssssessssseses

FIGURE 34: STATUSOF POLICY DATA DELEGATION
FIGURE 35: ACTIVE DIAGRAM OF "OPERATE"oniererrereererrmreenensenenes

FIGURE 36: EVALUATIONctutuetrerescserersesesessesesssessssessssssssessssssssessssssssesesssessssessssssessassessssesssssessssssesssssssessssenssssessenssesnsnesssesans
FIGURE 37: CLASS DIAGRAM OF THE DELEGATION PDP.......ciiiiiiiieiicieieeisie ettt
FIGURE 38: USE CASESOF EL DELEGATION PEP
FIGURE 39: CLASSDIAGRAM OF EL DELEGATION PEP......cuiiiieceieeete ettt

Copyright @ 2000-2003 FAIN Consortium May 2002

Deliverable Title Page 6 of 12

FIGURE 40: MONITORING SYSTEM USE CASE DIAGRAMueuiiiiiiieieie ettt et bbbttt s st ssbesebesnas
FIGURE 41: SUBSCRIBERSTO THE MONITORING COMPONENT
FIGURE 42. M ONITORING SYSTEM DEPLOYMENT DIAGRAM.....cccututueteteueieietetsteteseseseteseseastesesssssesesesssesesssesesesssssesesssssesessens
FIGURE 43: M ONITORING SYSTEM PACKAGES......cucutttueueueteteieteteteteietesesesetesesssesesesesetesesesstesesssssesesesssesesesesesesesesesssssesesesasns
FIGURE 44 EXTENDED NOTIFIED SERVICE ARCHITECTURE
FIGURE 45 M ETERING CLASS DIAGRAMc.otiiieeineesseessesssenes

FIGURE 46: STRATEGY PATTERN CLASS DIAGRAMc.cuvuriiecerereeaeererenees

FIGURE 47: COPS PROTOCOL HANDLER CLASS DIAGRAMctutttiritutietsesessssssestassessesesssssssssssssssssssssessssesssssesssssssssssesssssens
FIGURE 48: PBANM’ SCOMPONENTS.....cccuttretuererrestassessesesssessesssssessesesssessssessssssesassessssessssssssssssessssssssessssessssesssssessssessssens
FIGURE 49: M AIN USE CASES OF THE ANSP PROXY IN NETWORK LEVEL
FIGURE 50: CLASS DIAGRAM OF THE ANSP PROXY IN NETWORK LEVEL
FIGURE 51— NL-PDP COMPONENT USE CASES DIAGRAM
FIGURE 52— PDP COMPONENT CLASS DIAGRAMcccountreininreeninnenes

FIGURE 53— QOSPEP COMPONENT USE CASES......cconireenrreeninenens
FIGURE 54 — QOSPEP COMPONENT CLASS DIAGRAMcceuiirieieieieieieieieieieieieienenaes
FIGURE 55: A DETAILED USE CASES OF OPERATE STAGE IN DELEGATION PDP
FIGURE 56: CLASS DIAGRAM OF DELEGATION PDP.......ciiiiiiiiieieieieieieieieie ittt
FIGURE 57: USE CASESOF NL DELEGATION PEP ..o

FIGURE 58: CLASS DIAGRAM OF NL DELEGATION PEPoviiierenreeireesie st
FIGURE 59: NL AND EL MONITORING SYSTEMS RELATIONSHIP
FIGURE 60 ACTIVITY DIAGRAM FOR AN ACTIVE SERVICE PROCESSED BY THE ASP.......ccovneerreneererrenenns
FIGURE 61 MAIN USE CASE OF THE ASP. ..ottt
FIGURE 62 RELEASE SERVICE USE CASE DIAGRAM
FIGURE 63 DEPLOY SERVICE USE CASE DIAGRAM....c.cutuiueitteteieietetetetste ettt ssse bbbttt bbbt essss bbbt bbbt bebesssesesesssssssessns
FIGURE 64 REMOVE SERVICE USE CASE DIAGRAMcutututitieteieieteteieiete ettt ssss bbbt bbbt essbe bbbt besstebebesssesesesssssssesnsns
FIGURE 65 WITHDRAW SERVICE USE CASE DIAGRAM
FIGURE 66 MANAGE SERVICE INSTALLATIONS USE CASE DIAGRAMcuttiuiuieeieteieieiete it ieasss it ssbesesssssesesssssesssssssssessens
FIGURE 67 — NETWORK ASP MANAGER USE CASES.....c.ceueueueueteteueteteresesetetesesetesesesetesesesesesesssssesesesssesesssssesasssssssesssssasasesns
FIGURE 68 — NODE ASP M ANAGER USE CASES
FIGURE 69 MAIN USE CASE DIAGRAM OF THE CODE MANAGER.......c.coeuririuetrertasietsesessestsesesssssesessss s sesssssessessssssssesssssess
FIGURE 70 — LOCAL SERVICE REPOSITORY USE CASES.....cueurutueretrertureetseressssssestassessesesssssssssssssssssssssessssesssssesssssssessesssssens
FIGURE 71 — SERVICE REPOSITORY USE CASES.....ctuttetretuesesrestassessestsseessssessssssestassesssstsssssessssssesssstsssessssesssssesssssesessesssssess

Tableof Tables

TABLE 1— FUNCTIONALITY VS. COMPONENT MAPPING TABLE.......ctrtttrtretueirereseeseessesessaessesesssessesessesssssesssssssessssssssensens
TABLE 2— FUNCTIONALITY VS. COMPONENT AT THE ELEMENT LEVEL MAPPING TABLE

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 1 of 13

1 INTRODUCTION

D5 is a consolidation of three other internal reports, namely R14, R15, and R16, which describe the
element-level management, network-level management and the Active Service Provisioning (ASP)
respectively. This deliverable is an extenson and consolidation of the D3 — “Initial Specifications of
the FAIN Case Studies’; and as such focuses on the refinement of the previous architecture and
design.

Implementation detailed design of the FAIN management architecture are eaborated in the interna
reports, R21. In this document we use, Use case diagrams using the Unified Moddling Language
(UML) to describe the functionality and motivation for each caomponent.

Our network management approach allows recursive delegation of the management system from the
Network Infrastructure Provider to the Customer (cf. FAIN Enterprise Model in D1) by offering a
restricted instance of the management system. Following this introduction, a brief overview of the
FAIN project is given to review the main contents in D3. Chapter 2 will present the main architectural
refinements as well as a mapping of the actua role in the architecture to the FAIN Enterprise Model.
Chapter 3 furnishes a global overview of the management system together with the description of
generic components within the 2tiered architecture. Chapter 4, 5 and 6 congtitute the main design of
the element-level management, network-level management and the Active Service Provisioning (ASP)
respectively.

1.1 FAIN Overview

1.1.1 Active Networking Issues in FAIN

The FAIN active network architecture defines active nodes, which provide full flexibility to the user
for network management and service provisioning. The defining characteristic of an active node is the
ability for users to load and manage software components dynamicaly and efficiently. This can be
achieved safely since customers who are sharing the same active node would be provided with aVPN-
like resource partitioning.

Packets requiring active processing are marked to alow correct handling by active routers. This alows
the discrimination of active and conventional packets and the selection of an active node. Routing and
node resources configuration in the active nodes could be achieved by setting policies at the network
management level (element and network management nodes). Access to this functionality will be
controlled and only possible viaawell-defined API.

Figure 1 exemplifies a configuration of an active network and its management nodes.

' Active Node

. Passive Node
|. Active Element Mng. Node

E—
...,,._“ I I AdiveNetwork Mng. Node
@ e
-’ ® nerl

a,
e A
= 32

o
)

Figure 1. Managemenf of Active Networksin FAIN

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 2 of 14

1.1.2 Components in the FAIN Active Node

In relation to D4, we provide a summary of issues that are pertinent to WP3. The FAIN Reference
Architecture consists mainly of the following entities: AA, EE and Node OS.

Active Applications/Services (AA) are applications executed in active nodes.

Execution Environments (EE) are environments where application code is executed. A privileged
EE manages and controls the active node and it provides the environment where network policies
are executed. Multiple and different types of EE are envisaged in FAIN. A VE is a collection of
resources (including one or more Execution Environments) owned by a particular SP. Thus EEs
are used through virtua environments (VES), where services can be found and interact with each
other. VEs are interconnected to form atruly virtua network.

NodeOS is an operating system for active nodes and includes facilities for setting up and
management of communications channds for inte—EEs and AA/EES, manages the router
resources, provides APIs for AA/EEs, and isolates EEs from each other. Through its extensions
the NodeOS offers facilities through the following components.

= Resource Control Facilities (RCF). Through resource control, resource partitioning is
provided and VEs are guaranteed that consumption stays within the agreed contract during
an admission control phase, whether static or dynamic.

= Security Facilities (SF). The main security aspects are authentication and authorisation to
control the use of resources and other objects of the node such as interfaces and
directories. Security is enforced according to the policy profile of each VE.

= Application/Service code deployment facilities (ASP support). As flexibility is one of the
requirements for programmable networks, partly realised as static or dynamic service
provisioning, the NodeOS must support code deployment.

= Demultiplexing facilities (DEMUX). As flows of packets arrive a the node,
Demultiplexing filters, classifies and diverts active packets to the appropriate VE, and
consequently to the destination service inside the VE.

* Node Management Facilities (NM). The main aspects are the initiation and maintenance
of VEs, control and management of the RCF and SF, management of the mapping of
externd to node policies into node resource and security configurations.

The following figure describes the main design features and the components of the FAIN nodes:

Notifications & Events I Policies l

Management VEs Active
Node
| ¥ | RS 31 3
Resource Control Security
Facilities Node OS Facilities
Extensions
Node OS
) Y
| 1
& I —
7 P | -

Figure 2: FAIN Active Node

In FAIN, node prototypes that are under development include: a high performance active node, with a
target of 150 Mb/s, and a range of flexible and very functiona active nodes/servers, with the target on
multiple VEs hosting difference EEs

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 3 of 15

The common part of the prototypes (the FAIN middleware) is the NodeOS with the relevant
extensions. Further details and discussions about the active node are provided in the deliverable D4.

1.1.3 FAIN Active Management Components

This deliverable D5 will elaborate on the management approach in the FAIN project, which takes
policy-based approach.

We envisage that the management of the active network will require the following features:
Policies: Description of policies required to manage the active nodes and network

Node management component: Design of management components within the active nodes,
which will execute policies within an active node and monitor the local node resource usage.
The execution of policies means mapping target policies into node resource configurations

Management stations. A set of management nodes that will provide mechanisms to enable
network administrators to manage the active networks as a whole, including network policies
set-up and processing.

As the ddlivery of services will require co-operation of a number of active nodes the network
providers will need the means of managing the active nodes as a group of nodes and not individual
nodes. They will need monitoring mechanisms for checking that correct policies are being defined and
used in relation to the network before they are sent to the actual network. It will need to know what
policies are currently loaded in the active nodes and what impact these are having on the network. It
will aso need to protect and monitor the security of the network. Therefore, the network/service
provider needs a set of management mechanisms that will enable it to manage the network as awhole.

In FAIN we see the need for two types of management nodes in order to provide these mechanisms:
Element Management Stations (EMS)
Network Management Stations (NMS)

The main difference in functionality provided by these two types of management nodes is in the policy
types, which they could process and manage, in the sub-networks, which they cover and in the
creation of management domains for different types of users, as shown the Figure 1-4

The relationships between the EMS, NMS, and active nodes with regards to the policy flow are shown
in Figure 3.

Notifications Policies

Notifications Policies

Active
Node

Manager
o |
| ¥
Network Layer

Figure 3: Active Network Management

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 4 of 16

1.1.4 Design characteristics for FAIN Prototype Nodes

In this section, we extrapolate WP4 efforts towards the milestone demonstrations in WP5, and
references the issues highlighted in D6.

The FAIN active node runs active services and contains programmable management, data and control
planes. We will develop three versions of this node until milestone M6 (April 2003) and one version
until milestone M5 (May 2002). While active functions in the data and control plane will be
demonstrated at milestone M5, active management functionality remains for demonstration at M6.

All node types vedons will exhibit the gmilar functiondity vis-avis services and
management components, i.e they will al support the active service provisoning facilities
(ASP) as developed in WP4. They will be different, however, in their respective Node OS
architectures and performance characteristics.

We will develop a single verson of each of the two types of management nodes listed above.
All FAIN management stations can interact directly with FAIN Active Network Nodes.

In the firg phase of the FAIN test-bed leading to M5 (May 2002), we will indal, configure
and evduae only Active Network Nodes of type A, and the corresponding Element
Management Station and Network Management Station. An initid verson of an active node
of type C will be deveoped and demonsrated by HEL. Inted IXP-based Active Network
Nodes (type B) and full-featured Hybrid Active Router Nodes (type C) will 4ill be under
development a that time and will be ready for demondration and evduation as pat of the
work for M6 (April 03).

As stated earlier, FAIN is developing two types of management stations, the Element Management
Station (EMS) and the Network Management Station (NMS). Both management stations will have the
same properties. The stations will be based in PCs with Linux OS. As programming platforms both
stations need OpenORB and OpenCCM* CORBA platforms over which management components will
be build. At the end of the project both management stations will be implemented over FAIN Active
Node middleware (i.e., the RCF) in order to be able to limit the amount of management Station
resources different management instances are consuming.

FAIN currently alows for only one NMS per network. Therefore only one NMS will be operational
during the demonstrations, however, partners may set-up their own NMS for testing purposes in their
own readm. One EMS may manage multiple active network nodes, which may be assigned
dynamically. However, it is anticipated that each partner will run an EMS to be able to locally manage
his active network node while testing.

! The use of OpenCCM platform is conditiona of the availability of a new version of this platform during the
project life offering the necessary functiondlity.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 5 of 17

2 ARCHITECTURE REFINEMENT

In the deliverable D3 [8] of this project we presented aready the architecture being designed and
developed. This architecture is still valid nevertheless some changes have been pointed out as the
project evolves. This chapter introduces and explains those changes that affect respectively the whole
architecture view, the Management by Delegation and the management bootstrapping process. Finaly
the mapping of the Architecture and new concepts introduced so far in the FAIN enterprise Model is
described in order to help understanding the whole system environment.

2.1 Global Architectural refinement

The management and active service provisioning frameworks are closely coupled in order to manage
and maintain the active network infrastructure within the agreed quality of service parameters.

Asinitidly cHineated in the previous FAIN Deliverable D3 [8] document both frameworks interact at
al layers (i.e. network, dement and node). The concrete interaction description between both
frameworks was aready detailed in D3 and therefore it will not be repeated here. Although some
changes have been made since then:

The Active Service Provisioning framework will be ableto send Service Policiesto the
management framework.

These policies will dlow the ASP to determine the best configuration for the
Virtual Environment where the service will run, as well as configuring node
facilities (such as the ASP or others) in a controlled way. E.g. a service policy
may express that service X requests 50% of the CPU and another service policy
lets service Y ask the node to download code module Y (2) and replace code
module Y (y) with it, if the remaining memory for service Y is less than
100kByte.

This modification has been included in the second situation exposed in D3, where
the management framework was requested to ingtal a service within the active
network.

As aresult the function named serviceMap has been changed to:

void serviceMap(in:ServicelD string, in:Credential Credential, in:RegResources
Resourcelist, out: ServicePolicies ServicePolicyList);

Also the ReqResources parameter has been changed from mandatory to optional.

Requestsfor the installation of active servicesrequiring fast decision and all ocation
of resources are solved within the active node

In case that an active packet arrives to a FAIN Active Node with code, or a
pointer to it, that should be ingtaled in the node (third scenario in D3) there might
be a latency restriction to process the packet. For example, in the capsules
approach the capsules will probably require the fastest possible alocation,
execution and forwarding. In those cases, contacting the management system (i.e.
the corresponding EMS) to take a decison and allocate resources would be
inefficient. The same thing can be said, when the packet does not carry the code,
but just points to the code that has to processiit. If the code has to be started with
certain resources depending on the consumer, associated with the arriving packet
(in particular with its credential), we have the same low latency restriction as on
the capsules approach, in the sense that, since the code is started with different
resources for each consumer, the decision has to be made very fast. Thus, making
this decision outside the active node is inefficient (too dow).

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 6 of 18

The new approach designed to solve this problem is that for services that require
fast alocation of resources, the management system will configure the Security
Framework appropriately in order to alow the assignment of a certain amount of
resources to the consumers. In that way, when the packet (either capsule or
pointer) arrives to the node, the ASP will first ask the Security Framework
whether the packet can be processed with the requested resources included within
the active packet in the form of a node level security policy. The active packet
will aso cary the consumer credentid information used by the Security
Framework for making the fina decision. As such, if the Security Framework has
been previoudy configured with the necessary information to accept or reject the
request it decides accordingly and the decision is rapidly taken. Otherwise the
ASP will contact the management system (i.e. the EMS) to make a decision and
alocate resources (if necessary) as described in D3.

In Figure 4 the overal deployment of management and ASP sations for the maintenance and
management of an active network.

NMS ASP-NL

Figure 4 - Overal management and A SP stations deployment

Within this figure there are several aspects that need more careful description in order to ease the
complete understanding of the image:

Inside FAIN Active Nodes there will be certain management and ASP functionality.
This functionality serves as helpful basis for the management framework to redise its
functionality more easly.

Aside, some components from the management framework, in concrete from the
element management system (i.e. the PEPs and PEPDemux components) run within
the corresponding Virtua Environment inside the FAIN Active Node. The reason for
this is that it reduces the data traffic between the management stations and the active
nodes and might even, if necessary, permit fast decison making within the nodes in
punctua cases [10]

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 7 of 19

In FAIN there will be only one network level management station per administrative
domain, and a variable rate of active nodes per element management station with a
minimum of one. However, in case that there is more than one active node per
element management dtation, the management station will treat each one of them in a
completely independent way (isolated from the others). The reason for this approach
is that it alows the infrastructure owner to have a flexible trade-off between a cost-
effective solution (severa active nodes per EMSs) and a solution smpler, more
distributed and more scaled (one-to-one rétio).

The flexible element management stations vs. active nodes ratio, which was aready described in D3,
atogether with the approach of including PEPs inside the active nodes, impose to the Policy Decision
Points (PDPs) the necessity of being able to distribute its decision to the affected enforcement point.
The detailed description of this functionality and others from the PDP is provided in subsequent
chapters.

2.2 Management by delegation

The Management by Delegation (MbD) concept within the FAIN Policy-based Network Management
(PBNM) system has been refined so that the initial PBNM architecture described in D3 was revised.

MbD was conceived to transfer the management logic from the central management system closer to
the managed entity. This aleviates the management burden from the centra management system [1].
The term “delegation” has been aso interpreted in the context of Policy-based management. In [2] itis
used to describe the transfer of access rights between subjects by means of delegation policies. Both
interpretations of MbD have been incorporated in our revised architecture. Namely, we identify a
component whose responsibility is the configuration of security components in order to delegate
access rights. On the other hand, Yemini’s MbD approach is embedded in the whole framework and it
is not realised by a single component.

We extend the concept of MbD in the following sense: we allow multiple management systems to be
instantiated With differentiated functiondities. Additionaly, these different instances may be adopted
by the different FAIN roles, e.g., a Service Provider (SP).

The full-flavoured management by delegation based on policies can be applied to the FAIN enterprise
model in its entirety. The delegation of functionality interactions, that take place between the ANSP
and the SP, represent a pattern for network and node management and may be repeated at every level
of the business hierarchy, namely, between the ANSP and the SP?, and between the SP and the
Consumer.

The SP acquires part of the resources of the ANSP, and in a smilar manner the Consumer receives
part of the SP's resources. Furthermore, the SP may be presented with a variety of management
options, ranging from ingtdling its proprietary management architecture to instaling varying instances
of the ANSP's PBNM architecture. In the latter case, the SP has the advantage of starting from a
specific set of management components that may further be specialised according to the SP's
requirements. An advantage of this approach is that the PBNM management architecture may become
a product that the ANSP sdlIsto the SP. A similar situation may occur between the SP and Consumer.

2 For smplifying the management concepts used within FAIN, we have used the smplest mapping of the
enterprise modd actors to the management system. The complete mapping description of actors to our
management framework will be given in section 2.2.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 8 of 20

ot

ACC!:;; R-l]fhts e |—p Policy | Conflict check
ec translatorf [

Resource
TLalire T

ANSP
DOMAIN

Figure 5: Policy-based Active Management architecture at the NL and EL

The management architecture covers both the network and element management layers, as defined in
the TMN [3]. This approach aims to solve scaability problems and to provide a more distributed and

autonomous management of active networks [[6],[7]].

froan SF HNL from LWSP ML
Diorriain 7\ Diomain

ANSP EL
Domain

| |
AMHSP Privileged
WE
SECUr
.

P1520-L

Active Node
Figure 6. Delegation of management functionality at the Element Level

Copyright & 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 9 of 21

Figure 6 shows how the delegation of management functionadlity is realised by the creation of different
management instances and its relation with the FAIN Active Node. This figure helps to understand
how different management instances and node virtual environments are created. The management
instances can be realised both at the network and element management level.

The ANSP management domain is composed of the components in the framework shown in Figure 5.
Either the SP's own management components or instantiations of ANSP management components
delegated to the SP can compose the SP’'s management domain.

The “management authority” is the owner of the management system that is delegating functionality to
another subject or entity that we call “management instance”.

The management ingtalation procedure on the instance starts with functionality transfer, according to
the access rights, from the management authority to the instance. That alows the instance owner to
use the alocated resources for management purposes.

The management authority may request to control which entity enters the management framework.
This requires security checks before any party attempts to enter the management system. For that
purpose we have introduced a new component called the “ANSP proxy”.

Access rights transfer involves the control of the management system itself. For example, if a policy-
based system is used, the management instance should be given the access rights to control the use of
the palicies. The use of policies refers to the procedure that starts from the policy reception, decision
and enforcement, as well as controlling the functionality of the policies, and ends by uningtaling the
policies.

An additional access rights transfer from the management authority to the management instance
involves the acquisition of rights so that the latter can access the actual managed resources, such as
routers, switches etc. These resources initialy belong to the management authority and are, then,
alocated to the instance creating a Virtual Environment (VE).

In addition, the management authority also provisions physica resources (used for management
purposes) to the management instance.

The requirement for instantiating virtual environments as a result of a virtual network deployment
implies specific relationships between the ANSP' s and SP's management architectures that need to be
captured by the overal management framework. Accordingly, within the SP's virtua environment, its
management architecture is instantiated by the ANSP, thereby, forming a parent-child relationship.
Supporting such relationship requires introduction of an abstraction that we cal the management
domain depicted in as the ANSP and the SP management domains. Inside such domains the
management architectures of the owners of the domain can be deployed/instantiated.

There are alot of possible interactions that may take place between the ANSP and the SP according to
the Service Level Agreement contracted. For example, the SP may use the management functionality
of the ANSP as it is. For that purpose, the ANSP will create a new instance and it can maintain the
total control of that instance itself (thus creating a new ANSP instance). Total control refers to the
ability to control the complete usage of the policies (e.g., which policies can be s&t, by whom, and
when should they be uninstalled...). Alternatively, it can delegate the control of the policy usage to the
SP (thus creating a SP instance). It must be noted however that even when the SP has the control of
the management logic, the ANSP still maintains the control of the management instance itself. For
example if that instance is implemented in the form of a thread, the ANSP can “kill” that thread if the
SP performs an illegal operation. Moreover, in order to make the whole system more security robugt,
the ANSP may keep the control of who is entering the management system at any time with the use of
the ANSP proxy. In any case, in the SLA, the entity that controls the access rights both for entering the
management framework as well as for controlling the use of the palicies, should be clearly defined.

Consider another case when the SP wants to install its own management system. For this reason, the
ANSP creates a SP instance where the SP can install its own management code. The ANSP can till
delete or recreate the SP instance. Again in this case, it isimportant that the detailed interactions and
the relationship between the ANSP and the SP should be explicitly defined in the SLA constructed
between both parties.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 10 of 22

2.2.1 Inter-PDP policy conflict resolution

Another area that has received a lot of attention since D3, is the inter-PDP conflict resolution. By
inter-PDP we mean between policies enforced by different PDPs within the same administrative
domain, e.g. the SP-domain.

Inter-PDP policy conflicts occur when two or more policies are eventually destined to access the same
resources in a node from different PDPs conflict. If there is no co-ordination between these PDPs as
far as conflict resolution is concerned, eventualy there will be a conflict during the enforcement time.

With the conflict resolution mechanism at the network level we can resolve some of the conflicts at
deployment time, which is of course far better that waiting until the enforcement time to capture a
conflict.

We will try to avoid this kind of conflicts by defining a good information model that contains both
complex and smple policies. In case this is not enough for avoiding conflicts we will solve possible
appearing conflicts implementing one of the next two approaches that follow:

1. Based on policy trandation

2. Based on agroup of checkers

The first solution is based on the policy trandation from the PDP-specific format of the policies to
another one more generic that is common to al PDPs, which might conflict. This policy trandation is
realised by the PDPs themselves, and once the policy istrandated, it is send to a generic conflict check
component, that will check this generic policy againgt al previous policies (in the generic form)
enforced before.

The second solution opts for a dightly different approach. Each set of possible conflicting PDPs will
form a primary domain. Each primary domain will have a conflict check component. When a policy
arrives to a PDP that might conflict with other policies in another PDP, this PDP will forward this
policy to the corresponding primary domain conflict check component. This component will
understand al possible conflicting policies from its related PDPs and will realise the conflict checking
of the new policy against al previoudy enforced. When a new PDP is downloaded to the system that
dedls with policies that might conflict with others in one particular primary domain, the conflict-
checking component of that primary domain should also be extended so that it can understand and
check the new policies from the new PDP.

We ended up using one generic conflict check component, mainly because we wanted to avoid the
direct communication between severd PDPs for policy conflict resolution. The latter would most
certainly lead to an increase in the complexity of the interfaces exported by the PDPs, and would aso
incur scalability problems by introducing a large number of messages that need to be exchanged
between the PDPs. However, the use of a generic conflict resolution mechanism has drawbacks as
well, as the scalability concerns are ill not resolved.

2.2.2 Resource manager

The task of the resource manager (RM) is to assess the resource utilisation information that it has
registered to receive from the monitoring system. This evauation will drive short-term or long-term
decisions for admission control, traffic re-routing, resource re-allocation etc.

So far we have designed the resource manager module only at the network level. However, we found
out that it should aso be located at the element level as well. This is because both the network level
and the element level management system must work in tandem for resource management. Since the
resource management agorithm runs insde the RM component, this agorithm can be distributed
between the network-level RM and the element-level RM. The RM component will also be located in
the ANSP and the SP both domains.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 11 of 23

2.2.3 Management bootstrapping process

The bootstrapping process at every level of our management system, namely the network, the element
and the node level mainly consists of two parts:

a) Deployment and loading of the code that creates the management logic and

b) Configuration of this logic so that for example, the ANSP PBNM will alocate resources for its
own use.

The former falls within a wider scope of the ASP, whereas the ANSP PDPs captures the latter. In
other words, the ANSP is entirely responsible for ingtaling and initialising the management system in
every part of the network needed. On the other hand, when the SP is assigned virtual resources, it is
the SP that is responsible for the configuration of those resources (possibly with the association of the
ANSP).

Accordingly, in a bootstrapping scenario we assume that the ANSP functionality is somehow deployed
and we only need to describe how it is configured.

2.3 Mapping the Management Framework and FAIN Enterprise
Model

The complete understanding of the management framework, and particularly of the delegation of
management concept, would not be possible without a clear mapping of this framework to the FAIN
Enterprise Mode defined in FAIN Déliverable D1 [9]. The figure below aong with the explanatory
notes attached, describe this mapping and its main properties. Nevertheless, more detail regarding the
actua architecture components designed to fulfil this functionality would be given in following
chapters 4 and 5.

Figure 7 also eases the understanding of the management system use cases presented in the next sub-
section.

RF4b RFZ Ij RF3

AMSF

X

Consumer

<<creates=>» 1 crgreatesss
/9(----------- % RS — <

Consumer M| | SPomll I AHSE Ml £ NIF M|

<zpreatessr <zgreatessr “doreatesiyE |
S LT R LT s |
[,
Consumer VE RPab SPVE RP2 ANSP VE o NIPWE

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 12 of 24

Figure 7 — Framework mapping to the FAIN Enterprise Model

In Figure 7 we can see the generic and complete mapping of the management framework and its
implications (i.e. the delegation of management functionality approach) with the FAIN Enterprise
Model defined in FAIN Ddiverable D1[9]. The Network Infrastructure Provider owns the
infrastructure that is, the programmable nodes (without Execution Environments) and the management
framework to control the infrastructure.

After a Service Level Agreement with one or more Active Network Service Providers (ANSP), the
NIP might partition its infrastructure between those ANSPs creating virtual networks over which they
can ingal one or more execution environments. The access to this virtua infrastructure is offered to
the ANSPs through their Virtual Environments (VE) created by the NIP (relation represented by the
<<creates>> arrow in the figure at the Virtual Environment level). In any case the NIP always keeps a
privileged Virtua Environment and management instance so as to have complete control over its
infrastructure.

In order to alow the ANSPs to manage this virtual infrastructure the NIP also creates for the ANSPs
new conveniently restricted instances of the management framework (represented by the <<creates
arrow a the management instance, “MI”, level). Although in some very specia cases, the ANSP
would also be able to manage its infrastructure using the NIP management instance (relation
represented by the diagona arrow in the figure).

All the possible interactions between the Active Network Service Provider and the Network
Infrastructure Provider are contained in the FAIN Reference Point RP3. As shown in the figure these
interactions can accur at different planes (business, management, node, etc.). It is aso remarkable to
note that the interactions realized between systems owned by the same actor (e.g. the ANSP M1 and
the ANSP VE) fall within the scope of internal interfaces of that particular actor.

In a smilar way the Active Network Service Provider can partition its virtua infrastructure into
smaler ones and offer them to different Service Providers that will use this smaler virtua
infrastructure to install active services, which they will offer afterwards to consumers. The interactions
that alow this new delegation of resources between the ANSP and the SPs are almost the same that in
the previous step between the ANSP and the NIP. The only difference is that in this case there is the
obvious limitation that the maximum resources and access rights that can be alocated to a SP by an
ANSP are al the resources and access rights this ANSP has obtained from the NIP.

Again, al possible interactions between a Service Provider (SP) and an Active Network Service
Provider are contained within the FAIN Reference Point RP2.

Finally, the same process can be repeated with the Service Provider creating an even smaller virtual
infrastructure to its consumers. In case that happens the interactions between these two actors would
be those contained in FAIN Reference Point RP4b.

Up to this point, we have described the generic mapping of the management framework to the FAIN
Enterprise Modd. As derived from the explanatory text above, this generic mapping is not
straightforward. However, if we take into account some considerations we will soon redlize that the
mapping is not as complex asit seems.

Firg of dl, it is quite likely that most of the times the Network Infrastructure Provider decides to
install by itself one or more Execution Environments over its virtua infrastructure and act directly as
an ANSP. If that happens the ANSP and the NIP will be the same actor and therefore the first
delegation “level” which was between the NIP and the ANSP disappears. We would have just three
actors and two delegation levels.

Now, let us consider that it is not really advantageous that a consumer obtains a virtua infrastructure
from a SP, except for some very concrete services and highly prioritised consumers. We will find
ourselves in a stuation where the mapping between the most common enterprise model and the
management framework is much more straightforward and easy to understand. It involves just three
actors (NIP-ANSP, SP and C) and just one delegation level between the ANSP and the SP.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 13 of 25

3 OVERVIEW OF THE MANAGEMENT SYSTEM ARCHITECTURE

This chapter gives an overview of the whole management system being built. In D3 we have aready
identified the three main sub-subsystems that composed the management system, namely PBANM,
PBENM and ASP. Out of that we identified already a core policy based functionality that overlap both
Network level and element level that have been abstracted as 2tiers Policy Based Architecture. The
following section outlines these sub-systems and their dependencies. The next section will describe the
abstract functiondity that will be inherited and specidize by the Network and element levels sub-
systems in order to avoid redundancy when describing those sub-systems in relevant chapter.

3.1 Management System sub-systems

1]
<<Generic>>
2-tiersPBA
]
PBANM [rrsesesesersssssssesereesceenecees: 3 PBNEM
<<sub-system>> <<sub-system:}
ASP-NL |, > ASP-EL
<<sub-system>> <<sub-system>>

Figure 8 — Management framework system relations

The management framework designed in FAIN is a policy-based management framework at two
levels. the network and the element level. Both this levels are specidization from a generic policy-
based management framework adapted in FAIN, represented by the 2-TiersPBA Package in Figure 8.

The network level management sub-system (PBANM-NL) is the core of the whole management
infrastructure, distributed in several element level management systems (PBANEM).

Both network and element management sub-systems are using the ASP sub-system that provides the
code mobility management functionality completing, in the whole FAIN management infrastructure.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 14 of 26

3.2 The 2-tersPBA Use Cases

This section describes the main generic use cases of the management system, which are shown in the
Use Case Diagram of Figure 9.

x

NIP

% <<communicat

ANSP

<<com ate /
i <<com nighte>> O

automatically reconfigure after€qult
<< nfigure>>>>

% &W
provision policy in active packet §%

Consumer

% <<communidhte>>

NIP, ANSP, SP
or Consumer

<<C unicat
2-tiers PBA <<abstract>>

»\O

/@legate management functionality

i
NIP, ANSP, SP
or Consumer VE

provision policy

request decision through signalling

Figure 9 — Network Management Framework generic Use Case diagram

For smplicity reasons, use cases that are related either with al NIP, ANSP, SP and Consumer actors
have been grouped in a single actor named “NIP, ANSP, SP or Consumer”.

As can be immediately deduced from the figure al use cases, and thus the functiondity they represent,
are supported by the generic policy-based management framework, and therefore by both the
PBANM-NL and PBANEM systems that have aready been introduced in the previous section.

Provision policy

This is probably the most important use case for a policy-based management framework. Together
with the signalling use case they represent the basic functiondity for policy processing in a policy
based management system.

The provision policy use case encloses al functionality redlised in our management framework every
time a policy isintroduced in the system.

The activity diagram in Figure 10 shows the main functionality within the provision policy use case.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 15 of 27

2tiersPBA
<<abgtract>>

wait for
policies

v
)

edit policies

receive policies in
active packet

check
identity

fail

fail

SU@CGSS

(r

forward to
anagement instanc

)

Actor owned <c

management instance rights

heck access

)

and VE

SUC\EGSS

check if needed
PDP/PEP are installed

)

download &

install PDP/PEP

enforce
decisions

(

O

decisions

store
policies

register
events

event
processing

T e

send events

Ié

Figure 10 — Provision policy Activity Diagram

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 16 of 28

Firgt, the pre-processing functiondity is redlised outside al management instances and redlises. policy
edition, checking of the identity through the credentids of the actor that pretends to use the
management system, and demultiplexing of the policy to the corresponding management instance.

Once the policy enters the particular management instance the functionalities that will be redised® are
mainly:

Checking the access rights in the management instance of that actor (this functionality
will only be developed in very special cases).

Also in some cases, it might be necessary to extend the management functionaity
through the downloading of new components to correctly process the policy.

Finaly, the core policy logic functiondity. This functionality encloses the most usua

functionality of a policy based system: policy storage in the repostory, making
decisions on when a policy should be enforced based on events received through the
event processing functiondity and, findly, the enforcement of decisions. As a
refinement of the latter, just a the network level specialization of the framework, the
policies should be distributed to the appropriate element level systems.

Usualy the result of the decision enforcement functionality ends in a set of configuration changes on
the virtual environment owned by the same actor as the management instance that requests those
changes.

3 In case the actor chooses to ingtall and use its own management functiondity within its management instances
the functionality realised might not be the one described here

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 17 of 29

Request decision through signalling

Another basic functiondity of a policy-based system is that which covers the signalling approach;
where the managed device requests through the policy enforcement point a set of resources to the
decision point. Based on the resource consumption status, and on the policies avalable in the system,
the policy decision point has to decide whether this request is accepted, and thus the resources are
allocated, or rejected.

In Figure 11 we can see the main functiondities contained within the signalling use case.

2 tiersPBA

Actor owned management instance and VE

wait for signalling
requests
find PEP to process
ffail the request
check
access rights

success make

_ decisions

enforce
decisions

Figure 11 — Request decision through signalling Activity Diagram

Since we might have severa enforcement points within the same virtual environment of an active
node, the first functiondity to be redised, is the demultiplexing of requests to the appropriate
enforcement point.

From there on, the functionality for processing the request is initiated. It contains basically two main
functiondities. first, the access rights checking of the actor that is sending the request, and second, the
concrete policy logic functiondity related with signalling processing.

Findly, the latter is composed by the decison making functionality based on the resource status and
on the policies ingtdled within the system, and also by the enforcement of the decison which,
obvioudy, includes the forwarding of the decison notification to the entity that made the request,
whatever the decision is.

Delegate management functionality

The delegate management functionality use case is conceptually amost the same than the provision
policy use case. The only difference is that, in this case, the provisioning actions are the creation of a
virtual environment and a management instance for a new actor with certain access rights.

However, athough being very smilar to the dready explained provison policy use case, the
importance of the delegation concepts within our framework makes necessary the introduction and
description of the delegate management functionality use case.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 18 of 30

In Figure 12 we can see the main functiondities included in the del egat e nmanagenent
functional ity usecase.

2 tiersPBA
<<abstract>>

wait for
policies

edit policies © {'. eSS
active packet
check
identity
sugcess

forward to
management instance

Actor owned theck access
R rights

management instanc

fai

fai

and VE
check if needed
PDP/PEP are installed
register
download &

install PDP/PEP

es / event
make processing

L s

decisions

store
policies

instantiate
new VE

create new
management instance

Figure 12 — Delegate management functionality Activity diagram

As said before, most of the functionalities are equa to the ones defined for the provision policy use
case. For that reason we are not going to repeat them here. Nevertheless, we will try to highlight the
main particularities of the delegation of management functionality use case.

As stated in the use case diagram, only the NIP, ANSP or SP actors can in theory realise this use case,
not the Consumer since it cannot delegate management functionality to any other actor.

For the same reason, the result of the enforce decisions functionality are configuration actions over the
virtual environments of the NIP, ANSP or SP only, since this configuration actions request the
creation of the delegated virtual environment with the appropriate access rights.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 19 of 31

Also, the enforce decisions functiondity, in this particular use case, includes the functionaity for
creating the new delegated management instance within the management system for the actors that
obtains the delegation of management functionality. Finally, those actors are notified with the handlers
that they need to access both their virtual environment and management instance.

Provision policy in active packet

A new functionality we have introduced within the FAIN management framework is the one reflected
in the provison policy in active packet use case. This functionality takes advantage of the fact of being
managing an active network infrastructure in order to make even more flexible the distribution and
introduction of policies in the appropriate management stations.

In this use case the policy is included within an active packet and forwarded to the nearest
management station each time a policy arrives to an active node where it should be applied. The
functiondity reflected in the use case is that covered since the policy arrives to the management
gation.

Since the nearest management stations to active nodes are the element management stations, athough
the use case is in theory possible a both levels of the framework, it is in practice applied only at the
element level.

2 tiers PBA

wait for

policies [

receive policies in
active packet

fai

check

identity

fai

S €SS

I/
forward to
management instance

Actor owned
management instance

and VE

check if needed
PDP/PEP are installed
download &

install PDP/PEP

B T

Figure 13 — ProviSOn poICy 1N &ClVE PaCkel ACUVITy diagram

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 20 of 32

The functionality contained in this use case is very smilar to the one already described in the
provision policy use case. There are basically two differences. The first is that the use case isinitiated
by the actor’s virtual environment that forwards the policy to its management instance in the nearest
management station. The second is as previoudy explained, in practice this use case can only happen
at the element levdl.

Automatically reconfigure after fault

The functionality included within this use case is quite origind if we compare it with features of others
policy-based systems. This functionality copes with the necessity of readapting the active node and
network configuration when a fault occurs.

The management framework, after the reception of the darm warning of the fault occurred, will
determine which are the policies that should be applied in order to correct the faulty situation. In that
way we achieve an autonomous, dstributed and fast resolution of problems and faults occurring in the
active network infrastructure.

Figure 14 below illugtrates the main functionalities included within this use case.

2 tiersPRA

Actor owned management instance and VE

wait for
alarms

process received
alarm

send events

make
decisions

enforce
decisions

Figure 14 — Automatically reconfigure after fault Activity diagram

In this use case, the darm processing functionality monitors the resources. When an abnormal or
faulty situation occurs it creates an aarm event, which is then forwarded to the event processing
functiondlity that communicates the aam to the decision-making functionality. Based on the darm
event it decides which policies should be applied, and requests their enforcement.

The policy logic functiondity in this use case is mostly the same as in the policy provisioning use case
with the exception that there is no new policy introduced, thus there is no necessity to store any new

policy in the policy repository.
3.3 Components Overview

In this section we will briefly introduce the main components of the FAIN management framework
relating them to set of functionalities they realise from all those we have seen in the previous section.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 21 of 33

The main packages within the FAIN management framework have aready been introduced in
previous sections. Nevertheless, in this section we will map them to the functiondities they redised
from the ones we discovered in the previous use cases so as to progressively introduce the reader to
their capabilities and to the complete understanding of the architecture. A more accurate description of
the components, the functionalities they cover, and how do they redlise it will be given later on this
document.

Through the description of the main use cases we have introduced severa functionaities or smaller
use cases. Many times these functionalities are repeated through several use cases (e.g. the make
decison functionality appears in the five use cases). In order to make a much more smpler and
comprehensible mapping of functiondities and components we will show which component realises
which functiondities in the table below. This is possble, instead of on use case after another
describing al functionalities and mapping them to the package that covers them, since the component
that redise a particular functiondlity is the same independently of the use case where the functionality
isfound.

Functionality Component
Edit policies Policy editor
Check identity ANSP Proxy
Forwarq to management ANSP Proxy
instance
Check rights Access rights check
Dyna_1m|c r_‘nanagemgnt PDPMgr
functionality extension
Store policies Policy Database

PDP (e.g. delegation PDP, QoS PDP, fault management PDP, etc.) and with the

Make decisions support of the Resource Manager and the Monitoring system components

Event processing Monitoring system (i.e. the event channel)
Distribute policies PEP (i.e. the PEP components at the network level)
Enforce decisions PEP
Find PEP PEP Demux
Create a new management PDPMgr
instance
Alarm processing Fault management PDP in close coordination with the monitoring system

Table 1 — Functiondity Vs. Component mapping table

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 22 of 34

4 R14 EMS (PBANEM) DESIGN
4.1 EMS Use Cases

This section introduces the main use cases, which are more closely related with the element level than
with the network level. The use cases, which are going to be covered, are the signaling, the policy
within active packet and the fault-triggered management reconfiguration.

All three use cases have aready been introduced in previous sections of this document. Nevertheless,
we recover their description here in much more detail and particularized for the Element Management
System (EMS), the PBANEM system.

Although the amount of functionaity contained in these use cases is high, the mgjority have aready
been described before. Therefore, our main focus in this section will be to introduce the new
functiondities advancing a new step towards the complete comprehension of the management system
presented. The new functiondities introduced are either specific for the element management system
or more concrete, and less important but necessary, compared against those presented before.

In the figure below a use case enclosing the three use cases presented in this section and their relations

is presented.
PBANEM O

automatic reconfigure after fault

/ \«configure»»
<<commu#ficate>>

i <~
% < unicate>> provision policy in active packet <<< M /Q(

NIP, ANSP,SP\WW icate>> %ANSP’ -
or Consumer ... /«{C)nf|gure>>>> or Consumer VE

request decision through signalling

Figure 15— General EMS Use Case diagram

Before proceeding with the actual description of the use cases, | will just note that the NIP, ANSP SP
or Consumer M1 at NL actor, stands either for the Network Infrastructure Provider, Active Network
Service Provider, Service Provider or Consumer Management Instance at the network level. This actor
appears in the element level use cases because most of the changes occurring at the element level are
notified to the network level in order to keep it informed of what is happening at the element level. In
this way the network level always has a general view of the network resources and can act
accordingly.

Request decision through signalling

The signdling use case particularized to the element management level includes three new
functionalities that extend those described before. As can be seen in Figure 16, the new functiondities

included are the demux decisions to PEP, dynamic conflict checking and notify configuration changes
to NL MI.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 23 of 35

NIP, ANSP, SP or C Ml at the EL;

[wait for signalling]
L requests J

v

find PEP to process
fail : the request
¢ \access rights

success make fail
decisions
demux decisions to the
appropriate PEP

check dynamic
conflicts

decisions
notify configuration
changes to NL Ml

N . T

Figure 16 — PBANEM Reguest decision through signalling Activity diagram

The demultiplexing decisions to PEP functionality extends the make decisions functionality previousy
described in the following sense. At the element level the policy enforcement points are located within
the active network node, particularly within the virtua environment owned by the same actor as the
management instance where the decision is made. Therefore, since there might be the case that a
single element management system’s station manages several active network nodes, we will have a
one-to-many ratio between decision points and enforcement points. Hence, the component which
realises the make decision functiondlity at the element level should be extended with the functionaity
necessary to find the appropriate enforcement point to where this decision should be forwarded.

The second new functionality included in the diagram is the dynamic conflict checking functionality.
This functionality is the responsible for checking possible conflicts between different policies in the
precise moment where a policy should be enforced. The need of this functionality in policy-based
system isjudtified in [11].

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 24 of 36

The dynamic conflict checking functiondlity is realised in part when the decison is made, and in part
when the decision has to be enforced, that is the reason why it is in the middie of both functionalities
in the diagram. The goa of the FAIN project is first to try to dynamic conflicts as much as possible
making a clear and efficient alocation of resources, and keeping different alocations completely
isolated from each other. However, if there are still dynamic conflicts the checking functionality will
be redised in the this way: when a policy has to be deployed, it will be checked for conflicts, within
the PDP, againgt other policies in that PDP, and if any conflict is found, it will be solved with policy
priorities. If no conflict with other policies is found in this first step, the element management system
will keep its normal process and will try to enforce the policy in the node. In this case, it might happen
that the enforcement point finds out that there are not enough resources, that is, it detects a dynamic
conflict. Then, the element management system will only enforce that request if it comes from the
owner of the infrastructure, usualy the NIP. If enforced, the node should notify the responsible entities
of the removed resources so as to allow them to react accordingly.

Findly, the last functionality included in the signalling use case a the dement level being described,
is the notify configuration changes to NL MI. This functiondity is partly related with the previous one
in the sense that when a reservation is made freeing resources of other actors because of a dynamic
policy conflict, as introduced above, this functiondity would be the responsble of sending the
notification of the resource allocation and the freed resources to the network level, which will in turn
forward it to the actors affected.

However, the above described will be the less common use of this functionality, usudly this
functiondity will be used in order to inform the network level management instance, owned by the
same actor as the notification originator instance, the configuration actions realised on the managed
resources so as to keep the network level informed and allow it to have a general view of the managed
resources.

Provision policy in active packet

The provison policy in active packet use case, despite of what the diagram shown below might
induce, does not change substantially when particularized to the element management level. There are
just some smal new functiondities, which should be specificaly added to the element management
level, and some others, general for both the network and the element level, which are introduced now
in order to provide some more information about the management framework functionality.

At the eement management level the provision policy in active packet and the provison policy use
cases are identical, except for the actor which initiates the request: the network level in the
provisoning and the corresponding virtual environment in the policy in active packet use case. In
consequence, al functionality description in this section applies as well to the policy provison use
case a the element management level, which we are not going to describe explicitly.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 25 of 37

PBANEM
wait for
Lpolicies J*———
receive policies
in active packet
fiail
check
identit
fail
sucgess
forward to
management instance
NIP, ANSP, SP
or|lCMI at EL
ail ' .
control the forwarding
of policies
v
check if needed
PDP/PEP are installed
download & no
install PDP/PEP S
configure scheduler with
PDP lifecycle control date i
¥ register
parse XML policy> events
into JAVA classes event
Drocessing
send
events
egister in the scheduler the
policy lifecycle control date

\4
store
policies
\/
notify policy
introduction to NL Ml

notify configuration ’/
changes to NL Ml

Figure 17 — Provision policy in Active Packet Activity diagram

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 26 of 38

In the diagram above we can see severa functionalities not included in the generic provision policy in
active packet use case described in a previous chapter. However, from all these functionalities only six
of them are redly new (i.e. the scheduler, policy forwarding control, the PDP lifecycle control, policy
lifecycle control, parsng and notify policy introduction to NL MI). The functionalities notify
configuration change, dynamic policy conflict and demux to PEP have just been described in the
previous section. From the six new functionalities introduced only the notify policy
i nt roduct i on is specific for the element management system, the rest apply at both levels.

The scheduler functionality is just time trigger functionality. It is used by the PDP lifecycle control
and policy lifecycle control to be triggered when either a PDP or a policy valid period expires. To do
0 it has, obvioudy, to be previoudy configured with the trigger time and the component to be
triggered. Although not reflected in the diagram it might also be configured to trigger the make
decision system when atime condition is met.

The FAIN policy-based management framework supports the introduction of groups of policy rulesin
the form of a policy set. The policy rules within a policy set might need to be agpplied atomicaly,
sequentialy, independently, etc. The policy forwarding control functiondity is in charge of controlling
the forwarding of policy rules into the management framework based on the forwarding property in
the policy set.

The PDP lifecycle control is in charge of the maintenance of the policy decision points. It basically
monitors the number of policies each policy decison point is treating. When a policy decision point is
not processing any policy the lifecycle control functionality will remove it from the system freeing the
resources that it was consuming.

The policy lifecycle control functiondity is smilar to the functiondity above but it controls the
lifecycle of policy rules within the management framework. Each policy rule has a
“policyRuleVdlidityPeriod” property [12] that indicates the date when a particular policy expires. The
policy lifecycle control system will register this date in the scheduler, and when triggered it will
remove the policy from the element management system.

As described in the FAIN Déliverable D3 policies are expressed using XML language. In order to ease
the manipulation and processing of policies these should be parsed afterwards to a JAVA class, this
functionality is the parsing functionality in the diagram above.

Findly, the notify policy intro functionality aims to keep the network management level informed of
what policies are being processed a the element management stations. Each time a policy rule is
stored at an element level policy repository, this functiondity is in charge of sending a notification to
the corresponding network level management instance. In case the policy had been sent by the
network leve this notification would just act as confirmation, otherwise it informs that a new policy,
with its main properties, coming from the virtual environment has been introduced in the element level
management instance.

Automatically reconfigure after fault

The last use case we are going to describe in this section is the automatically reconfigure after fault
use case. It contains four new functionalities specific for the element management level (PBANEM
system). Three of them have aready been described in previous chapters (i.e. the demux decisonsto
PEP, dynamic policy conflict and notify configuration change), only the send darm to NL MI
functiondity shown in the diagram below needs to be described ill.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 27 of 39

wait for
alarms
'/
process received
alarm
V
make
decisions
\'7
demux decisions to
appropriate PEPs

check dynamic
conflicts

enforce
decisions
notify configuration send alarm to
changes to NL Ml NL MI

ail

Figure 18 — Automatically reconfigure after fault Activity diagram

Both the send Alarm to NL MI and the notify configuration changesto NL MI can happen but never at
the same time. In case a fault occurs within an active node virtua environment an alarm will be raised
which will be captured by the corresponding element level management instance. The management
instance will try to solve the problem, and in case it succeeds then the configuration changes realised
should be notified to the appropriate network level management instance. However, it might be the
case that for severa reasons, the problem can not be solved at the element level, then the element
management instance will send an alarm notification to the network level management instance to
alow it to react accordingly. The functionality of creating the alarm notification and sending it to the
corresponding network level management instance is the one included within the send alarm to NL Ml
bubble.

4.1.1 Components overview

In this section we will provide a table mapping the new functiondities introduced in the above
described use cases with the components of the policy-based active network element management
(PBANEM) system within which that functionality will be enclosed. All components listed have
aready been introduced in previous sections and they will be described in more detal later on this
document.

The table below shows the mapping between the new functionaities described and the eement
management system (PBANEM) components that cope with them. This table complements the one
given for the mapping between generic functionaities of the whole management framework (both
element and network levels) and the components of the generic framework.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 28 of 40

Functionality

Component

Demux decisionsto PEP

PDP

Dynamic conflict checking

Partin PDP and part in PEP

e

Scheduler logic PDP
Policy forwarding control PDPMgr
PDP lifecycle control PDPMgr

Policy lifecycle control PDP

Parsing PDP

Notify policy introduction PDP

to NL Ml

Send alarmto NL Ml Fault management PDP

Table 2 — Functiondity Vs. Component at the element level mapping table
4.2 EMS Components description

4.2.1 ANSP Proxy Component in Element Level
The ANSP Proxy at the element level works as a dispatcher of the policy data from the network level

PEPs to the EL PDP Manager.

4.2.1.1Use cases

When the ANSP Proxy receives the policy data from a PEP, it checks the parameters included in the
policy data, such as VE id, and then finds an appropriate PDP Manager passing this VE id aswell asa
name, which indicates the domain. The ANSP Proxy aso analyses reports from the PDP managers and
may also create and send summarized reports to the operators. This reporting could be done directly to
each SPs or through the ANSP in the NMS.

D —

PEP in NL Policy Check/ %
Q PDP Mgr

Dispatch Polic

>

Analyze Status

Figure 19: Use cases of the ANSP Proxy at Element Level

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 29 of 41

4.2.1.2 Class Diagram

The ANSProxylmpl class provides two methods. forwardPolicy() and setReport(). When a PEP in the
network level sends policy data to the EMS, forwardPolicy() is caled. After the deployment of policy
data, the NL PDP may send reports to the ANSProxy with the setReport() method.

ANSProxylmpl

®forwardPolicy()
®setReport()

Figure 20: Class Diagram of the ANSP Proxy in Element Level

4.2.2 PDPMgr Component

The main functiondity of this component is to demultiplexing received policies into the corresponding
Policy Decison Point. Other important functionality are the PDP lifecycle control, controlled
forwarding of policy sets and the PDP ingtallation when an arriving policy needs to be processed by a
non-installed PDP.

In the actua design the policy lifecycle functiondity is redlised registering in a database the latest
caducity date of all policies enforced by that PDP.

In Figure 21 we show the general use cases of the PDPMgr component:

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 30 of 42

A

ANSP Proxy
<<commuinicate>>

Control of forwarding of

policy sets
%waﬁé

AccessRight ask access rights
sCheck checking
%<<<re uests>
ASP findPDP

CO—

forward policy registerCaducity

<<communicate>>

PDP

Figure 21 -PDPMgr Use Cases

CoO—(

checkPDPLifecycle

LifecycleTable
(from Logical View)

®newPDPCadDate()

uninstall PDP

The class diagram Figure 22 we have designed for this component is based on PForwControl and
PDPmgrimpl classes, which redlise most of the functionality helped by the other classes.

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 31 of 43

O

PDPMgrinterface

i

PForwControl

ScotPolicies()
P orwivode)
@ PosplitP Set(

AccessRightsCheckinterface PreontrolledFonw()

’checkjuncyo \
PsatPali &
setPolicy() ‘RegCaducityO newPDPCadDatef)

C)é-ﬂ////,ﬂ‘E“u:lownIo:en:iCu:ndel[)

AZP Interface POPLUninstaller

damainTable

¥isDomainLoaded])

PDPMgrimpl PDPLifecycle LifecycleTable

@downloadReq) Funinstal PDR()

O

POPMarthinterface

Figure 22 — PDPMgr Class Diagram

The PForwControl class implements the functionaity of the* control of forwarding of policy sets’ use
case. When a policy set arrives, it checks whether it is just one policy or a policy set. in case of Policy
=, it solits the set in individua policies, checks the forwarding mode of the policy set, and then

forwards the individua policies accordingly.

The PDPMgrimpl co-ordinates the core behaviour of the PDPMgr. The mapping of classes with use
cases is the next one:

- The PDPMgrimpl usesthe AccessRightsCheck component in order to redlisethe“ ask access
rights checking use cases’

It uses the domainTable class in order to realise the findPDP use case and if the PDP is not
found, the PDPMgrimpl class uses its downloadCode private function in order to request the PDP
downloading to the ASP component.

- The PDPMgrImpl classis also the responsible of forwarding the policy to the PDP onceit is
ingtalled.

- After the policy forwarding it redlises the register caducity use cases using the
PolicyLifecycle class, which in his turn uses the lifecycleTable.

Finally the PolicyLifecycle class periodically checks the lifecycle table in order to redlise the
check PDP lifecycle use case.

If the PolicyLifecycle detects that a PDP has expired, contacts the PDPUninstaller in order to
remove it fulfilling the uninstall PDP use case.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 32 of 44

4.2.3 QoSPDP Component

The PDP component is the main component in a policy-based management architecture. Its main
functionality is to check possble syntactic and semantic conflicts in policies (sometimes, even try to
solve these conflicts’). Another piece of functionality of the PDP is to decide when a policy should be
enforced. In order to redise this functionality the PDP needs to recelve information from the
monitoring system. The third important functiondity is to forward decisons to PEP components in
order to be enforced. Also, support for signdling requests; that is, redise the above-mentioned
processes but for a signalling request. Finally, the PDP needs also to control the policy-vaidity period
of policiesin order to uningtall expired policies.

In Figure 23 we show the main use cases of a PDP component.

X

PDPMgr

<<com icate>>

<<include>> /7 _<<communicate>> %

W
Check _Policy makeDecision
/ <<<<re(ystg S \<< <<<<aguests>>>
DB

Syntatic Checking Semantic Checking . compfunicates> Uninstall PolicygecisionEnforcement

%«« requests>t >

ARCheck signalling support

MonitoringSyst
em

PEP

Figure 23 — PDP Component use cases

The class diagram we have designed for the PDP has its core in two classes the pdpQoSOpsimpl and
the Evaluation class.

The mapping of use cases to the classes that redlise that functiondlity is the following:

Check palicy: it is the pdpQoSOpsimpl class that after receiving the policy checks whether
there are syntax conflicts (i.e. using its private function checkPolicySyntax). After that check
it contacts the SemanticConflictCheck class to redise the semantic conflicts checking.

4 We have not yet considered any semantic conflict resolution in our design, athough in future versons we will
consider it.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 33 of 45

- makeDecison: this is the most complex use case. It is realised mostly by the Evaluation
class but highly coordinated with the Condition intepreter, EventRegister and
EventInterpreter classes. It also uses the DBInterface and Scheduler classes in order to fulfill
the functionality of this use case. When a policy arrives to be evauated the Evaluation class
forwards the policy to the Condition interpreter in order to evaluate the conditions and know
which information is needed in order to make a decison. If no information is needed a
decision is made, if the policy has to be enforced it is forwarded to the Actioninterpreter
class, and it is stored in the database as well asits validity date is registered in the scheduler.

The second possibility is that some information is needed in order to take the decision. Then
the Condition _interpreter class will ether configure the Scheduler (if it is a time condition)
or the EventRegister (in case monitoring information is needed), and the Evauate class will
store the policy in the database and register the validity period of the policy in the Scheduler.
Afterwards, the Event Interpreter will receive al registered events from the event channe,
and map them to ajava class format. Then, it will contact the Evaluate class, to re-evaluate
the affected policies, and the whole process starts again.

- decisionEnforcement: we have aready briefly described this use case before. The Evaluate
class, when a decision has to be enforced contacts the Actioninterpreter class which builds
the command that should be forwarded to PEPs and forwards this command to the
command_demux class which finds and forwards the command to the correspondent PEPs
(e.g. when we have one EMS per several nodes, and PEPs inside the nodes).

uningdl: the Scheduler that contacts the PolicyUninstaller component when a policy has
expired in order to uningal it starts the functionality of this use case. If some actions are
needed on the node to uningal this policy the PolicyUningtaler component contacts the
ActionInterpreter in order to realise them.

Signalling support: this use case is reflected in signalingComp class. This class will cregte,
with the help of the parser, the appropriate XML policy, contact the access rights checking to
see if the requester is able to redlise that functionality, and finadly contact the
pdpQoSOpsimpl class to continue with the rest of the process. It will forward the result of
the policy processing to the PEP.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 34 of 46
o B
cessRightsCheckinerface o Fierprater
e Parcer FOFMadntafacs ovenitiap]
ScpeckPalicy) - | mokePlg |
; :quu-:.ij ¥ T .
= ®lavelodl) %~ | pdpQoS0psimpl i %
Signaingl: |~ —————— = P Evenl Register -, .
ALl Sy siuater) : o
"‘rvq.rn-:_t[:_l TaquasE) J— g mvakiate) oy | Maniorng Sy ateminledacs
_ i B T #
‘-.I_- § E a | ﬂtpuj.lﬁg}?
[SemartiConticChack T S R
| DBInteriace hadier | | Coedtion Imarpretar |
®chachSem Condiey) > wggiFui P :
; aiPolic T = | ®imerprat_condtios]
Fraetanted] ‘gnIPdil::E | FecTinh| | Sgaiuae candtinm
__J__F".
ctiorinterp| : 1 Fod ey Ukt
rekar | alsr
Fayecuter Wningtalll]
=
damu
*dumu
I
PEFInlertane
*dacicion]

Figure 24 — PDP Component Class Diagram

4.2.4 QoSPEP Component

The PEP (Policy Enforcement Point) component is also a very important one in policy-based
management architecture. Its main functionality is enforcement of decisions in the policy target (i.e.
the active node). It supports two ways of working: provisioning (the interactions are initiated by the
PDP with a decison) and signalling (the interactions are started by a decision request coming from the
node interface).

Figure 25 shows the main use cases of the PEP component.

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 35 of 47

PDP
<<Cco uUnicate>> <<commwypicate>>

enforce decision

ask for request decision

<<incule>> 2<include>>
O O <<communicate>>
dynamic conflict checking map action to interface

<<<<requestg>>> <<7A]figure>>>>
% <<communicate>> g%

ActiveNode PEPDemux

Figure 25 — PEP Component Use Cases

Figure 25 shows the classes that develop the PEP functionality. The nain class for the decision
enforcement is PEPImpl, while for signalling request forwarding is SignallingReq class. The mapping
of the use cases to the classes that realise this functiondity is the next one:

Enforce decison: The functionadlity of this wse case is developed by the PEPImpl class,
which uses the classes DynCheck and IntMapper for realising the dynamic conflict checking and map
action to interface use cases respectively.

Dynamic conflict checking: The class DynCheck makes the dynamic policy conflict
verification. For doing thisjob it might need to access the node interface.

Map action to interface: The IntMapper is responsible for trandating the decision into the
actual commands understandable by the active node interface.

Ask for request decison: The functionality of this use case is basically redised by the
SigndlingReq class which receives the requests from the node interface, parses them to the format
understandable by the management system with the RegParser class, and then forwards them to the
PDP.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 36 of 48

@

PEPInterface

|

PERImpl

®decision()

"

DynCheck

Inthdapper

®checkDecision()

¥rnapdction])

%

Nodelnterface

Q

PDPInterface

Frequest))

SignallingReq

RegParser

Fraguest()

|

Q

PEFPDermuxinterface

®regtodavaPolicy()

Figure 26 — PEP Component Class Diagram

4.2.5 PEPDemux Component

The functionality of this component is to demultiplexing active node signalling requests to the
appropriate PEP. It would be just one PDPDemux component per active node and per management

system instance.

The use cases for this component are shown in Figure 27.

PEP

find PEP

Active Node

Figure 27 — PEPDemux Use Cases

In a future version the
PEPdemux might be
able to request to the
ASP the download of a

new PEP

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 37 of 49

In Figure 28 we can see the class diagram for this component. The mapping of these classes with the
use cases is indeed quite straightforward. In fact, the Demux class with the help of the PEPfinder class
mainly develops the functionality of the findPEP use case, while the registerPEP use case is realised
again by the same two classes.

FEFDemuxinterface
*requestt]
Demux FEFfinder
Sroguest() ®aokiorPEP()

!

Mode Interface

Figure 28 — PEPDemux Class Diagram

4.2.6 Delegation PDP Component

As we described before, Management by Delegation (MbD) has two types of main functions, 1) The
delegation of management functionality, 2) the delegation of access rights. Delegation PDP is one of
the key components in PBANEM system and is in charge of controlling access rights attribute of
active nodes and of decison for what kinds of management domain is prepared for the customers
(SPs). Both functions are achieved by interacting with PDP manager, monitoring system and
delegation pep.

4.2.6.1.1 Delegation of management functionality

When a SP wishes to use the exact management system of an ANSP, the ANSP delegates
management’ s functionality to the SP in one of the two ways described above.

The delegation of management functionality is not realised by a single component in our framework.
The PDP manager is actively involved in the whole procedure, since it is the component that co-
ordinates the other PDPs.

4.2.6.1.2 Delegation of access rights

The delegation of access rights involves the configuration of a security component. This task is done
by the delegation PDP with the use of delegation policies. For example, the ANSP may want to release
specific parts of its node management interface to the SP. Eventualy, the element level Delegation
PDP will configure the node-level security components that exist in every active node that the SP
wants to manage. The security component, based on the value of an VE will grant or deny the access
rights.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 38 of 50

4.2.6.1.3 Definitions of the Delegation Types

The following options are provided by an ANSP for a SP to choose during the SLA process. These
options could be chosen severd times and are mapped into policy definitions, and then are trandated
into node readable parameters.

(1) Superuser

This dlows a user to own his own management area. Access attributes to this management
area are READ/WRITE. Expiry period is defined as well. This user can aso delete another
management areas. Usually thistype is only assigned to ANSPs.

(2) High

This dlows a user to own his own management area and to use/copy the super-user’s
management functionality's and tailor it to its own needs. The access atribute to this
management area is READ/WRITE. Expiry period is defined as well.

(3) Monitor only

This alows an SP to access somebody’s management area. The access attribute to this
management area is READ only. This type could be used by a user who intends only to
monitor (e.g. abilling service provider).

4.2.6.2 Access Rights Control

Delegation PDP is in charge of mainly controlling the access rights of the active nodes collaborating
with the security framework.

4.2.6.2.1 Access Rights Definition

The access rights attributes define what type of accesses are allowed for the customers (ANSP, SP) on
the active node interfaces. These access attributes will be verified by the security (SEC) component in
order to avoid malicious accesses.

4.2.6.2.1.1 Attributes
(1) ReadWrite

A customer can configure the interface of an active node (RCF, Demux) and monitor the
information of an active node (RCF, Demux) through the interface.

(2) ReadOnly

A customer can only monitor the information of an active node (RCF, Demux) through the
interface.

(3) Disdble

A customer has no access rights. While the attributes are disabled, the customer cannot configure
or modify the active node interface nor can he monitor the information.

Also each component (RCF, Demux) of an active node may provide an access right attribute
explicitly, so a customer may choose the attribute with the following matrix:

Node Component RCF Demux
ReadWrite v
ReadOnly v

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 39 of 51

B RCF access (Write)

This dlows a customer to access the RCF interface in order to configure and modify the
resource alocation. The configuration of the RCF would be done by the QoS PDP.

B RCF access (Read)

This dlows a customer to monitor the status of the resource consumption using the RCF
interface.

4.2.6.2.1.2 Assigned groups

An access rights attribute is assigned for the VE. Moreover, additiona definition could be supported.
For instance, one VE involves severa active nodes (see pictures below) and the customer of this VE
may need to assign distinct attributes for each active node. So the Delegation PDP may support the
following definitions:

(1) VE

An access rights attribute can be assigned only for each VE. In this case, al of the active nodes,
which areinvolved in acertain VE, have the same attributes.

(2) Group of active nodes

Some active nodes could be categorised in groups and this group may have the same access rights
atributes. We propose two groups of active nodes, namely edge node group and core node group.

o I)

Tw L ®

Access Right ; A Riaht
“ , ccess Right ;
Access Right ; ReadOnly “ ReadWritée’
“ReadWrite’

Figure 29: Access Rights for Nodes

4.2.6.2.1.3 Period of access rights

The Customers configure the access rights attributes during the contract period. For instance, the
attributes may not be changed until the contract has expired. However, the customers may wish to
configure the access rights based on a time-table:

Contract starts Contract ends
i Time i
VE2for SP-1 | ReadWrite |
VE3for SP-2 | ReadWrite | ReadOnly| ReadWrite nEE

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 40 of 52

Contract starts Contract ends
\L Time i
VE2for SP-1 | ReadWrite |
VE3for SP2 | ReadWrite | ReadOnly| ReadWrite "mE
Access Right for VE2 ;
“ReadWrite”

VE2 7 — C

@\\ 1=

“ReadWrite” @ Active node
VE
Figure 30: Period of Access Rights
(1) Weekly
The Customers can configure the access rights attributes by indicating days of a week.
Mon Tue Wed Thu Fri Sat Sun

VE2 RW RW RW RW RW RW RW

VE3 RW RW RW RW RW RO RO
(2) Days

The Customers can configure the access rights attributes by indicating specific days. For instance,
a customer may configure "VEL1 attribute = Read/Write from 1st January to 31st March”

(3) Hours

The Customers may need to configure the access rights by indicating specific hours, however this
function is not supported in this version.

4.2.6.2.2 Super-user

The right of a super-user alows a customer to disable the access rights that belong to other customers.
Normally this right would be owned only by an ANSP.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 41 of 53

4.2.6.3 Delegation PDP use-cases

The Main use cases of the Delegation PDP, Configure, Operate and Reconfigure are depicted in
Figure 31.

/_ _\ Configure \
PDP Manage
- :

Operate
De legation PEP Reconfigure

Mon itor System

Figure 31: Main Use cases of the Delegation PDP

Configure when a new customer joins, this use case starts. Configuration of access rights in active
nodes will be done.

Operate: When configuration is completed for a new customer during Configure steps, this use case
starts working until the policy for this customer is expired.

Re-configure: when some configuration changes are needed, this use cases starts. For instance, a
customer may need to reconfigure the access right attributes or if an error has occurred, amodification
is necessary to avoid further problems.

We would mainly focus on the use cases "Configure” and "Operate™ in the following

4.2.6.3.1 Configuration

When a new customer joins one ANSP, a configuration of the active nodes should be made.

Configuration data are written in the policy rules, therefore the policy data need to be checked first,
and then distributed to the proper active nodes through the Delegation PEP. The detailed use cases are
depicted below:

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 42 of 54

P

PDP manager Check input

@ Syntax Check

Check Policy

" T

Semantics Conflict Check

Register New SP
w:ﬂe ConditionS\

Register Event

Make decision \ \/ \
:(>: Evaluate Monitor Event

Monitoring System

PEP

Figure 32: The detailed Use-cases of “Configure” in Delegation PDP

4.2.6.3.1.1 Use Case of "Check Input”

When the policy data is dispatched from the PDP manager, this use case starts. The Delegation PDP
checks the type of policy data that is received from the PDP manager. If the policy is not a Delegation
one, it notifies the PDP manager. The Delegation PDP stores the newly received policy datain a data
table locdly. This data table is located in the locd memory assigned to the Delegation PDP when
instantiated. At the same time, other information, which comes inside policy data from PDP Manager,
is checked as well.

4.2.6.3.1.2 Use Case of "Check Policy"

The Delegation PDP checks the newly received policy data as far as the syntax and the semantics are
concerned. The syntax check will verify that the delegation policy is syntacticdly correct, and the
semantics check will verify that this policy is not going to conflict with other policies aready
ingalled. If there are no errors, the policy data is stored in the database. If there are errors, it notifies
the PDP manager.

(1) Syntax Error
(2) Semantics Error

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 43 of 55

In the case that a definition of time condition may have invdid vaues or invalid variable
combination, this is determined as a semantic error.

4.2.6.3.1.3Use Case of "Register Monitor Event"

There may be the case when the monitoring system is required for the evauation procedure to be
concluded. Thus, an event is registered to the monitoring system. For example such an event may be
the access rights status check on an active node. Also, the Delegation PDP may periodically check the
access right status on the active nodes in order to verify that the SLA between the SP and the ANSP
for instance, is not breached. The monitoring system is again used for this purpose.

(1) register information

The following information is sent to the Monitoring System and used to check the status of the
access rightsin the active nodes.

A) report interval

The PDP receives the report from the Monitoring System in this interval. Defined in
milliseconds (e.g. every 5 ms areport is given from the monitoring system.)

(2) Error

If the registration in the Monitoring System fails, an error notification is returned to the delegation
PDP (monitoring registration error).

4.2.6.3.1.4Use Case of "Evaluate Conditions"

The delegation policy condition is evaluated with time period conditions such as dayofWeek. Then the
“make decision” use caseis executed. A delegation policy example is shown later.

4.2.6.3.1.5Use Case of "Make Decision"

If the delegation policy condition is met, the “Make Decision” use case starts and the delegation PEP
is asked to enforce the deegation policy. It then waits for notification of the results from the
delegation PEP. A scheduler function is used to detect the exact time to enforce the policy in the case
that the policy data include a time period. An example of this case is shown below:

Time
Mon. Sat. Mon.
VE2for SP-2 |__ReadWrite | ReadOnly ReadWrite EEm
_ v
Enforce Policy Enforce Policy Enforce Policy

Figure 33: Policy Enforcement

(1) Information

To digtribute the policy to the appropriate active nodes, the PDP passes the policy action data that
contain the node list to the PEP.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 44 of 56

4.2.6.3.1.6 Use Case of "Register/Unregister new SP"

If the delegation policy for a new SP is enforced successfully and no error is returned from the
delegation PEP, a positive reply and areport is sent to the PDP manager.

Then the Delegation PDP stores the policy data of the new customer (SP) in the DB with a Java
format. The “current_status’ is set as stand by, which means that a policy is not being enforced at the
moment.

If the operation is removal of a customer, the PDP removes the policy entry from the DB.

(1) Current_status of policy data. It indicates the status of the related policy data. This variable has the
following values.

A) dand by
B) operating
C) hdt
Time
L L o
stand by operating hault
Registration Enforce Policy Enforce Policy/ Stop

Figure 34: status of policy data delegation
(2) Error
If the registration has failed, an error is returned to the PDP Manager (registration error).

When the SP registration has finished, the operation is returned to the PDP Manager with a report.
Then the next processes continue asynchronoudly.
4.2.6.3.2 Operate

After configuration, Delegation PDP deals with the access rights in active nodes, with checking status,
reconfiguring and reporting to other components, e.g. PDP Manager, as necessary.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 45 of 57

Register Event
to Mon Sys

Wait for Event
from Mon Sys

Evaluate Event

1l

Figure 35: Active Diagram of "Operate"

4.2.6.3.2.1 Status Evaluation

over threshold

Report to
PDP Manager

Delegation PDP needs to check the overdl statusin order to honour the SLA of the customers and to
discover potentid malicious usage. The Monitoring System is required to achieve this with the
following information. The Delegation PDP evauates the information (event), which is given by the
Monitoring System periodicaly as follows: the PDP accumulates a number of errors in a given
interval, then compares the number with a predefined threshold.

(1) variables for evaluation

If the number of malicious accesses or the number of errors exceeds a threshold, an alarm report is

prepared. For this purpose, the following value and information are used in the PDP.

(@ interval
(b) threshold

(c) error level definition

interval
e N

Compare
Num < threshold

Figure 36: Evauation

4 ®
Accumrate A Accumrate A Accumrate

Compare

Num > threshold Num < threshold

0

Notify to PDP Manager

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 46 of 58

(2) Information from Monitoring System

Deegation PDP needs to obtain the number of invalid access with a VE id and active nodes ids
from the Monitoring System.

4.2.6.3.3 Reconfigure
During normal operation, configuration may be needed. We can assume the following cases:

1) Some customers may reconfigure their policies for accommodating their services or
consumers,

2) The ANSP may need to maintain the active nodes and thus change the customers
configuration temporarily,

3) In the event of a mdicious attack is detected in specific active nodes, the ANSP may
compulsory configure these active nodes. "Reconfiguring” functions need to handle negative
conditionsin order to keep the access rights status stable.

The functionsin "Configuration” section may support also the cases of 1) and 2).

4.2.6.3.4 Policy Example

Each policy data is controlled based on VE id individualy. The example shows delegation policy for a
certain VE which involves multiple active nodes (node id = 1, 2, 3, 4, 5). Let's imagine here that the
Customer (SP) may want to configure the access right differently for active nodes and frameworks.
For instance this SP may do some maintenance on weekends and forbid access to active nodes.

|F (dayOfWeek= Monday, Tuesday, Wednesday, Thursday, Friday, Satuday, Sunday) AND
(frameWork= Demux) THEN (accessRight= ReadWrite for Demux)

IF (dayOfWeek= Monday, Tuesday, Wednesday, Thursday, Friday) AND
(frameWork= RCF) THEN (accessRight= ReadOnly for RCF)

IF (dayOfWeek= Monday-Sunday) AND
(frameWork= Demux) THEN (accessRight= ReadOnly for RCF)

The activity diagram of the Delegation PDP is presented below:

4.2.6.3.5 Delegation PDP class diagram
In this section the class diagram that corresponds to the Delegation PDP is presented.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 47 of 59

O O Evaluation
PDP Mgr DB
®evaluate()
®re_evaluate()
DIgPDPImpl 7\
PRI, PolicyCtrl
Bdispatch() +1.f . O
_ R
X MLtoJava() ElgetReport() ®registerEvent() .
®JavatoXML() Q procPolicy() Monitor
E¥checkPolicy() System
Scheduler
DlgCheck

®checkSemConflick()
PEP ®resolveConflict()

Figure 37: Class Diagram of the Delegation PDP

After the delegation policy is dispatched to the Delegation PDP, the latter checks it for syntactical
errors via the checkPolicy() method of the DIgPDPImpl class. If an error is encountered, an exception
is raised and sent to the PDPmanager through the PDPManagerinterface. If the policy is syntactically
correct, it is checked for conflicts by the checkSemConflict() method of the DIgCheck class. If a
conflict is detected it will be resolved by the resolveConflict() method. However, the conflict cannot
be resolved an exception is raised and the PDP manager is notified, via the PDPManager|nterface.

If the PolicyCtrl needs to register an event to the monitoring system in order to check status, it does
that by accessing the MonitoringSysteminterface. When the event arrives from the monitoring system,
it is delivered to the PolicyCtrl class. When the conditions are met, the policy is delivered to the
Actioninterpreter class to be enforced. The validity period of the Policy is set in the Scheduler class.
And the PDPManager is notified about the policy deployment.

4.2.7 Element level Delegation PEP component

The functions of the delegation PEP at the element level are the following: It receives policies from
the delegation PDP and trandates them into commands being in a node readable format. Then it
enforces the commands to the active node.

We can show the functionality of the element level delegation PEP with this sample high-leve palicy:
A SP sends the following policy: “For the Edge nodes of my Virtua network that exist in the United
Kingdom, | want medium security, and for the Core nodes | need high security”.

In the network level delegation PEP, the “high security” is resolved into RO (read only) and the
“medium security” is resolved into RW (Read/write). Moreover, the Core and the Edge routers are
now routers with specific IP addresses, due to the trandation done by the Network level Delegation
PEP.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 48 of 60

At the dement level, timing conditions are put into play. Specificaly, the Delegation PDP decides
when the time is right to enforce the delegation policy. When this time comes, it passes the action to
the delegation PEP in order for the latter to enforce it.

In the case that we find ourselves inside the SP management domain, which means that the SP is
responsible for deploying and enforcing the palicies, the SP's ability to enforce the particular policy
will be questioned. The EL Delegation PEP will create a restricted schema and store it in the Schema
repository, where it will be collected by the Access Control Check (ACC) component. The Access
Control Check component will check if the SP is able to enforce a particular policy by comparing this
policy against the restricted schema. If the outcome is positive, the PDP manager will send the policy
to the delegation PDP for further processing.

There is a specia type of policy coming from the Delegation PDP that dignifies that a new user wants
to instantiate management components. In that case the PEP will use the ingtantiateDom() method
offered by the PDP manager interface. The parameters passed to the PDP manager should be the name
of the entity that wishes to ingtantiate (eg SP) and the components that the entity wishes to be
instantiated. The PEP will receive the result of the instantiation procedure.

4.2.7.1Use cases of the element level Delegation PEP
The following use cases diagram captures the above iterations:

= >

Receive Decision

DIgPDP

R

PDPMgr

translatePV

Schema Send Active node

Repository

Figure 38: Use cases of EL Delegation PEP

4.2.7.2 Class diagram for the EL Delegation PEP
The class diagram for the delegation PEP at the lement leve is the following:

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 49 of 61

DIgPEPCore O
O — Nodelnt
"WsendDecision()
DIgPDPInt ER¥translatePolicy() \O
Schema
Repository
PDP Mgr

Figure 39: Class diagram of EL Delegation PEP

The sendDecision() method is used by the delegation PDP in order to pass the policy to the delegation
PEP for enforcement.

The trandatePolicy() method is used internally by the Delegation PEP in order to trandate the policy
action into a node understandable format.

4.2.8 Conflict Check Component

The functionality of this component, which appears in figure 2 both at the network and element levels,
has already been introduced in section 2.2.1 and it will not be repeated here.

In section 2.2.1 two solutions were presented to fulfil the functionality needed in case we are not able
to avoid the necessity of this component appropriately defining the FAIN policy information modd.
Nonetheless the actual election between one of the two solutions as well as, the design of such a
solution has been left for the next deliverable document, when we will have evidences of whether this
component is needed or not.

4.2.9 Monitoring Component

4.2.9.1Monitoring Component Use Case Diagram

Figure 40 describes Monitoring component of FAIN management system se case diagram. This
diagram summaries services (subscribe, add a probe, information retrieval and being informed of
events) provided to authenticated users (subscriber).

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 50 of 62

Inform Subscriber

%/O

Add Probe

Device

<<inclyde>>

X

<<getMeasurdments>>

Subscriber

Retrieve Information
Process Probe
<< >>
<<reads> include
<<updae>>
Subscribe

Check
Acess Right

Dbase

Figure 40: Monitoring system Use Case Diagram
Actors description

Actors taking part to the monitoring component use case diagram are any component, system or
software unit that interacts with him/her. The following describes actors identified in the monitoring
system use case diagram.

- The Device,

is an abstraction of either the FAIN Active Node, software unit or device that interact with the
monitoring system. The FAIN Active Node represents infrastructure provider that offers shared
resources via its Resources Control Function (RCF) to the Management system. Others devices
controlled by the management system or software unit provided by some customers might furnish to
the monitoring system any interfaces in order to access their interna probe

- Dbase,

is the Database Management System being use to store information for users of the monitoring system
- Subscriber,
Subscribers to the monitoring component are PDPs included the Resource Manager and

network level Monitoring system that register events for which they are interested in after having
subscribed to the monitoring system usage.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 51 of 63

/_ -\ The NL Monitoring system register to

Subscribe EL Monitoring system to get local

resources status

AR

PDP

niMonitoring

Figure 41 Subscribers to the monitoring component
Use Cases Description
Subscribe

This use case alows the monitoring system users to subscribe to the service and register
events to be monitored. The monitoring component affects them an Id that identifies them for
notifying them or used for future event registration

Retrieve information

This use case provides for users the ability to ask for any information or data registered in the
monitoring system. It consists of a synchronous delivery of the event based on the pull model of a
notification service.

Inform Subscriber

When a given threshold is triggered, this use case generates the adequate event to the
concerned users asynchronoudly.

Process Probe

This use case is responsible for trandating policies introduced by user into managed
components’ resource structure being measured

Check Access Right
This use case checks authenticated users.
Add Probe

This use case dlows to introduce application specific probes into the monitoring system to
extend its capability on behave of users.

4.2.9.2 Monitoring System Design

The monitoring system can be considered as a set of traditional metering blocks that are enhanced by
the use of policy based control mechanisms and improved digtribution channdls. Although it is
foreseeable that the active node will be accessed through P1520 interfaces, the design should be
flexible enough to support other network interfaces as well.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 52 of 64

As the figure below shows, the monitoring system will be distributed among the active nodes and the
element management node. The P1520 objects and probably certain high performance monitoring
PEPs will be hosted in the active node, whereas the main components and control logic will be placed
in the management node.

tdanagement MNode

Active Mode

Monitoring
Control

Ethernet
P1520
RCOPS Interface
! Server

Monitoring
Enforcement

«files
Event
Database

Figure 42. Monitoring system deployment diagram

The diagram corresponds to a three-tiered design in which a CORBA Component Model will be
adopted as the base for the co-operation among the distributed objects. Also, the monitoring
enforcement component and the monitoring control components will communicate through COPS
interfaces. These two components are associated to the PEP and PDP respectively, although they
contain additional objects and functionality that extend their basic behaviour. An event database
completes the basic monitoring infrastructure in the management node.

A sat of P1520 objects running in the active node will be accessed by the monitoring components. To
model this interaction, a P1520 interface component has been included in the active node, which
should define the interfaces that allow accessing monitoring information from an external module and
presenting them to their clients.

Findly remark that the management node and the active node could be connected using a local area
network in the case a management node is planned to be set up for each active node”.

4.2.9.2.1 Monitoring System Packages

The monitoring system will contain a set of traditional metering blocks, an additiona part for policy-
based control and a distribution part required to support multiple PDPs. The different packages that
have been identified reflect this structure. The diagram in Figure 43shows a draft of the system
package decomposition. We have tried to minimize the number of packages by determining the
expected functional areas and reducing the number of dependencies between packages. Thus, each
package should group the classes with closer relationship.

>Other scenarios could be possible if a management node were to manage several distant active nodes.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 53 of 65

Some of the packages, as in the case of the Protocol Handler, group other packages that are
specidization for the different protocols. For example, it would include handlers for SNMP, COPS,
LDAP, etc. The diagram does not include those packages embedded in other systems (such as the
name service package), although they will be accessed as part of the normal operation of the system.
The packages have been grouped into three functiond layers: the control, distribution and acquisition
layer.

The control layer is fulfilling the PDP role in the monitoring system while both distribution and

acquisition layers redlize the PEP role. The policy-based monitoring has been aready presented in D3
at section 2.4.2.2.3 and 2.4.3.1.4.

[
i
PDP : g
. : D
Protocol 2
Handler

Notification CIM

Distribution

5 i

: _ P1520
e Metering Py Interface

Figure 43: Monitoring System Packages

The CIM (Core Information Model)® package is intended to contain the data structures associated to
the Policy. The notification packageis in charge of distributing events to consumers.

Notification

The Notification Package is the main package of the acquisition layer. It provides extended
capahilities around the basic CORBA event and natification service in order to dea with authenticated
users and policies efficiently. It contains patterns that alow simultaneous treatment of severa
notifications in parald.

®Internal Note: The policy classes could include XML seridizing and deserializing methods. This
seems to be an appropriate design decison since in XML, further meta-information is required to
process the information correctly. Thus, since such meta-information cannot be obtained just by
analysing the neither data type nor value of the data item, it would be difficult to proceed with the
seridization in externa classes. If possible, it would be interesting to implement any existing
interface that alows us to link our speciaized code with the existent code developed in general XML
parsers. (To be done)

Copyright & 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 54 of 66

The extended notification service alows a smplification of the process of connecting to the event
channel and the distribution of complete information on the consumer event subscriptions. This would
lead to a more precise configuration of event suppliersthat is currently achievable.

The CORBA natification channel has shown itsalf insufficient to transfer configuration information to
the data acquisition layer. As a conseguence, it has been necessary to extend the basic service to
include the required new capabilities. In this way, while the notification service only announces the
event type and domain name the consumers are interested in, managing its proper distribution, the
extended notification service will aso provide information on the filters being set up for each of the
events. Thisinformation is broadcast to every interested entity.

This behaviour will facilitate the creation of entities being in charge of configuring the monitoring
sensors and probes.

creates PDP

Event
I nterpreter

subscribe(event_descriptor,

event_interpreter_ref)

7 S
< NOtificationIChanneI > ,,,,,,,, Subscription
Broker
event{ filters
| Acquisition layer Sensor Registry
Sensor Sensor

Figure 44 Extended Notified Service Architecture

The Subscription Broker

In order to enable the transference of event filter information from consumer to suppliers, a
subscription broker has been defined. The subscription broker is responsible for connecting the
consumers and suppliers to the event channel, controlling the way the subscription process is redlized.
As part of its mediation, the broker performs a delivery of filtering information to a series of interested

entities. Such entities should provide the handlers (notifiers) required redizing additional
configurations on the event sources, based on the fields contained in the event filters.

The subscription broker highly simplifies the process of connecting and disconnecting to/from the
channd, hiding the peculiarities of the CORBA event channel. Bellow a part of the Broker interface
description:

readonly attribute CosNotifyChannelAdmin::EventChannel channel;
ProxySupplier subscribe(inout EventDescriptor eventDescriptor,
in CosNotifyComm::NotifyPublish subscriber)

raises (InvalidSubscriber);

void unsubscribe(in EventDescriptor eventDescriptor,

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 55 of 67

in CosNotifyComm::NotifyPublish subscriber);

/l Methods related to the event suppliers.
ProxyConsumer offer(in EventDescriptor eventDescriptor,
in CosNotifyComm::NotifySubscribe notifier)

raises (InvalidNotifier);

void withdraw(in CosNotifyComm::NotifySubscribe notifier)
raises (WithdrawalFailure);

The channd attribute contains a reference to the CORBA event channd being used by the subscription
broker, so that it can be retrieved whenever an administration operation, not implemented by the
broker, isrequired.

The subscribe method is invoked by the subscriber to ask for interest in events. The connection to the
event channel is implicitly redised. The type of the subscriber should correspond to the type of events
that are requested. That is, if the requested event is of type StructuredEvent, then the subscriber should
be either a StructuredPushConsumer or a StructuredPul| Consumer.

The unsubscribe method is called when the subscriber no longer needs the reception of events. The
subscription broker rel eases the resources, which had been associated to such subscriber.

In a similar way, two symmetric methods are available for event suppliers. the offer method, which
alows an event's source entity to offer a handler to manage, to configure the notifiers according to the
filters defined by the event consumers.

The withdraw method withdraws an offer. Thus, the notifier will no longer send events to the channdl.
The subscription broker proceeds to disconnect the event supplier from the event channel.

The information regarding the event is included in a common structure named EventDescriptor. The
IDL definition of this structure is the following:

typedef sequence<CosNotifyFilter::Filter> FilterSeq;
typedef sequence<octet> encapsulated;

union DescriptorBody switch (short) {
case 1: FilterSeq filters;
case 2: NotifyConfigure interested_entity;
case 3: CosNotifyFilter::FilterIDSeq filterIDs;
default: encapsulated content;

struct EventDescriptor {
CosNotification::EventType event_type;

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 56 of 68

string event_name;
DescriptorBody body;

Each event descriptor contains the event name and type, together with and additiona field that may
include either a filter sequence, in case a subscription is to be performed, or an event handler for the
considered event. This handler would be the one to receive the filters defined for each event type. The
interface is open to new possibilities by the use of an encapsulated field.

If it is considered that the same subscriber may be interested in the reception of several event types, it
would be necessary to be able to identify the concrete event we are interested in dropping from the
interest list. It is therefore required to be able to name the filters we want to remove from the channel,
so that the subscription broker can control them. This is the reason why a sequence of filter identifiers
has been included as one of the possible fields being contained in the descriptor body.

This sequence will be returned by the offer function in the event descriptor (defined as an inout
parameter), and might be used during the subscription removal.

The Extended Notify Server
The extended notify server is in charge of obtaining the reference to the ORB and the notification

channel, connect the subscription broker to the ORB and transfer the obtained references to it. It will
also register the broker in the name service, so that the event suppliers and consumers may access it.

The NotifyConfigure Handlers

The event handlers should offer the following IDL externd interface:

interface NotifyConfigure {
void configure(in FilterSeq addedFilters);

void reconfigure(in FilterSeq removedFilters);

3

This interface should be implemented by the entities interested in receiving filtering information for
the events they could generate. This information may be useful to appropriately configure the different
objects involved in event generation. The subscription broker will use call-back requests to broadcast
the information requested by the registered handlers.

The reconfigure method has been added to provide a way to inform to the configurators about the
removal of filters, so that appropriate actions can be realized on the monitoring system.

The subscription broker is able to detect the removal of event handler and update its information tables
without explicitly informing it.

M etering Package

The Metering package includes classes that implement the measurement algorithms and the specific
controllers required managing monitoring devices. The overal diagram in Figure 45 depicts the main
classes and their relationships of this package.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 57 of 69

SensorHegistry Frobeflspoassory
| +regisierin sensarfisme - STE in metic : String] +retriee in identler StringlOhect
+=ioren idendfer 5ring in abjectChiece |

I1|i‘f“'|!| N -
1 I'I.II.'__lr.ll.l.l:\:

................. I et
Senwor e Funnae |
-nesre: : Biring T -prabes
deibzePaierenza : Sring |
* | —mErie | Sng Frobe
e e U T T S T .- "
—SENSAS | =8 SO o e~ e | e = el
PO —— | pohe | —hrstmnaky; Sning
+athme] | ~camrmctar ; Membar
+zact vat] e, Ears 1. 1 cirba g
sgereatef) ——sdipla e DagelaphaeStrategy
i +ierestefin_luncthoralky @ Siing) R LT
=arity s +ETREE i o o ¢ Srieng) ¢ b b
RN
+ L RN S pl A
1 ek bl bl ol
+atnchlin device : (joet) ; boslean -,
b e E AR I e ————T—

—analled | Dokt = f6es

Ihrgshald - 15
1.2 et £ syl Wlonead on 10 create e CoREeokar]
—ammied ; o ke = ass

=zt Vecior ancpas chabwmr datn in
ErEThies bR s bl) _
+FEn bk o | Boizan {guny) 1 | -chinGusue
el © | +anabii)
Threshald Type ————— +dsaia]) ~ Chsui
=tymw -+] ke ey EweariiSoen erain f—— b
+am) —a —queus : Chigel]
" | +rmenje inein -foit | i
+aidEverri iztorarin ismnar Evortli saner| bk it
+ramoeet veril istener|in bsteran Evertlistener ~Numiar OC0RErs ! o

AL DY L N S
+icreate)n s 1 i)
—1sEmpiyl] ; bockean {query
-isFul) : hoakear {quen

1 | ~irigmer wer sl N object | O bjes)

sdpepip | 1 Dot

deines

TriggerCsndiisn

=AhDedbaplEan = nie

+erwabintn (ot trigper i Enumnion e olpan | -tiggerCandtion
HrAlseT = ——

15~ pondidon -
T resiricted fny
-]

Coingocsibe Trig gorl emdion

- oraa A | 0 i e ok E v i e e

" | =Sl * | =Cfslran

Steateamend Consiraim

—usrizhis © METhe —¥ lst; Heshislaly -
wale | Dbjeat constrainadyvanabio : biamber ‘ 1| =annierations
- ~ et Dbt —werila b Constraintlvpe
-Ipa

+icreniafin T-far-mh' bdember, m_vekaa : Objech
foheckT et onsisieno) ; boalear {aetract ARENGR0G]_ Do BV N SITEg |

+machi]; bookar {absiracy 3R OrrEITR O i it | ks E e a0 | qu ey
+CPRck valie ; ObReT) Do b

Figure 45 Metering class diagram

Following the classes alowing the operation on the metering blocks are described. (Implementation
Note: As an important non-functiona requirement, the event handling mechanisms should not block
the event generators).

Class Threshold

This class is in charge of the Threshold analysis and the delivery of threshold events to the event-
dispatching queue. It is aso responsible for monitoring whether a threshold has been reached and
obtaining other dtatistical data. Two classes of threshold may be differentiated: those that check
whether a certain value is surpassed and those that check whether a value goes down a certain limit.

Copyright & 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 58 of 70

The class Thr eshol d should be able to analyse the amount of time a value is over a defined limit,
since n some situations this is an important data. For this reason, each Threshold class, which fits a
certain ThresholdType, defines a TriggerCondition whose evaluation will determine whether to raise a
threshold event or not (note that it is possible to define a complex CompositeTriggerCondition). A set
of constraints restricts the definition of trigger conditions so that they are properly formed. The
constraints might be obtained from the device being monitored. These constraints are thus checked
when establishing the trigger conditions for the threshold.

At the same time, an appropriate set of probes is required when the threshold configures the statements
and trigger conditions. The probes will be the only means of accessing the devices.

Class Statement

A statement is formed by an expression, a value and a match operation. Subclasses of the Statement
class should implement the match method according to the expression and value types and semantics.

Class Sensor

The Sensor is the central class of the metering package, being in charge of creating and coordinating
the rest of classes. This class should obtain the available information on the device and specify the
corresponding Thresholds and Probes as necessary to fulfil the measures.

The Sensor event handlers are able to locate the source of threshold events by inspecting the
ThresholdEvent class. Since each sensor stores the relationship between a device and the Thresholds
that have been defined for it, it is aways possible to obtain the reference to the device on which an
action is demanded.

The metering processes can be activated and deactivated by invoking the operations act i vat e and
deact i vat e respectively. Below some descriptions of the class main attribute:

devi ceRef erence: dringfied object reference to the device representative class. This
reference will be used to connect the necessary probes to the device or resource being monitored.

nmet ri c: contains a description of the metric being used by the Sensor.

gat heri ngPeri od: specifies the time interval during which data is processed by the sensor.
When the interva has finished, the resulting high level metric is ddlivered by the sensor. The
specia value 0 makes the sensor to deliver each collected event. However, be aware that this may
cause an increase in the overhead.

resol ut i on: the resolution provides information about the amount of data that the meter should
collect. The higher the resolution the more the resources that are consumed.

Class Probe

A Probe implements engines being in charge of checking the data of interest from the devices.
Either metering blocks or threshold classes would use probes to obtain monitoring information. The
logic associated to the data capture is confined within strategies. Therefore, the Probe class should
only offer the strategy control and adjustment, wheress at the same time guarantees the data delivery.
Severa strategies could be used to obtain the data, such as polling

Once the probe has been retrieved from the repository, the at t ach operation should be invoked in
order to connect the probe to a specific device. The device reference may be passed to the method as
an interoperable object reference in string format. The confi gur ati onConpl et ed method
should be called when the configuration of the Prabe has been completed, i.e. it has been attached to a
device and the strategy to access such device has been defined. Findly, the det ach method closes
the connection with the device and rel eases the associated resources. The Probe finalizer should check
whether the Probe has been detached or not, taking the appropriate measures to assure that the system
recovers the resources assigned to the Probe.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 59 of 71

-Care must be taken to avoid a too low polling interval since it could become a bottleneck or injecting
traffic in the network to measure the packets delay, errors, etc. Thread based engines might suspend
until they recelve appropriate exceptions or CORBA messages. Main attribute of probe are the
following:

Conf i gur ed: informs whether the probe has been configured or not.

Functi onal i ty: contains a description of the probe functionality. The description will be
structured in severa fields separated by blank spaces. The first field represents the strategy to be
used by the Probe ("sample’, "pall”, etc). The second field explains the type of Member that
should be accessed (a "fidd" or a "method"). The third field provides the name of the field or
method to be accessed. This way, an example of functionality description would be:

"poll method getNumberOfL ostPackets®

During the configuration process, the probe ensures a coherent state between the stated
functionality, the connector and the strategy being used. Anytime a configuration change occurs,
there is a convenient functionality update.

connect or : This parameter should contain the set d references that alows dynamicaly caling
amethod from another class. In that sense it becomes the "connector” of the Probe. It provides the
necessary support for binding to anonymous classes, based on the introspection capabilities offered
by the Java language. To avoid loosing generality, the connector has been defined Member, so that
either Field or Method values can be accessed.

Class ProbeRepository

A ProbeReposi tory sores the probes available for a given device. The probe functionaity
becomes the key to access the repository. A probe repository might exist per device.

The following diagram depicts the structure of the strategy related classes.

=i
BarabngyF ety

+crepteSirateydin typeDataCaph e Sirabegy Type T DataCaphoreStrete gy
HaSupported|tyes | DataCapture Srategy Type] Loakean {guery}

Ifededi kkiE basd ki e of I

= e =
Lrstalapiure Strategy

| +efusmBahed i peramaten Db [
S Y Wb e G b e st

Py

Intareaptio D aaCapleeSiratbgy Pt CapluseStratn gy S| #ita Cag b e Sarat gy

~pelingintaryat it = 1000

+create() Forente(| foramtel)
e useheiorparameter - Objeat[]) recfustieheioun parameten Dbject [] +adj stBehnuioun parameter Dect [)
+CEpIu e el | Juaue) +CEE e dra i Caiaua) TR T[S [E TR oW]
1 1 1
Identied by
Ideridied by dentfied by
1 |, -Tqae
1 ABnUmBrAor 1
Crubar mgs bure it pgy Ty pe
i — Iy

=Type

Figure 46 Strategy pattern class diagram

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 60 of 72

Class StrategyFactory

This class is responsible for creating the data capture strategies depending on their agorithm
definition. It follows the strategy pattern.

The cr eat eSt r at egy method will be invoked in order to create a new DataCaptureStrategy that
will use the adgorithm corresponding to the type paameter. It may throw an
UnsupportedStrategyException if the strategy is unknown or unsupported. The i sSupport ed
operation alows checking in advance whether the factory is able to create the requested
DataCaptureStrategy.

Class DataCaptureStrategy

The Dat aCapt ur eSt r at egy class alows specifying several agorithms that can be used when
accessing information on a given device. This way it is possible to ater the agorithm without having
to change the rest of the system. The method adj ust Behavi or dlows the specification of
parameters that are required to adjust the algorithm. For example, in the case of a polling strategy, the
polling interval could be defined by realising the following operation:

strategy.adjustBehaviour(new Integer(1000));

The concrete semantic of this method depends on the type of agorithm. This method only provides a
convenient way to pass parameters to agorithm and adjust them on runtime.

Class DataCaptureStrategyType

Defines the type of the data capture strategy. The constructor is made private to avoid trying to create
illegal types. Different data capture Strategy types could include polling or waiting for an
asynchronous event. So far, the following strategy types have been defined:

Class Inter ceptionDataCaptureStrategy

This Strategy will be used when an interceptor is required in order to capture data related to a request
performed between two components. One of the components may be a middleware platform, such as a
CORBA ORB and is specidly useful in service activity monitoring.

Class PollDataCaptureStrategy

This Strategy is intended to be used when it is necessary to periodicaly poll a device or resource for

data. The data will then be automatically sent to the output queue. Attribute Pol | i ngl nt er val
defines the palling interval in milliseconds. The default polling interva will be 1 second.

Class SampleDataCaptureStrategy

This strategy is intended to be used when taking a single data sample is enough to perform a value
capture. In this case it might be possible to define the exact time when the sample is required. This
information could be passed as part of the agorithm parameter list.

ProtocolHandler Package

This package contains the protocol handlers for the protocols required for the system operation, such
as COPS, SNMP or LDAP. Other packages, such as the notification or the metering ones, depend on
classes contained in Pr ot ocol Handl er . However, a good design should minimize the possibilities
of affecting externa packages by defining interfaces that comply with the protocol specifications.
Figure 8 displays the main classes that are required for COPS operation. Although the concrete
package design would appear as part of other sections, the diagram is intended to highlight the
existence of delegate classes that connect the client and server entities with external package modules
implementing part of the behaviour.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 61 of 73

COPSClient COPSServer
* 1

—handle:Handle ooperate with —handlelListHashtahble
+decision(in clientType:ClientType , +openiin clientType:ClientType ,

in clientHandle:Handle , in pepldentifierstring,

in decision:PolicyDecision, in clientInformation:ClientS|List)waoid

in solicited:hoolean):void +requestlin clientType:ClientType,
+close(in clientType:ClientType, in clientHandle Handle,

in reason:string):void 1 in requestType:RequestType,
in clientinformation:ClientS|List):void
1 1 +report(in clientType:ClientType,

In clientHandle:Handle,
in reportType:ReportType,

in clientlnformation:Client3IList)vaoid
1 Context +deleteRequest(in clientType:ClientType,
E— in clientHandle:Handle):void
+close(in clientType: ClientType,
in reason:string):void

delegates on

1

1 delegates on
COPSClientDelegate 1
COPSServerDeledate

COPSClientDelegate and COPSServerDelagate should act as superclasses
for each specific PIB module.

Figure 47: COPS protocol handler class diagram
Class COPClient

The COPSC i ent contains the algorithms and the state machine of a COPS client. However, since a
part of the state machine depends on the PIB, such part of the behaviour has been delegated to certain
classesin the PIB package.

Class COPSServer

The COPSSer ver class contains the agorithms and state machine corresponding to a COPS server.
Since part of its behaviour depends on the PIB modules it is associated with, the COPSSer ver
delegates such part on the COPSSer ver Del egat e defined in the PIB packages.

Class Context

The Cont ext classes contain the information that associate a COPS client/server with its
corresponding delegate in the PIB module.

P1520 I nterface Package

This package will contain the P1520 wrappers required to communicate with the monitoring entities
hosted in the active node. The P1520 interfaces will alow accessng monitoring information from
external sources in a standard way.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 62 of 74

5 R15PBANM (NL-MS) DESIGN

5.1 Network Level Management System use cases

PBANM is using the generic use cases diagram of the NMS described in the previous chapter.
However two additional components supporting decision-making with regards to resources control
and the inter-domain communication have been introduced: Resource Manager and the inter-domain
Manager components. The roles of both components are capital to deal with network wide concerns.
The resource manager component will provide PDP with the best route domain wide according to
resources status. The inter-domain component will be in charge of furnishing al mechanisms alowing
communication with other domains. The inter-domain issue encompasses a lot of views that should be
carefully tackle in order to avoid unnecessary complicated vision. In the PBNM system, the inter-
domain component will be in charge of conveying and managing requests over FAIN domains.
Figure 48 illustrates PBANM’s components and how Inter-domain and Resource Manager are
integrated in the whole sub-system.

Policy Editor -

F
PDPMg; 4 Policy | Conflict check
translatorH LA

Access Rights
Check

Resource
Man aﬂ&[‘

Interdomain
Manarer

ANSP
DOMAIN

Figure 48: PBANM's Components

We are not going to ded with both components in this document since they have been postponed to
future works (Y 3) when prioritising activities.

5.2 components description

According to the 2tiers Architecture, we will avoid redundancy. Only specific components (resource
Manager, Inter-domain management) and whatever is specific to the network level in others
components are described. However according to our priorities and time constraint the two most
specific component (resource manager and inter-domain management components) of this level have
been shifted to Y 3 where they will be deeply investigated.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 63 of 75

5.2.1 ANSP Proxy Component in Network Level

Policies coming from the ANSP or the SP policy editor are forwarded to the ANSP proxy. The ANSP
proxy forwards the policies to the appropriate domain instance (either ANSP or SP domain). The
ANSP proxy functiondity is to authenticate the requests and then to find the instances to which the
policies must be forwarded. The actua policies are processed by the proper instances and not by the
ANSP-proxy.

In other words the ANSP proxy makes the management architecture more robust from the security
point of view. After the ANSP proxy has performed the necessary security checking, and the SP is
alowed to enter the management framework, the SP can perform SP-specific checking within the SP
domain. Thisis similar to a proxy of aweb site where a proxy checks if you are alowed to send traffic
and then the web server software does additional security checks.

Although a proxy may be located to a different physical station, it could also be the case that is co-
located with the ANSP or SP instances.

This component in network level works with interactions of Policy Editor and PDP managers, which
can be multiple instantiation for an ANSP and several SPs. ANSP Proxy needs to dispatch policy data
towards to an appropriate PDP manager.

5.2.1.1Use cases

Firstly the ANSP Proxy checks the credentias of the incoming policy data, then dispatches it to one of
the PDP managers. Also the ANSP proxy component will verify the reports sent by the PDP managers
and will notify the results to the customers. This notification could be done via a GUI used by the
Policy Editor.

O

A Check Credential E);
Policy Editor
PDP Mgr
D

ispatch Policy

-

Analyze Status

Figure 49: Main Use cases of the ANSP Proxy in Network Level

5.2.1.2 Class Diagram

The ANSProxylmpl class povides two methods. The sendPolicy() is used by the Policy Editor to
install the policy data and the setReport() is used by the PDP Manager in order to report the status of
the policy deployment.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 64 of 76

ANSProxylmpl

WsendPolicy()
WsetReport()

Figure 50: Class Diagram of the ANSP Proxy in Network Level

5.2.2 PDPMgr Component

The functionality of the PDP component at the network level is exactly the same as the one described
previoudy for the element level in section 4.2.2.

5.2.3 QoSPDP Component

At the network level the PDP component is also, as in the element level, one of the key components of
our policy-based management architecture. There are not many differences between the PDP
component designs at different levels, as one would rapidly notice comparing the element level and
network level use case diagrams of this component. The network level use case diagram is given in
Figure 51 below.

<<communicate>>

PDPMgr
MonltormgSyst
<<communicatg>> municate>>

include <<<<reque5t5>>>/9<<<communlcate>>%
Check PoI|cy <<|'9 §>>> makeDecision ResourceMana InterdomainMan

<<<<r quests>>> ger ager

<<|n9'fude>><<|r\c|ude
g<<<re ests>>><<< equests>>>

deC|S|0nEnforcement
<<<<rgguests>>>

Syntatic Checking Semantic Checking un|nstal| Policy

<<communigate>>
<<gbmmunicate>>

<<communicate>> E %

PEP EML

Figure 51 — NL-PDP Component use cases Diagram

In this section we are going to describe the network level QoS PDP functionalities and design. Since
this description does not vary significantly from that given in a previous chapter for the element level
QoS PDP, we are just going to point out here the main differences instead of repeating the whole
description. The main differences in the functionalities with which the PDP at the network level deals
with in relation with the element level are:

The result of the enforcement of the decisions taken by the PDP component at the network
level are dement level policies and not commands to the active nodes interfaces as in the eement
level case.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 65 of 77

There is no support for signaling functiondity at the network level. This is due to the fact
that signalling requests for decisons are processed only at the element management stations.
Nevertheless a similar type of functionality can be realised using the event notifications to the network
leve.

The most important difference between both levels is the support for the “makeDecission’
functionality. At the network level most policies request network-wide resources. Before deciding
whether these policies should be enforced or not, the makeDecision functionality has to know the
availability and location of requested resources in the network. To obtain this information the
makeDecision functionality will contact the resource manager component. With the help of its peer a
the element level, the monitoring system and the interdomain manager, the network level RM gathers
information needed by makeDecision functiondlity.

Another difference in the makeDecision functiondity at the network level enforcement is that,
we do not have the same situation of having the enforcement points replicated at different active nodes
virtua environments. So that we do not need to demultiplex the decisons to the appropriate
enforcement point because there is only one suitable and it iswell known.

The class diagram at the network level shown in Figure 52 reflects the network level PDP design.
Again as with the use cases we are not going to provide the whole description of the QoS PDP class
diagram, but just the main differences of this component design against the design of the element level
QoS PDP described before:

Since no sgnaling support functiondity is redlised, the class that developed this
functionaity disappears from the design (i.e. the SignalingComp class).

Also, the command demux class is removed from the PDP design at the network level
because, as described above, there is no need of demultiplexing decisions to the correct enforcement
point since there is only one suitable enforcement point.

- The Condition_interpreter class adds the necessary functionality to interact with the resource
manager component for coping with policies requesting network-wide resources.

Finally, the pdpQoSOpsimpl is aso briefly modified since its request function is changed for
supporting requests of resources from other domains coming from the interdomain manager and
through the resource manager. At the element level this function was used to support signalling
requests for decisions.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 66 of 78

Event
Interpreter

o
PDPMgrinterfac ’eventMap()
¥ ?'involvedPol()
pdpQoSOpsimpl Event Register
Parser Evaluation
le—| 'dispatch() ‘registerEventO

®xMLtoJava() [[FcheckPolicySyntax()

= m '-'evaluate() i?‘bu"dMonpoﬁcyo MonitoringSysteminterface
JavatoXML() request()

're_evaluate()
\ N <<p90€1g>>
$ <<policy_caducity>> Condition_Interpreter

BemanticConflictChech —
nterface Scheduler
'checkSemCoanict() | :interpret_conditionso —>§RM I?—>Ot P RMor-ELntert
¢ % . - Juat diti grinterface gr-ElLInterface
PresolveConflict() SetPolicy) *RegTrigger() evaluate_conditions()
getPolicy()
\ l/ *findRe: ources() -’reqResO
IActioninterpr DBl PolicyUninst Ez'buiIdResPolicy()
eter nt aller Y
InterdomainMgr
'execute() ’uninstall()
'reqResToPeerDomO
’reqResFromPeerDom()
PEPInterface
— EastboundExtl
'decision() nterface

Figure 52 — PDP Component Class Diagram

5.2.4 QOSPEP Component

The PEP component at the network level has, from the conceptua point of view, the same
functionality as the element level ones, except that at the network level they do not include signalling
support functionality for the reasons previoudy exposed. However, the concrete processes needed for
redisng the functiondity (i.e. trandation of policy decisons into the target understandable
commands) vary significantly since these processes at the network level are policy trandations from
network to element level policies. This fact is reflected in the use case diagram shown in Figure 53in
two ways:

- First the map action to interface functiondity is now oriented to the trandation of network to the
element level policies,

- Second, since the policies between the network and the element level stations travel expressed in
XML for severd reasons that were aready carefully described in FAIN Deliverable D3, we have
included the trandateToXML functionality, which covers this task.

Another importart difference in the functionaity of the PEP component (i.e. the QoS PEP
component) regarding the element level is the de-multiplexing of the enforcement command to the
appropriate PBANEM systems.

Findly, the dynamic conflict checking functionality appearing at the element level is not need at the
network level and thus not designed.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 67 of 79

A

PDP

<<communicate>>

enforce decision ™
2xinclude>>

N
N

s
/

L
<<ingtude>>
/

/
/

- \l\O
map action to interface demux policies to EMSs
/E\ <<commuhicate>>
<<extend>>!
]
1
%<<<requests>>< : %
Parser Component translateToXML EMS

Figure 53 — QoSPEP Component Use Cases

In Figure 54 we can see which classes develop the PEP functionality at the network management
level. As for the dement level the PEPImpl class controls the decision enforcement process and,
obvioudly, the classes that supported the signdling and dynamic conflict checking functiondity at the
element level have been removed. The mapping of the use cases to the classes that realise this

functiondity is the next one:

Enforce decision: The functionality of this use case is developed by the PEPImpl class, it
basically initiates and keeps control of the enforcement process.

Map action to interface and trandateToXML: The IntMapper is the responsible class for these
two functionalities. The two functions of this class mapAction() and JavatoXML realise each one of
the two functionalities respectively. In order to parse the JAVA eement leve policy into the XML
policy the IntMapper class contacts the Parser component included within the PDP so as to avoid
unnecessary replication of functionality.

Demux policies to EMSs. The functionality of this use case is readlised by the EMS Demux
class which extracts from the XML element level policies the active nodes where they should be
applied and maps this information to the corresponding PBANEM system associated to those active
nodes. Then, it forwards each policy to the corresponding element management station.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 68 of 80

FEFnaface

F.'EPImpi

*rzcision)]

| Initdappsr | EMS_Demux

b *napactonf)
Parcal P lavatokiL]

| SdemuToEMED

EMEtefac

Figure 54 — QoSPEP Component Class Diagram

5.2.5 Network level Delegation PDP

The Basic functiondlity of the Delegation PDP in the network level is similar to that of the element
level. However, from the network administration viewpoint, the functions dealing with notifications,
which are sent, from active nodes or EM Ss and the functions interacting with the end user (operators
of ANSP and SPs) should be mentioned in the network level.

5.2.5.1 Delegation PDP use-cases

The Main use cases of the Delegation PDP in the network level are smilar to the ones in eement
level, which are namely for Configure, Operate and Reconfigure stages. In Deployment, incoming
policy data are checked and forward to Delegation PEP in Network Level. After deployment of policy
data, Delegation PDP moves in Operate stage, which are checking the status of access right with
information from Monitoring System of network level and PBANEMSs. Here we can show the use case
of Operate, which dedls notification function. With this function, operators can know the status of
access rightsin their virtual networks.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 69 of 81

~

—O

!

Monitoring
PDP Manager Check Status System
Policy Editor Notification

Decision for Reconfigure

Figure 55: a Detailed Use cases of Operate stage in Delegation PDP

5.2.5.1.1 Messages

Notifications from Delegation PDP are made when necessary. These messages are sent both the
synchronous and the asynchronous way, then finaly arrived to Policy Editor or other components to
display messages for users.

(1) Result of Configuration/Change

When the configuration of a new customer is completed successfully, this notification is sent. On

the contrary, if the configuration of a new customer fails, an error message is sent with the alarm
level and the error type.

A) Configuration error types
-policy check error
-policy syntax error
-policy semantics error
(2) Other Errors
-Invalid Operation: a customer’s operation mismatches the attribute.
-Node Error: A node is down.
(3) Alarm Level
Anadarm level isincluded in the error messages in order to indicate how critica isanerror.
A) Critica
B) Warning

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 70 of 82

C) Notification

5.2.5.1.2 Delegation PDP Class Diagrams

Since basic functionality of delegation PDP in network level is smilar with one in eement level, most
of classes of element level could be reused in thislevel.

O O Evaluation
PDP Mgr
bB ®evaluate()
®re_evaluate()
DIgPDPImpl /}\
Parser - PolicyCtrl
®dispatch() +1.F Y O
®XMLtoJava() EllgetReport() registerEvent() .
avatoXML() E¥procpolicy() Monitor
= E¥checkPolicy() System
Scheduler
DIlgCheck

"®checksemConflick()
PEP "®resolveConflict()

Figure 56: Class Diagram of Delegation PDP

5.2.6 Delegation PEP at the NL

The functions of the delegation PEP at the network level are: Firstly, it receives the delegation policies
from the delegation PDP, it makes the necessary trandations and then it delivers them to the EMS
(namely the EL ANSP proxy).

We will use a policy example in order to make the functionality of the NL delegation PEP more vivid.
An SP sends the following policy”:

“For the Edge nodes of my Virtua network that exist in the United Kingdom, | want medium security,
and for the Core nodes | need high security”.

" For the sake of simplicity, we assume that the SP uses the ANSP management framework, and since
the ANSP has the rights to perform any kind of operations, there are no checks needed as to whether
the ANSP has the rights to instd| the policy.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 71 of 83

This Delegation policy will arrive through the Delegation PDP, to the DIgPEP. The DIgPEP will
extract the proper parameters from the policy and will substitute certain fields in it. In our example it
will subgtitute “high security” with ReadOnly (RO), and “medium security” with Read/Write (RW). It
will also analyse that edge nodes are the nodes described in e.g. IP address list 1 and Core nodes are
the nodes described in IP address list 2. Thus the NL Delegation PEP will create brand new EL
Delegation policies. It will then send these policies to the ANSP proxy of the element level.

In the case that we find ourselves inside the SP management domain, which means that the SP is
responsible for deploying and enforcing the policies, the SP's ability to enforce the particular policy
will be questioned. The NL Delegation PEP will create a restricted schema and store it in the Schema
repository, where it will be collected by the Access Control Check (ACC) component. The Access
Control Check component will check if the SP is able to enforce a particular policy by comparing this
policy againgt the restricted schema. If the outcome is positive, the PDP manager will send the policy
to the delegation PDP for further processing.

There is a special type of policy coming from the Delegation PDP that dignifies that a new user wants
to instantiate management components. In that case the Delegation PEP will use the instantiateDom()
method offered by the EL PDP manager interface. The parameters passed to the PDP manager should
be the name of the entity that wishes to instantiate (e.g SP) and the components that the entity wishes
to be instantiated. The PEP will receive the result of the instantiation procedure.

5.2.6.1Use cases of the NL DIg PEP
The following use cases diagram captures the above iterations.

O

Receive Policy

DIgPDP
PDPMgr
translatePolicy
Schema Send Policy ANSPproxy
repository

Figure 57: Use cases of NL Delegation PEP

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 72 of 84

5.2.6.2 Class diagram for the NL Delegation PEP
The corresponding class for the delegation PEP at the network leve is the following:

O

PDP Mgr

O

/ANSP
DIgPEPImpl Proxy

O ®sendpolicy()

Delegation &translatePolicy()
PDP
DIgEvaluation

Parser O
- ®evaluate() Schema
EEXMLtoJava() Repository
®JavatoXmL() \I/
DlgActionint
erpreter
execute()
fainNLDelegationAction
®execute()
Delemligen / \ DelMgmte
NLparams milgen
Shwrite(Fwrite()

Figure 58: Class diagram of NL Delegation PEP

The sendPoalicy() method is used by the delegation PDP in order to pass the policy to the delegation
PEP for enforcement.

The trandatePolicy() method is used internaly by the Delegation PEP. In the policy example given
above, this trandation can be from vague router names such as Core or Edge to specific IP addresses
of routers. The Deleml1gen and the DelMgmteml1gen classes generate the two EL Delegation policies
that will be sent to the EL ANSP Proxy.

5.2.7 Conflict Check Component at NL

The text at section 4.2.10 for the conflict check component at the element level applies as well to the

network level of this component, since the requirements, the functionality and the approach taken are
the same.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 73 of 85

5.2.8 Monitoring system-NL

Although a monitoring system at network level has been identified, it remains to define how it will
operate. This section glances at some issues that have been identified and being on the list of a
potential solution to be investigated. As the whole network level, the NL-Monitoring system would be
in charge of gathering the state of resources in a given domain nodes in order to provide the other
network level components (DelegationPDP, QosPDP, NL-Resource Manager) with domain wide
resources information, refreshed at a time scale to be dimensioned.

To assume efficiently this role, the NL-Monitoring system subscribes to Monitoring Systems present
on each Active Node of its domain. Then it registers the events which status it would like to receive
either a some given interval of time or on demand. The choice for such refreshment of resources
status is related to their natures. Further investigations in this direction to integrate fully this view in
the management architecture have been elicited and are being devel oped.

Figure 59 illustrates the network level monitoring system relationship to the EMS monitoring systems
in a given administrative domain.

As well as the interactions with EMS monitoring system, NL Resource Manager and NL Delegation
PDP in a given domain are obvious, the reflexive interaction (between) NL Monitoring system still
needs to be developed. Indeed this interaction will be strongly connected to the FAIN network model
solution vis avis of sub-networking solution and inter-domain management that are still being tackled.

Adminigrative Resource.
Domain - Network 1 %Manager
. Monitoring v—
T System e
N | DERRL
Monitoring
System

Active
Noden

onitoring Honl!orlng

System ® ¢ ¢ Monloing e eee ssem
%Stem

Active
Node 1

Element Level

Figure 59: NL and EL monitoring Systems relationship

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 74 of 86

6 R16 ACTIVE SERVICE PROVISIONING — ASP

The Active Service Provisioning (ASP) is the sub-system of the FAIN Management system in charge
of providing deployment of new or needed services in the relevant area of the FAIN network on
demand either by the network operator or the network users (Customer, Service providers). The goa
of this chapter is to focus on this functionality of the of the FAIN architecture pointing out its main
features. To this instance, an incremental description from capturing main functiondity, thus the main
components to a deeper description of those components will be adopted through this chapter.

6.1 ASP use cases

Figure 61 depicts the main use case diagram of the ASP system. The main use cases of the ASP sub-
system are:

Release service. It describes the capability of the ASP system to make a service available for
deployment in the active network.

Deploy service. It describes the capability of the ASP to deploy a released service in a target
environment within the active network.

Remove service. It describes the capability of the ASP system to remove a service from atarget
environment.

Withdraw service. It represents the capability of the ASP system to withdraw a service from alist
of available servicesin the active network.

The main actors communicating with the ASP system are:
Service Provider,
Active Network Service Provider
Network Infrastructure Provider,

The roles are described in the FAIN Enterprise Model in detall.

The ASP system capabilities represented by the main use cases are related to each other in that thereis
a valid sequence in which they occur for a given service. An activity diagram in depicts these
relationships.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 75 of 87

register service

service
registered

deploy service

service installation
deployed

remove service

service installation
removed

withdraw service

service

withdrawn

Figure 60 Activity diagram for an active service processed by the ASP.

First, a service is r eleased by the Service Provider in the active network. This means that
the service provider makes the service available to the users by registering the service in
the active network and storing the service metadata and service code modules with the
ASP system.

After having been released, a service may be deployed to a target environment in the
active network. The Service Provider initiates this process by interacting with the ASP. In
order to find out the target environment required by the service requirements, the ASP
communicates with the Active Network Service Provider (who may aso interact with the
NIP) to request the information about the state of the network and to allocated needed
resources to the service.

A deployed service, i.e. a service ingalation, may be removed from the target
environment it has been deployed to, if needed. Some interaction with Active Network
Service Provider may occur when removing a service.

Finaly, the Service Provider may withdraw a service from a network.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 76 of 88

O

release service

D
/deploy service
R \;%ﬁ%

ANSP

remove service

withdraw service

Figure 61 Main Use Case of the ASP.
The following subsections explain the use cases identified above.

6.1.1 release service

The Service Provider who decides to offer his service in the active network has to release it in the
active network. It does so by contacting the NMS, which alows accessing the service release
capability of the ASP. Figure 62 shows the r el ease use case diagram. The service is released by
registering its name and some deployment information (a list of required service component
descriptors) with the network service registry, and uploading the service code including dl the
dependent code into the network-wide service repository.

% register service description

store code module

Figure 62 release service use case diagram.

6.1.2 deploy service

After the service is released in the network, the Service Provider may want to deploy his service to a
specific target environment, which is most suitable for the given Consumer requesting access to the
service. A target environment is formed by a set of active nodes on which the code modules of the
active service are deployed.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 77 of 89

Figure 63 depicts depl oy servi ce use case. The deployment process starts at the network level
with mapping the service properties to target environment properties. The ASP identifies the target
environment of the service in that matches the information about the current state of the active nodes
available to the Service Provider (in terms of their static and dynamic properties and capabilities)
against the requirements of the service described in the service component descriptor. This capability
is represented as the map service to target nodes use case included by depl oy
servi ce use case.

When deploying a service, downloading of the service is usualy needed. It consists of downloading
deployment descriptor downl oad descri pt or use case) and its code modules (downl oad
code nodul e use case) as well as al other services t depends on. To discover these dependent
services, service dependenciesareresolved (r esol ve dependenci es usecase). Thefetched code
modules may be cached locally on the target active nodes (cache code use case).

Another capability of the ASP is service ingallation. The service code modules fetched onto the node
have to be installed in the appropriate execution environments (EES) of the target environment. The
ASP ingtalls the code modules by performing some EE-independent pre-configuration of the service
code modules and making them available to the target EES. Some interaction with Network
Infrastructure Provider (the active node) is needed to perform the latter deployment steps.

% <<communicate>> %
deploy service S
Sp in the nletwork ANSP

map service
to target node(s)

i<<include>>

i

deploy service <

g on the node e
’] N, S~
i 1 AN S~o
~ | ™ T <<include>>
) N ~ include
L~ <<include>> 5_2 NY T
resolve dependencies install service cache code
download
1 \
,II \\\ ,/ \\
/ \ 1 \
/ \ ! \
/ \ / \
/ N\ / \
/ N, ! \
/ N / \
/ . \ ! \
f/f <<include>> \% / \
download descriptor download code module make avail- preconfigure
able to EE and setup

Figure 63 deploy service use case diagram.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 78 of 90

6.1.3 remove service

The Service Provider (or Network Management System representing him) may regquest to remove a
deployed service from the environment it was deployed in. This ASP capability is described in remove
service use case depicted in Figure 64. The SP communicates with ASP system at the network level in
renmove service from network use case. The ASP identifies the target environment of the
deployed service and removes the service from every active node forming the target environment

(remove service from node usecase). Itincludes:.

resolving dependencies of the service components to identify al dependent service
components to remove.

uningtaling the service components from the execution environments of the target
environment. This includes removing the code modules from the execution environment and
resetting the execution environment to the state before the service component installation. The
uninstall service involves some interaction with Active Network Service Provider.

and removing the code modules from cache if needed.

<<communicate>>

X O A

remove service ‘\\ ANSP
from thg network N

[} SN

SP

1

1

! .

i<<|nclude>> ~
1

1

remove service
- from th? node ~
N

’
- 1 N,
-

,

4 ! ~,
Z ‘ SN

resolve dependencies unintall service remove from cache

/ \,

\,

/

/ \
\,

o OO

remove code from EE reset EE configuration

Figure 64 remove service use case diagram.

6.1.4 withdraw service

The SP who release his service in the network, may aso want to withdraw the service from the active
network. The wi t hdr aw ser vi ce use case describes the capability of the ASP to unregister the

service from the network service registry (unr egi st er servi ce descri pti on usecase) and
to discard the service code modules and their dependent code modules from the network service

repository (di scard code nodul e use case).

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 79 of 91

%/unregister service description

T

discard code module

SP

Figure 65 withdraw service use case diagram.

6.1.5 manage service installations

When deploying or removing a service from its target environment, the ASP performs management
functions on the database with al service components ingtalled on the active node. The nanage

servi ce indadlations use case describes the capabilities of the ASP to manage the service
components on the node that the service provider may use, like service component’s code expiry.

X—O

manage code

.~ ~
/, SN

& SN
version check expiration check

Figure 66 manage service installations use case diagram.

6.2 Components description

From those well-identified and isolated functionality of the ASP, relevant components have been
identified and aigned © the 2tiers Architecture assumption when needed. For more information on
this aspect of the design, we invite the reader to have a look to the deliverable D3 [8]. The following
describe those components.

6.2.1 Network ASP Manager

The Network ASP Manager is the initid point for the Active Service Provison on network level. An
FAIN Service Provider or Customer which are authorized to take the role of a Service Provider may
act as an ASP manager/user (person or component) in order to initiate a service deployment either via
an IDL or GUI interface.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 80 of 92

6.2.1.1 Network ASP Manager use case diagram

-

InstallService
Service Provider (network level)

(or Customer)

Figure 67 — Network ASP Manager use cases

6.2.1.1.1 installService

For execution of the ingtalService operation, the network ASP manager fetches the service
deployment descriptor, which is an XML document, from the Service Registry. The descriptor is
partialy processed by the ASP network manager to determine an optima code distribution on the
network level, i.e. to find a set of active nodes that the service components have to be deployed onto.
For a specia case (as for M4) the user of this operation may specify the nodes on which to deploy the
sarvice explicitly.

The network ASP manager sends the deployment request in form of a mobile deployment agent to
each of the active nodes' Node ASP Manager. The deployment agent is sent in an active packet that is
dispatched to the node level ASP on each node. The deployment descriptor is then passed to the Node
ASP Manager (agent system), which is the access component of the node level ASP for handling the
deployment request. The Node ASP manager may perform additional functions and passes the
deployment request with its description to the Service Creation Engine and Code Manager.

After execution of the install/deploy Service on one node, the deployment agent travels to next
specified active node. After finishing execution on al active nodes, the deployment returns to the
originator Network ASP Manager and passes back the interface references to the installed/deployed
service components. These installed components can afterwards be instantiated and configured.

6.2.1.2 Network ASP Manager design

The Network ASP manager is redlized as an stationary agent with a Graphical User Interface running
in apriviledged Javai.e. agent system execution environment.

The Network ASP Manager interacts with the Service Registry and will generate a mobile deployment
agent, which travels encapsulated in an ANEP packet to the Node ASP Manager (agent system).

The Network ASP Manager requires a connection of the Demux to the Agent Environment
(Grasshopper), whichis realized by using the Communication Service facilities of Grasshopper.

The main operation of the Network ASP Manager is the install Service operation on a network level.

6.2.2 Node ASP Manager

The Node ASP Manager is the initia point for the Active Service Provision on node level. The Node
ASP Manager is connected to the Demux (WP3) component, from which it receives the request for
Active Service Deployment/Provision from the Network ASP Manager in form of a deployment agent.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 81 of 93

6.2.2.1 Node ASP Manager use case diagram

-

InstallService
Network ASP Manager (node level) SCE

(deploymentAgent)

Figure 68 — Node ASP Manager use cases

6.2.2.1.1 installService

For deployment of a service on a node, a deployment agent arrives on a Node ASP Manager. The
deployment agent is created from a Network ASP Manager (@though the deployment might come
from a neighbour Node ASP Manager, if a service has to be deployed on a set of active nodes).

The Node ASP manager may perform additional functions and passes the deployment request with its
description to the Service Creation Engine and Code Manager. The result of the installService
operation of the Service Creation Engine is collected from the deployment agent. Potentidly, the
deployment agent travels to next specified active node if more than one node is given as target nodes
for deployment. After finishing execution on al active nodes, the deployment returns to the originator
Network ASP Manager and passes back the interface references to the installed/deployed service
components.

6.2.2.2 Node ASP Manager design

The Node ASP Manager is implemented as a stationary agent running in a Grasshopper agent system.
The connection of the Node ASP Manager to the Demux component is redlized by using the
Communication Service facilities of Grasshopper. A (mobile) deployment agent will be received via
that Communication Service which is encoded in an ANEP packet and received from network level
(i.e. Network ASP manager).

The main operation of the Network ASP Manager isto provide an “installService” operation on a node
level.

6.2.3 Code Manager

The Code Manager is a node-level ASP component, which maintains the information about the code
modules ingaled on the node. It adso supervises the process of fetching, ingtalation and withdrawal of
the service code modules. Code Manager mediates fetching service component descriptors, as well.

6.2.3.1Use Cases
Figure 69 depicts the use cases of the Code Manager.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 82 of 94

Code Manager provides a capability to fetch and install a service. The component is contacted after
the Service Creation Engine has resolved the dependencies of the service component requested to be
deployed (f et ch and install service usecase). Code Manager receives information what
code modules to fetch from the Service Registry and ingal them in what execution environments of
the node and supervises the fetching process (which is performed by the Loca Service Repository)
and ingtallation process (performed by Node Manager). This use case includes managing the data base

of the code modules ingtaled on the node (manage i nstal | at i on use case).

Another capability of the Code Manager is to uningtall given code modules from their execution
environments on the node (uni nstall service use case). Code Manager receives the
information on code modules and their execution environments from SCE after it has resolved
dependencies of the service. The uninstalation process involves updating the data base with installed
code modules maintained by Code Manager.

Code Manager aso mediates in fetching service component descriptors from the Service Registry. It
communicates with the Local Service Regstry, which represents the Service Registry on the node.

fetch and install service Local Service
™\ epository

i \ mafiage installations
SCE <
NodeManager

(from NodeManagement)

uninstall service

- 7

get service component descriptors

Local Service
Registry

Figure 69 main use case diagram of the Code Manager.

6.2.3.2Code Manager Design

Code Manager provides an Element ASP-internal interface. This interface is used by the SCE and
includes definitions of the following operations:

Fet chAndl nst al | Servi ce triggers fetching and ingtallation of a given list of code
modules belonging to the service to deploy. The operation contacts the Locd Service
Repository to fetch the code modules and the Node Manager to install the fetched code
modules. However, the ingtalation process is triggered by Code Manager, it is performed by
the EE-specific components of the Node Management Framework.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 83 of 95

Uni nst al | Ser vi ce manages the uninstallation process. Asinput parameters, it receives a
lis of code modules to remove It triggers the EE-specific uningtalation process
communicating with Node Manager and updates the Code Manager data based maintaining
information on code modules installed on the node.

Get Servi ceConponent Descri ptor contacts the Local Service Registry
to fetch a descriptor list of released service conponents
realizations for a request

6.2.4 Service registry Component

In the ASP part of the FAIN architecture, the service registry is in charge of managing the description
of services that can be loaded into active nodes (register, unregister, find services).

This section aims to present the design of this component and to show its interfaces (defined in IDL).
The interfaces are detailed and based on the interfaces specified in the deliverable D3.

6.2.4.1 Service Registry Use cases
The actors are the NASPM, LSR and the NMS.

<<<Component: service registry>>
- —

Fetch service description \ %
D ;
Manage service descriptions \

NMS

NASPM: Network Level Active Service Provisioning Manager.???
LSR: Local Service Registry
NMS: Network Management System.

Fetch service description Use case.

The first use case starts either when the NASPM needs to fetch the description of a service or when
the LSR is asked by the Node Code Manager for the description of a service it doesn't have locally.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 84 of 96

In the first case, the NASPM gets the list of the available service descriptions by caling the method
getServicesList of the CORBA interface. Then the NASPM can choose a service in the list and it asks
for its descriptions (a sequence of XML file) by cdling the method fetchService. There might be
several descriptions for a service, then several XML schemes might be returned.

In the second case, the LSR then asks the descriptions for this service to the service Registry by
cdling the method fetchService.

The LSR can aso get the list of the available service descriptions by calling the method
getServicesList of the CORBA interface (if needed).

Manage service descriptions use case.

The second use case starts when the NM S wants to install a new service in the active node. The NMS
registers a new service description with register Service and unregisters it with unregister Service.

6.2.4.2 Service registry Design

The service registry must register new services, unregister old services when requested by the
Network Management System.

It must get the list of al available services and the descriptions of a given service when requested by
the Network ASP Manager.

It must get the descriptions of a service to the Local Service Registry when the latter doesn't have it
already in cache.

The service name must be unique (in order to clearly distinguish services): it is composed by the name
of the service concatenated with the name of the service provider (example
VideoTranscoder FTR&D).

No public attribute are necessary. Only 4 methods are public

registerService: In order to register a service into the Service Registry, the service name must
be passed with a descriptor, describing the service. This descriptor is a XML file, mapping the
Chameleon requirements. If the service is aready registered (one previous version has aready
been registered) then the service registry registers this new request as a new version of the
service and increments the number of the version.

unregisterService: Only the service name is passed to the service Registry, and the latter
removes it from the database and removes all the descriptions related to it.

fetchService: Only the service name is passed to the service Registry, and the latter is in
charge of retrieving the XML descriptors in the database and sending it back to the client
(ASP Network Manager or Loca Service Registry). If there are several versions of the service
(then several XML descriptors), all the XML descriptors are sent back.

getServicesList: No input parameter is given. When receiving this request, the Service
Registry sends back al the registered services.

Some exceptions are also defined: checking the correctness of the name, the syntax of the XML
descriptor....

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 85 of 97

6.2.5 The Local Service Registry

Inside an active node, the local service registry is in charge of managing the description of services
that are requested by the Code Manager and can be loaded into active nodes. It the local service
registry hasn't the description of the given service, it asks the network service registry for it.

This section aims to present the design of this component and to show its interfaces (defined in IDL).

6.2.5.1 Local Service Registry Use cases Diagram

System: Local Service Registry

———C 7] “

Fetch service description
NSR

The actors are: the CM and the NSR.
CM: Code Manager.
NSR: Network Service Registry.

Use case Fetch service description.

The first use case starts when the CM wants the description of a service fetchService. The CM asksit
to the LSR. If the latter has this description locally (in cache), it returns it to the CM. If the LSR
doesn't have the descriptions of the service, it then asks it to the network Service Regigtry, gives it
back, stores it and sends it back to the CM.

6.2.5.2 Local Service Registry Design

The Loca Service Registry is in charge of managing service descriptions locally inside the active
node. Itsroleis then to fetch service descriptions and to store them (cache).

When the Code manager want to deploy a service, it asks the LSR the descriptions of this service.

If this service has aready been deployed (or requested by the CM), the LSR has keep the descriptions
in cache and then can give them back to the CM.

If this description is not know locdly by the LSR, then the latter will contact the network service
registry and fetch the descriptions for this service.

The LSR will then storeiit locally (keep it in cache) and will send back this information to the CM.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 86 of 98

The LSR can dso reply to the CM if the CM wants to get the list of al available services. This option
will certainly not be used because it’s not the role of the CM but it is possible.

If the CM requests that, then the LSR will contact the Network Service Registry to retrieve the list of
services. Thislist is not cached in order to get aways the up-to-date list.

No public attribute is necessary. Only 2 methods are public (the same than the service Registry
fetchService
getServicesList

Some exceptions are also defined: checking the correctness of the name, the syntax of the XML
descriptor....

6.2.6 Local Service Repository

The purpose of the local service repository (local cache) is to decrease the latency for theingallation
of anew service. The local cache stores recently used service components in the node, so that if they
are requested by a new service, they will not have to be downloaded from a remote code repository.

The amount of components that are cached depends on the available storage space on the node. In the
case that avallable space is exhausted, a replacement agorithm must be applied, to delete an
unnecessary component from the cache in order to store a new one. The repository itself does not have
the necessary logic for these checks. This is the responsibility of the code manager. In this context the
local cache can be considered as a simple “back-end” of the code manager.

The code manager is the main “client” of the local repository and it is the only other ASP component,
which uses the locd repository interface. The most important functionaity required is the fetching of
code modules, which are necessary for the ingtantiation of a new service on the node. The code
manager requests a code component from the local repository. The repository then has to check if the
module is aready cached, or ese it must be downloaded from the network. The local cache also
carries out this operation. For this reasons the cache has knowledge of the location of the network-
wide service repository, which stores the implementation components of the services, which are
available in the network.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 87 of 99

6.2.6.1 Local Service Repository use case diagram

— &\

delete component

get component store component

/ \
II N,

/ 4
o OO

lookup cache fetch code\

Service Repository
(Network)

Figure 70 — Loca Service Repository use cases

As we can see from the use case diagram, the actors that interact with the Local Service Repository are
the Code Manager and the network-wide Service Repository. The use cases are described below.

6.2.6.1.1 get component

After a service descriptor has been parsed, the Code Manager isin charge of retrieving the necessary
code modules, which implement the desired service. The Code Manager contacts the Local Service
repository and requests the necessary components. From this moment the responsibility of locating
and fetching the code modules passes to the Local Service Repository. The following two use cases

are included:
lookup cache

The Locd Service Repository first looks up in its cache, to see if the requested component is

aready available at the node.
fetch code

If the component is not cached localy, it has to be downloaded from a code server. The code
module is retrieved from the Service Repository and is returned to the Code manager.

6.2.6.1.2 store component

As we mentioned above, the Code Manager manages the components stored in the cache, so it may

reguest the storage of a new component.

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 88 of 100

6.2.6.1.3 delete component

As with storing, the Code Manager can aso decide that it is necessary to delete a component from the
local cache.

6.2.6.2 Local Service Repository design

It is foreseen that because of disk space restrictions the amount of components that will be cached in
the node will be relatively small, so it is not necessary to use a database or a more complex storage
system for the caching of code modules.

The code files are stored in the cache directory and a hashtable is used as an index of the loca
repository. The code manager can get a reference to the implementation files, when a component is
requested.

6.2.6.2.1 Local Service Repository Interface

The interface of the local service repository is described in IDL. The operations provided are the
following:

get Conponent

This operation is responsible for retrieving a code module. The repository first checks if the
requested component is cached localy. If the code does not exist localy, it is downloaded from
the network service repository. The operation returns a reference of the local file, which contains
the code.

st or eConponent
This operation is used to store a new component in the cache.

del et eConponent

This operation deletes a cached component. It is used by the code manager, when it decides that a
stored component must be deleted, either because it has been cached for along time or has to be
refreshed, or because more disk space is required to cache other components.

The IDL description of the Local Service Repository Interface is the following:

t ypedef string CodeMdul el D
t ypedef string CodeModul eRef;

i nterface ServiceRepository {

bool ean st oreConponent (i n CodeMbdul eRef codeConponent,

i n CodeModul el D conponent Nane) ;
bool ean del et eConponent (i n CodeModul el D conponent Nane) ;
CodeModul eRef get Conponent (i n CodeModul el D conponent Nane) ;

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 89 of 101

6.2.7 Service Repository

The service repository contains the implementation components for the services, which are available
in the network. These components can be specific to an implementation from a particular vendor, or
for a specific EE-type. The main idea is that the repository stores only the code files. Additiona
information, about which components are required for the service, or how these must be configured, is
stored in the service registry.

A service can be created by assembling together a set of required components (creating a package),
which are specified using a descriptor. The components that make a service package can either be
grouped together in a single archive, or they could be stored individualy. In the service repository we
choose to have each component in a separate file for the following reasons. First, because one
component may be used by different services, so it could belong to different packages and second
because a service could be updated by replacing one of each component with eg. a new
implementation version.

The exact format of the stored components varies according to the type of the Execution Environment,
for which they are designated. For example, an implementation for a (Java Virtual Machine) Jvm-
based EE may be a Javajar file, while an implementation for a high-performance EE will be in a
native object file.

6.2.7.1Service Repository use case diagram

/delete component
store component

s

get component

NMS

Local Service
Repository

Figure 71 — Service Repository use cases

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 90 of 102

6.2.7.1.1 store/delete component

The addition/deletion of code modules in the repository is performed by the Network Management
System, as described in the corresponding use cases store/delete component. A new service first hasto
be registered with the Service Registry and then its components are stored in the repository. Likewise,
when a service is removed from the network, first its description must be removed from the Service
Registry and then its code modules will be deleted from the Service Repository.

6.2.7.1.2 get component

The Local Service Repository residing on an active node may request the download of a specific code
module to that node.

6.2.7.2 Service Repository design

The main functiondity required from the Service Repository is similar to that of the loca cache.
However, while we do not expect the local cache to store alarge number of components, thisis not the
case with the Service Repostory. It acts as a code server, which contains all the service
implementations, which may be ingtdled in the active nodes of the network. For this reason,
scalability should be taken into consideration for the design and implementation of the service
repository. The component files are stored in the repository using a directory-based structure. Each
component stored in the repository must have a unique name. The code modules are stored using a
pathname, which is determined using the information such as file name, developer name, target
Execution Environment type, and implementation version.

The main operations of the Service Repository are the following:

st or eConponent
del et eConponent

These two operations are used to add/remove software components to/from the
repository. These operations are used by the Network Management System and
they are not available for a user of the system, as the storage and deletion of a
service component are coupled with the registration or deregistration of the
corresponding service. Accordingly, the Network Management System offers an
interface for the service providers to make their services available and then it
uses the ASP interface to register the service and store its components.

get Conponent

This operation is used to download a specific component to the active node. The component is
identified by its name, which must be unique.

6.2.8 The Local Service Creation Engine (SCE)

This document describes the Local Service Creation Engine (SCE), which is a sub-component of the
active service provisoning (ASP) component offered by a FAIN active node [1][2]. The SCE is
responsible to map a service component name to an implementation suitable to the loca node
environment.

6.2.8.1 SCE use case diagram

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 91 of 103

<<includes>>
O () X

Resolve Dependencies Get EEs Virtual Environment
4\ Manager

<<includes>>

<> <<includes>> U

Install Service Component Get Service Component Descriptor /

References

<<includes>>

/

Service Requester Fetch and Install Implementations
E % : Local Code
Get Component Repository
ASP Node
Manager Demux PDPMgr

Figure 1 Service Creation Engine Use Cases

6.2.8.1.1 Install Service Component

This use case starts when a service requester requests the installation of a service component into a
particular VE. The SCE darts with a service component name that stands for a specific type or
functiondity. Based on the service component name, the SCE requests a list of matching service
component descriptors (included use case “Get Service Component Descriptor”) from the code
manager. The SCE further consults the Virtual Environment (VE) manager to get information about
the available Execution Environments (EE) in a specific Virtua Environment (VE) (included use case
“Get EES”).

From the list of service component descriptors, the SCE selects — based on the mapping policies and
the available EEs — the appropriate service component descriptor. If a service component descriptor
contains a non-empty list of service component names that it depends on, the resolution process
continues in arecursive manner (included use case “ Resolve Dependencies’).

A service component descriptor might also contain a reference to code. If such a service component is
selected by the SCE, the necessary information is stored in the installation map. The resolution process
terminates when al dependencies are resolved. The SCE subsequently requests the download and
ingalation of the compound implementations and implementations from the code manager. The
necessary information is in the ingalation map, which is passed to the code manager (included use
case “Fetch and Ingtall Implementations”).

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 92 of 104

6.2.8.1.2 Get Component

This use case starts when the PDPMgr wants to download amanagement component. The SCE getsan
implementation identifier and delegates the downloading of the appropriate implementation to the
local service repository. Dependencies are not resolved. The PDPMgr executes instalation and
configuration of the module autonomoudly.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 93 of 105

7 CONCLUSION

This document has provided a revised outline of the case studies that are to be used to evauate the
overal FAIN approach and associated architecture. The work documented here has focused in
particular on the design and development of case studies associated with policy based network
management and the dynamic provisioning of services (ASP) in an active networking domain. A trade
of between atoo detail presentation of the design and a focus on components main purposes has been
adopted to ease reading of this document.

The system implementation is currently on going with the development of components that redlise
these case studies. An advanced version has aready been developed, and is being demonstrated as M4
and part of M5 mgor events. This work is of course on going and as such it is likely that the
prototypes will undergo further refinements and enhancements as the work on FAIN progresses. As
such, it is expected that the prototypes and the scenarios that they support will evolve into a more
complete fina FAIN demonstration. This will highlight the success of the generd overall approach,
i.e. that the FAIN architecture is sufficiently well defined (through generic components and interfaces
between the different actors) to support a variety of different services and management capabilitiesin
a dynamic (active) manner. This will also show the overall benefits of an active networking approach
for service provisioning and network management.

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems Page 94 of 106

8 APENDICES

Copyright @ 2000-2003 FAIN Consortium May 2002

Revised Specification of Case Study Systems

Page 95 of 107

9 ACRONYMS

AC: Active Code

AN: Active Networks

ANE: Active Network Element

ANN: Active Network Node

ANSP: Active Network Service Provider
API: Application Programming Interface
ASN: Abstract Syntax Notation

ASP: Active Service Provisoning

BML: Business Management Layer
CDB: Conflict Detection Block

CIM: Common Information Model

CLI: Command Line Interface

CMIP: Common Management Information Protocol

COPS: Common Open Policy Service

CORBA: Common Object Request Broker Architecture

DAP: Directory Access Protocol

DCE: Distributed Computing Environment
DCN: Data Communication Network
DEN: Directory Enabled Networks

DIT: Directory Information Tree

DME: Decison Making Entity

DMTF: Distributed Management Task Force
DPE: Digtributed Processing Environment
DSCP: Diffserv Code Point

EE: Execution Environment

EM: Element Management

EMS:. Element Management System
FAIN: Future Active IP Networks

FAIN TA: FAIN Technica Annex

FCAPS: Fault Configuration Accounting Performance Security

FIFO: First In First Out

GDMO: Guiddines for Definition of Managed Objects

GUI: Graphic User Interface

IDL: Interface Definition Language
IETF: Internet Engineering Task Force
ISE: Information Storage Entity

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems

Page 96 of 108

ITU: International Telecommunication Union
JDBC: Java Database Connectivity
JNDI: Java Naming and Directory Interface
LAN: Local Area Network

LDAP: Light Directory Access Protocol
LPDP: Locd Policy Decision Point
LRU: Least Recently Used

LSP: Label Switched Path

MA: Mobile Agents

MD: Mediation Device

MF: Mediation Function

MI: Management Instance

MIB: Management Information Base
MIF: Management Information Format
MPLS: Multiprotocol Label Switching
NACK: Not Acknowledged

NE: Network Element

NEF: Network Element Function

NIP: Network Infrastructure Provider
NM: Network Management

NMF: Network Management Forum
NMS: Network Management System
ODBC: Open Database Connectivity
OMG: Object Management Group
ORB: Object Request Broker

OSD: Open Software Description

OSF: Operating System Function

PBANEM: Policy-based Active Network Element Management
PBANM: Policy-based Active Network Management

PBM: Policy-based Management

PBN: Policy-based Networking

PBNM: Palicy-based Network Management
PBVPN: Policy-based Virtua Private Network
PCIM: Policy Core Information Model

PCIMe: Policy Core Information Model extensions

PDP: Policy Decision Point
PEP: Policy Enforcement Point

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems

Page 97 of 109

PHB: Per-hop Behaviour

PIB: Policy Information Base

QAF: Q Adaptor Function

QoS: Quality of Service

QPIM: QoS Palicy Information Model

RAP: Resource Allocation Protocol

RCF: Resource Control Framework

RDBMS: Relationa Database Management System

RSVP: Resource Reservation
SC.: Security Context

SID: Security ID

SLA: Service Level Agreement

SML.: Service Management Layer

SNMP: Simple Network Management Protocol
SP: Service Provider

SPPI: Structure of Policy Provisioning Information
SQL: Structured Query Language

SSL: Secure Sockets Layer

TCA: Traffic Control Agreement

TINA: Telecommunications Information Networking Architecture
TMF: Telecommunications Management Forum
TMN: Telecommunications Management Network
TOM: Telecom Operations Map

ToS: Type of Service

TTCN: Tree and Tabular Combined Notation
UML.: Unified Modelling Language

VE: Virtud Environment

VPN: Virtual Private Network

WAN: Wide Area Network

WSF: Workstation Function

XML: Extensible Markup Language

10 REFERENCES

Protocol

[1] Yechiam Yemini, Germén Goldszmidt, and Shaula Yemini. Network Management by Delegation.
In The Second International Symposium on Integrated. Network Management, Washington, DC,

April 1991.

[2] N.Damianou, N. Dulay, E. Lupu, M. Sloman, “ The Ponder Policy Specification Language’ .

Copyright @ 2000-2003 FAIN Consortium

May 2002

Revised Specification of Case Study Systems Page 98 of 110

[3] “Principlesfor a Telecommunications Management Network”, ITU-T Recommendation M.3010.
[4] FAIN Internal document, “PBNM architecture proposal” WP4-HEL-032-PBNM-ARCH-Int-v0.2

[5] P.Martinez, M. Brunner, J.Quittek, F. Strauss, J, Schonwalder, S.Mertens, T. Klie, “Using the
Script MIB for Policy-based Configuration Management” IEEE/IFIP Network Operations and
Management Symposium 2002

[6] Steve Jackowski, “Bury Policy Management!”, Deterministic Networks (September 1999) -

http://www.deterministi cnetworks.com/burypolicy.html

[7] K.L.E. Law, A. Saxena, "UPM: Unified Policy-Based Network Management," in Proc. SPIE

ITCom 2001, Vol.4523, pp.326-337, Denver, Augus, 2001 -
http://www.comm.toronto.edu/~eddie/Papers/upm_spie_itcom2001.pdf

[8] FAIN Ddiverable 3 “Initial Specification of Case Study Systems’, May 2001 — http://www.ist-
fain.org

[9 FAIN Ddiverable 1 “Requirements Analyss and Overall AN Architecture’”, May 2001 —
http://www.ist-fain.org

[10] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rgan, A. Sastry, " The COPS (Common Open
Policy Service) Protocal”, IETF RCF2748, January 2000

[11] Emil Lupu, Morris Sloman, “ Conflicts in Policy-based Distributed Systems Management”, |EEE
Transactions, November 1999

[12] IETF “Policy Core Information Model -- Version 1 Specification”, RFC3060, Feb 2001
[13] Internal FAIN document, WP4-UPC-003-R14-Int, “Management Components Design”

[14] Matthias Bossardt, Lukas Ruf, Rolf Stadler, Bernhard Plattner: A Service Deployment
Architecture for Heterogeneous Active Network Nodes. Kluwer Academic Publishers, 7th
Conference on Intelligence in Networks (IFIP SmartNet 2002), Saariselkd, Finland, April 2002

[15] Matthias Bossardt, Lukas Ruf, Rolf Stadler, Bernhard Plattner: Service Deployment on High
Performance Active Network Nodes. IEEE Network Operations and Management Symposium
(NOMS 2002), Horence, Itay, April 2002.

[16] FAIN Document: WP4-ETH-001-116-Int.doc

[17] M. Bossardt, R. Stadler. Service Deployment on High Performance Active Network Nodes. TIK-
Report 122, Swiss Federal Ingdtitut of Technology (ETH), Zurich, Switzerland, September 2001

Copyright @ 2000-2003 FAIN Consortium May 2002

