
Revised Specification of Case Study Systems  

Copyright  2000-2003 FAIN Consortium  May 2002 

Project Number: IST-1999-10561-FAIN 

Project Title:  Future Active IP Networks 

 

Revised Specification of Case Study Systems 
 

CEC Deliverable No: WP4-FHG/FOKUS-040-D5-Int  

Deliverable Type: PU  

Dissemination: PU 

Deliverable Nature: R  

Contractual date: April 2002 (as updated in Project Quarterly Reports) 

Actual date: Date of submission to European Commission 

 

Editor:  Célestin Brou 

File Name  WP4-FHG/FOKUS-040-D5-Ext.doc 

Contributors: WP4 

Version: 4.0 

Version Date: Wednesday, 15 May 2002 

Internal Distribution: WP1, WP2, WP3, WP4, WP5 (add/delete as appropriate) 

Deliverable Status: Approved 

 





Revised Specification of Case Study Systems  

Copyright  2000-2003 FAIN Consortium  May 2002 

Copyright  2000-2003 FAIN Consortium 

The FAIN Consortium consists of: 

Partner Status  Country 
UCL Partner United Kingdom 
JSIS Associate Partner to UCL Slovenia 

NTUA Associate Partner to UCL Greece 
UPC Associate Partner to UCL Spain 
DT Partner Germany 
FT Partner France 

HEL Partner United Kingdom 
HIT Partner Japan 
SAG Partner Germany 
ETH Partner Switzerland 

FHG/FOKUS Partner Germany 
IKV Associate Partner to 

FHG/FOKUS 
Germany 

INT Associate Partner to 
FHG/FOKUS 

Spain 

UPEN Partner USA 

 





Revised Specification of Case Study Systems  

Copyright  2000-2003 FAIN Consortium  May 2002 

The FAIN Consortium 

University College London (UCL) 
Josef Stefan Institute (JSIS) 
National Technical University of Athens (NTUA) 
Universitat Politecnica De Catalunya (UPC) 
T-Nova Deutsche Telekom Innovationsgesellschaft mbH (DT) 
France Télécom / R&D (FT) 
Hitachi Europe Ltd. (HEL) 
Hitachi Ltd. (HIT) 
Siemens AG (SAG) 
Eidgenössische Technische Hochschule Zürich  (ETH) 
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FHG/FOKUS) 
IKV++ Technologies AG (IKV) 
Integracion Y Sistemas De Medida, SA (INT) 
University of Pennsylvania  (UPEN) 
 
Project Management 

Alex Galis 
University College London 
Department of Electronic and Electrical Engineering, 
Torrington Place 
London WC1E 7JE 
United Kingdom 
Tel ++44-(0) 207- 679 5738 
Fax +44 (0) 207 388 9325 
E-mail: a.galis@ee.ucl.ac.uk 
  

 Authors  

Thomas Becker (FHG) 
Elisa Boschi (FHG) 
Matthias Bossardt (ETH) 
Yiorgos Bouloudis (NTUA) 
Celestin Brou (FHG/FOKUS) – WP4 Leader 
(Editor) 
Yannick Carlinet (FT) 
Lawrence Cheng (UCL) 
 
Jürgen Dittrich (IKV++) 
Spyros Denazis (HEL)- WP3 leader 
Ducan Gabrijelcic (JSIS) 
Christian Garbrecht (DT)  
Alex Galis (UCL)- WP1 leader 
Juan Luis Mañas González (INT) 
Peter Graubmann (SAG) 
Drissa Houatra (FT) 
Cornel Klein (SAG)- WP2 leader 
George Karetsos (NTUA) 
Chiho Kitahara (HIT) 
Stamatis Karnouskos (FHG/FOKUS) 
Antonis Lazanakis (NTUA) 
 

Bertrand Mathieu (FT) 
Jens Meinköhn (DT) 
Franci Mocilar (JSIS) 
Eckhard Moeller (FHG) 
 
Tuan-Quoc Nguyen (DT) 
Yiannis Nikolakis (NTUA) 
Evelyn Pfeuffer (SAG) 
Bernhard Plattner (ETH) - WP5 Leader 
Mehran Roshandel (DT) 
Lukas Ruf (ETH) 
Epi Salamanca (UPC) 
Arso Savanovic (JSIS) 
Joan Serrat (UPC) 
Jonathan M. Smith (UPEN)  
Kiminori Sugauchi (HIT) 
Toshiaki Suzuki (HEL) 
Alvin Than (UCL) 
Christos Tsarouchis (HEL) 
Mercedes Urios (INT) 
Julio Vivero (UPC) 
Christoph Weckerle (IKV++) 
Ermolaos Zimboulakis (NTUA) 
 



Revised Specification of Case Study Systems  

Copyright  2000-2003 FAIN Consortium  May 2002 

 



Deliverable Title   Page 1 of 7 

Copyright  2000-2003 FAIN Consortium  May 2002 

Executive Summary 
This document (D5) is the second of a set of deliverables (D3, D5, D8) that reports periodical 
advancement of the work achieves in WP4. An early version of the deliverable D4 was issued as 
R14/R15/R16 Internal Reports in early March 2002. This Work Package is responsible for 
implementing an operator solution and case studies. A Policy-Based Active Network management 
(PBANM) and Active Service Provisioning (ASP) are being developed the entire project long with 
continuous refinement of the existing. A 2-tiers based architecture has been identified earlier when 
designing the two systems as well synergy to realise an integrated active network architecture together 
with the active node being developed by WP3 team.  

The two 2-tiers architecture’s assumption adopted in WP4 identified two levels of concern regarding 
the PBANM and the ASP: elements level functionality and network wide one, which have the same 
components but different semantics. The element level functionality managed a single active node 
while the second one deal with FAIN architecture network wide. That has been fully documented in 
D3 that report initial design of the Management system Architecture. However the architecture has 
been review as the design evolved. One the major changed is the generalisation of the management 
delegation from the NIP to the SP and integration of open issues’ solutions into the FAIN architecture.  

As earlier prototypes focus on an active node management on which it was somehow more natural to 
resolve efficiently problems raise up by policy based active management and service provisioning, we 
prioritise to concentrate on the element level management and project solutions network wide. Thus in 
this report element level components are well designed as well as most of their network peers. 
However the network level resource manager, the inter-domain management components have been 
postponed for Y3 for time constraint and high priority of code production for planed milestone. Indeed 
a lot has been achieved at both levels and will be presented in report R21 that complements D5. A 
practical organisation of both documents allows avoiding duplication as much as possible of their 
contents.  

  

 

 

 

Description of Deliverable 

D5 contains the revised specification of Case Study Systems achieved since Y1 in FAIN. This 
deliverable is an extension and consolidation of the D3 – “Initial Specifications of the FAIN Case 
Studies”. It will be updated and consolidated in the year 3 as D8. 

It is derived from R14, R15 and R16 describing respectively at the FAIN Element, Network level 
Management and the Active Service Provisioning Systems for Active Networks. The document 
focuses on design of the Policy Based Management system initially described in D3.  

Following this introduction, a brief overview of the FAIN project is given to review the main contents 
in D3. Chapter 2 presents the main architectural refinements as well as a mapping of the actual role in 
the architecture to the FAIN Enterprise Model. Chapter 3 presents a global overview of the 
management system together with the description of generic components within the 2-tiered 
architecture. Chapters 4, 5 and 6 constitute the main design of the element-level management, 
network-level management and the Active Service Provisioning (ASP) respectively. 

 

Keywords 



Deliverable Title   Page 2 of 8 

Copyright  2000-2003 FAIN Consortium  May 2002 

Active Network, Active AN Management, Active Service Provisioning, XML, Policy Based 
Management, Agent Technology, DPE, QoS Delegation. 

 

 

Change History 

1. Initial Draft Jan 4th, 2002, Version 1.0 

2. 2nd draft February 28th 2002 

3. 3rd draft B March 11, 2002 

4. 4th Draft C April 30, 2002 

5. 5th for internal review 14,2002 

 



Deliverable Title   Page 3 of 9 

Copyright  2000-2003 FAIN Consortium  May 2002 



Deliverable Title   Page 4 of 10 

Copyright  2000-2003 FAIN Consortium  May 2002 

Table of Contents 

1 INTRODUCTION..........................................................................................................................................................1 

1.1 FAIN OVERVIEW.........................................................................................................................................................1 
1.1.1 Active Networking Issues in FAIN ................................................................................................................. 1 
1.1.2 Components in the FAIN Active Node........................................................................................................... 2 
1.1.3 FAIN Active Management Components........................................................................................................ 3 
1.1.4 Design characteristics for FAIN Prototype Nodes..................................................................................... 4 

2 ARCHITECTURE REFIN EMENT..........................................................................................................................5 

2.1 GLOBAL ARCHITECTURAL REFINEMENT...................................................................................................................5 
2.2 MANAGEMENT BY DELEGATION ................................................................................................................................7 

2.2.1 Inter-PDP policy conflict resolution...........................................................................................................10 
2.2.2 Resource manager..........................................................................................................................................10 
2.2.3 Management bootstrapping process............................................................................................................11 

2.3 MAPPING THE MANAGEMENT FRAMEWORK AND FAIN ENTERPRISE MODEL.................................................11 

3 OVERVIEW OF THE MANAGEMENT SYSTEM ARCHITECTURE.....................................................13 

3.1 MANAGEMENT SYSTEM SUB-SYSTEMS...................................................................................................................13 
3.2 THE 2-TERSPBA USE CASES ....................................................................................................................................14 
3.3 COMPONENTS OVERVIEW.........................................................................................................................................20 

4 R14 EMS (PBANEM) DESIGN ...............................................................................................................................22 

4.1 EMS USE CASES........................................................................................................................................................22 
4.1.1 Components overview....................................................................................................................................27 

4.2 EMS COMPONENTS DESCRIPTION ...........................................................................................................................28 
4.2.1 ANSP Proxy Component in Element Level.................................................................................................28 
4.2.2 PDPMgr Component......................................................................................................................................29 
4.2.3 QoSPDP Component......................................................................................................................................32 
QoSPEP Component.....................................................................................................................................................34 
4.2.5 PEPDemux Component .................................................................................................................................36 
4.2.6 Delegation PDP Component.........................................................................................................................37 
4.2.7 Element level Delegation PEP component.................................................................................................47 
4.2.8 Conflict Check Component............................................................................................................................49 
4.2.9 Monitoring Component..................................................................................................................................49 

5 R15 PBANM (NL-MS) DESIGN..............................................................................................................................62 

5.1 NETWORK LEVEL MANAGEMENT SYSTEM USE CASES.........................................................................................62 
5.2 COMPONENTS DESCRIPTION ......................................................................................................................................62 

5.2.1 ANSP Proxy Component in Network Level ................................................................................................63 
5.2.2 PDPMgr Component......................................................................................................................................64 
5.2.3 QoSPDP Component......................................................................................................................................64 
5.2.4 QoSPEP Component ......................................................................................................................................66 
5.2.5 Network level Delegation PDP ....................................................................................................................68 
5.2.6 Delegation PEP at the NL.............................................................................................................................70 
5.2.7 Conflict Check Component at NL................................................................................................................72 
5.2.8 Monitoring system-NL....................................................................................................................................73 

R16 ACTIVE SERVICE PROVISIONING – ASP ......................................................................................................74 

6.1 ASP USE CASES ..........................................................................................................................................................74 
6.1.1 release service.................................................................................................................................................76 
6.1.2 deploy service..................................................................................................................................................76 
6.1.3 remove service.................................................................................................................................................78 
6.1.4 withdraw service.............................................................................................................................................78 
6.1.5 manage service installations.........................................................................................................................79 

6.2 COMPONENTS DESCRIPTION......................................................................................................................................79 



Deliverable Title   Page 5 of 11 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.1 Network ASP Manager..................................................................................................................................79 
6.2.2 Node ASP Manager........................................................................................................................................80 
6.2.3 Code Manager.................................................................................................................................................81 
6.2.4 Service registry Component..........................................................................................................................83 
6.2.5 The Local Service Registry............................................................................................................................85 
6.2.6 Local Service Repository...............................................................................................................................86 
6.2.7 Service Repository..........................................................................................................................................89 
6.2.8 The Local Service Creation Engine (SCE) .................................................................................................90 

7 CONCLUSION .............................................................................................................................................................93 

8 APENDICES ..................................................................................................................................................................94 

9 REFERENCES .............................................................................................................................................................97 

 

Table of Figures 

FIGURE 1: MANAGEMENT OF ACTIVE NETWORKS IN FAIN.................................................................................................1 
FIGURE 2: FAIN ACTIVE NODE................................................................................................................................................2 
FIGURE 3: ACTIVE NETWORK MANAGEMENT........................................................................................................................3 
FIGURE 4 - OVERALL MANAGEMENT AND ASP STATIONS DEPLOYMENT ..........................................................................6 
FIGURE 5: POLICY-BASED ACTIVE MANAGEMENT ARCHITECTURE AT THE NL AND EL ................................................8 
FIGURE 6. DELEGATION OF MANAGEMENT FUNCTIONALITY AT THE ELEMENT LEVEL...................................................8 
FIGURE 7 – FRAMEWORK MAPPING TO THE FAIN ENTERPRISE MODEL..........................................................................12 
FIGURE 8 – MANAGEMENT FRAMEWORK SYSTEM RELATIONS..........................................................................................13 
FIGURE 9 – NETWORK MANAGEMENT FRAMEWORK GENERIC USE CASE DIAGRAM.....................................................14 
FIGURE 10 – PROVISION POLICY ACTIVITY DIAGRAM........................................................................................................15 
FIGURE 11 – REQUEST DECISION THROUGH SIGNALLING ACTIVITY DIAGRAM..............................................................17 
FIGURE 12 – DELEGATE MANAGEMENT FUNCTIONALITY ACTIVITY DIAGRAM..............................................................18 
FIGURE 13 – PROVISION POLICY IN ACTIVE PACKET ACTIVITY DIAGRAM.......................................................................19 
FIGURE 14 – AUTOMATICALLY RECONFIGURE AFTER FAULT ACTIVITY DIAGRAM........................................................20 
FIGURE 15 – GENERAL EMS USE CASE DIAGRAM..............................................................................................................22 
FIGURE 16 – PBANEM REQUEST DECISION THROUGH SIGNALLING ACTIVITY DIAGRAM...........................................23 
FIGURE 17 – PROVISION POLICY IN ACTIVE PACKET ACTIVITY DIAGRAM......................................................................25 
FIGURE 18 – AUTOMATICALLY RECONFIGURE AFTER FAULT ACTIVITY DIAGRAM........................................................27 
FIGURE 19: USE CASES OF THE ANSP PROXY AT ELEMENT LEVEL.................................................................................28 
FIGURE 20: CLASS DIAGRAM OF THE ANSP PROXY IN ELEMENT LEVEL.......................................................................29 
FIGURE 21 –PDPMGR USE CASES.........................................................................................................................................30 
FIGURE 22 – PDPMGR CLASS DIAGRAM..............................................................................................................................31 
FIGURE 23 – PDP COMPONENT USE CASES..........................................................................................................................32 
FIGURE 24 – PDP COMPONENT CLASS DIAGRAM...............................................................................................................34 
FIGURE 25 – PEP COMPONENT USE CASES..........................................................................................................................35 
FIGURE 26 – PEP COMPONENT CLASS DIAGRAM ...............................................................................................................36 
FIGURE 27 – PEPDEMUX USE CASES....................................................................................................................................36 
FIGURE 28 – PEPDEMUX CLASS DIAGRAM .........................................................................................................................37 
FIGURE 29: ACCESS RIGHTS FOR NODES ..............................................................................................................................39 
FIGURE 30: PERIOD OF ACCESS RIGHTS................................................................................................................................40 
FIGURE 31: MAIN USE CASES OF THE DELEGATION PDP...................................................................................................41 
FIGURE 32: THE DETAILED USE-CASES OF “CONFIGURE” IN DELEGATION PDP............................................................42 
FIGURE 33: POLICY ENFORCEMENT.......................................................................................................................................43 
FIGURE 34: STATUS OF POLICY DATA DELEGATION.............................................................................................................44 
FIGURE 35: ACTIVE DIAGRAM OF "OPERATE".....................................................................................................................45 
FIGURE 36: EVALUATION........................................................................................................................................................45 
FIGURE 37: CLASS DIAGRAM OF THE DELEGATION PDP ...................................................................................................47 
FIGURE 38: USE CASES OF EL DELEGATION PEP ................................................................................................................48 
FIGURE 39: CLASS DIAGRAM OF EL DELEGATION PEP......................................................................................................49 



Deliverable Title   Page 6 of 12 

Copyright  2000-2003 FAIN Consortium  May 2002 

FIGURE 40: MONITORING SYSTEM USE CASE DIAGRAM....................................................................................................50 
FIGURE 41: SUBSCRIBERS TO THE MONITORING COMPONENT ...........................................................................................51 
FIGURE 42. MONITORING SYSTEM DEPLOYMENT DIAGRAM...............................................................................................52 
FIGURE 43: MONITORING SYSTEM PACKAGES.....................................................................................................................53 
FIGURE 44 EXTENDED NOTIFIED SERVICE ARCHITECTURE...............................................................................................54 
FIGURE 45 METERING CLASS DIAGRAM ................................................................................................................................57 
FIGURE 46: STRATEGY PATTERN CLASS DIAGRAM..............................................................................................................59 
FIGURE 47: COPS PROTOCOL HANDLER CLASS DIAGRAM.................................................................................................61 
FIGURE 48: PBANM’S COMPONENTS...................................................................................................................................62 
FIGURE 49: MAIN USE CASES OF THE ANSP PROXY IN NETWORK LEVEL......................................................................63 
FIGURE 50: CLASS DIAGRAM OF THE ANSP PROXY IN NETWORK LEVEL......................................................................64 
FIGURE 51 – NL-PDP COMPONENT USE CASES DIAGRAM ................................................................................................64 
FIGURE 52 – PDP COMPONENT CLASS DIAGRAM...............................................................................................................66 
FIGURE 53 – QOSPEP COMPONENT USE CASES .................................................................................................................67 
FIGURE 54 – QOSPEP COMPONENT CLASS DIAGRAM.......................................................................................................68 
FIGURE 55: A DETAILED USE CASES OF OPERATE STAGE IN DELEGATION PDP.............................................................69 
FIGURE 56: CLASS DIAGRAM OF DELEGATION PDP ...........................................................................................................70 
FIGURE 57: USE CASES OF NL DELEGATION PEP ...............................................................................................................71 
FIGURE 58: CLASS DIAGRAM OF NL DELEGATION PEP .....................................................................................................72 
FIGURE 59: NL AND EL MONITORING SYSTEMS RELATIONSHIP .......................................................................................73 
FIGURE 60 ACTIVITY DIAGRAM FOR AN ACTIVE SERVICE PROCESSED BY THE ASP.......................................................75 
FIGURE 61 MAIN USE CASE OF THE ASP..............................................................................................................................76 
FIGURE 62 RELEASE SERVICE USE CASE DIAGRAM..............................................................................................................76 
FIGURE 63 DEPLOY SERVICE USE CASE DIAGRAM................................................................................................................77 
FIGURE 64 REMOVE SERVICE USE CASE DIAGRAM...............................................................................................................78 
FIGURE 65 WITHDRAW SERVICE USE CASE DIAGRAM..........................................................................................................79 
FIGURE 66 MANAGE SERVICE INSTALLATIONS USE CASE DIAGRAM..................................................................................79 
FIGURE 67 – NETWORK ASP MANAGER USE CASES...........................................................................................................80 
FIGURE 68 – NODE ASP MANAGER USE CASES...................................................................................................................81 
FIGURE 69 MAIN USE CASE DIAGRAM OF THE CODE MANAGER........................................................................................82 
FIGURE 70 – LOCAL SERVICE REPOSITORY USE CASES......................................................................................................87 
FIGURE 71 – SERVICE REPOSITORY USE CASES....................................................................................................................89 
 

Table of Tables 

TABLE 1 – FUNCTIONALITY VS. COMPONENT MAPPING TABLE........................................................................................21 
TABLE 2 – FUNCTIONALITY VS. COMPONENT AT THE ELEMENT LEVEL MAPPING TABLE.............................................28 
 

 



Revised Specification of Case Study Systems   Page 1 of 13 

Copyright  2000-2003 FAIN Consortium  May 2002 

1 INTRODUCTION 
D5 is a consolidation of three other internal reports, namely R14, R15, and R16, which describe the 
element-level management, network-level management and the Active Service Provisioning (ASP) 
respectively. This deliverable is an extension and consolidation of the D3 – “Initial Specifications of 
the FAIN Case Studies”; and as such focuses on the refinement of the previous architecture and 
design.  

Implementation detailed design of the FAIN management architecture are elaborated in the internal 
reports, R21. In this document we use, Use case diagrams using the Unified Modelling Language 
(UML) to describe the functionality and motivation for each component.  

Our network management approach allows recursive delegation of the management system from the 
Network Infrastructure Provider to the Customer (cf. FAIN Enterprise Model in D1) by offering a 
restricted instance of the management system. Following this introduction, a brief overview of the 
FAIN project is given to review the main contents in D3. Chapter 2 will present the main architectural 
refinements as well as a mapping of the actual role in the architecture to the FAIN Enterprise Model. 
Chapter 3 furnishes a global overview of the management system together with the description of 
generic components within the 2-tiered architecture. Chapter 4, 5 and 6 constitute the main design of 
the element-level management, network-level management and the Active Service Provisioning (ASP) 
respectively. 

1.1  FAIN Overview 

1.1.1 Active Networking Issues in FAIN 
The FAIN active network architecture defines active nodes, which provide full flexibility to the user 
for network management and service provisioning. The defining characteristic of an active node is the 
ability for users to load and manage software components dynamically and efficiently. This can be 
achieved safely since customers who are sharing the same active node would be provided with a VPN-
like resource partitioning. 

Packets requiring active processing are marked to allow correct handling by active routers. This allows 
the discrimination of active and conventional packets and the selection of an active node. Routing and 
node resources configuration in the active nodes could be achieved by setting policies at the network 
management level (element and network management nodes). Access to this functionality will be 
controlled and only possible via a well-defined API.  

 Figure 1 exemplifies a configuration of an active network and its management nodes. 

Figure 1: Management of Active Networks in FAIN 

Active Node

Passive Node

Active Element  Mng . Node

ScenariosScenarios

Active Network Mng . Node



Revised Specification of Case Study Systems   Page 2 of 14 

Copyright  2000-2003 FAIN Consortium  May 2002 

1.1.2 Components in the FAIN Active Node  
In relation to D4, we provide a summary of issues that are pertinent to WP3. The FAIN Reference 
Architecture consists mainly of the following entities: AA, EE and Node OS. 

• Active Applications/Services (AA) are applications executed in active nodes.  

• Execution Environments (EE) are environments where application code is executed. A privileged 
EE manages and controls the active node and it provides the environment where network policies 
are executed. Multiple and different types of EE are envisaged in FAIN. A VE is a collection of 
resources (including one or more Execution Environments) owned by a particular SP. Thus EEs 
are used through virtual environments (VEs), where services can be found and interact with each 
other. VEs are interconnected to form a truly virtual network.  

• NodeOS is an operating system for active nodes and includes facilities for setting up and 
management of communications channels for inter–EEs and AA/EEs, manages the router 
resources, provides APIs for AA/EEs, and isolates EEs from each other. Through its extensions 
the NodeOS offers facilities through the following components: 

§ Resource Control Facilities (RCF). Through resource control, resource partitioning is 
provided and VEs are guaranteed that consumption stays within the agreed contract during 
an admission control phase, whether static or dynamic. 

§ Security Facilities (SF). The main security aspects are authentication and authorisation to 
control the use of resources and other objects of the node such as interfaces and 
directories. Security is enforced according to the policy profile of each VE. 

§ Application/Service code deployment facilities (ASP support). As flexibility is one of the 
requirements for programmable networks, partly realised as static or dynamic service 
provisioning, the NodeOS must support code deployment. 

§ Demultiplexing facilities (DEMUX). As flows of packets arrive at the node, 
Demultiplexing filters, classifies and diverts active packets to the appropriate VE, and 
consequently to the destination service inside the VE.  

§ Node Management Facilities (NM). The main aspects are the initiation and maintenance 
of VEs, control and management of the RCF and SF, management of the mapping of 
external to node policies into node resource and security configurations. 

The following figure describes the main design features and the components of the FAIN nodes: 

 

Figure 2: FAIN Active Node 

In FAIN, node prototypes that are under development include: a high performance active node, with a 
target of 150 Mb/s; and a range of flexible and very functional active nodes/servers, with the target on 
multiple VEs hosting difference EEs 

    Fast Forwarding

Management VEs Active
Node

Notifications & Events Policies

                                     Node OS

Node OS
Extensions

 Resource Control
      Facilities

 Security
      Facilities

AAsAAsAAs
AAsAAsAAs

          VEs

AAsAAsMAAs
AAsAAsMAAs



Revised Specification of Case Study Systems   Page 3 of 15 

Copyright  2000-2003 FAIN Consortium  May 2002 

The common part of the prototypes (the FAIN middleware) is the NodeOS with the relevant 
extensions. Further details and discussions about the active node are provided in the deliverable D4. 

1.1.3 FAIN Active Management Components 
This deliverable D5 will elaborate on the management approach in the FAIN project, which takes 
policy-based approach. 

We envisage that the management of the active network will require the following features: 

• Policies: Description of policies required to manage the active nodes and network 

• Node management component: Design of management components within the active nodes, 
which will execute policies within an active node and monitor the local node resource usage. 
The execution of policies means mapping target policies into node resource configurations  

• Management stations: A set of management nodes that will provide mechanisms to enable 
network administrators to manage the active networks as a whole, including network policies 
set-up and processing. 

As the delivery of services will require co-operation of a number of active nodes the network 
providers will need the means of managing the active nodes as a group of nodes and not individual 
nodes. They will need monitoring mechanisms for checking that correct policies are being defined and 
used in relation to the network before they are sent to the actual network. It will need to know what 
policies are currently loaded in the active nodes and what impact these are having on the network. It 
will also need to protect and monitor the security of the network. Therefore, the network/service 
provider needs a set of management mechanisms that will enable it to manage the network as a whole.  

In FAIN we see the need for two types of management nodes in order to provide these mechanisms:  

• Element Management Stations (EMS) 

• Network Management Stations (NMS) 

The main difference in functionality provided by these two types of management nodes is in the policy 
types, which they could process and manage, in the sub-networks, which they cover and in the 
creation of management domains for different types of users, as shown the Figure 1-4  

The relationships between the EMS, NMS, and active nodes with regards to the policy flow are shown 
in Figure 3. 

Figure 3: Active Network Management 

Element Management Node

Policy Execution
Manager

Network Layer

Mang.Virtual Environments Active
Node

Notifications Policies

Network Management Node

PoliciesNotifications



Revised Specification of Case Study Systems   Page 4 of 16 

Copyright  2000-2003 FAIN Consortium  May 2002 

1.1.4 Design characteristics for FAIN Prototype Nodes 

In this section, we extrapolate WP4 efforts towards the milestone demonstrations in WP5, and 
references the issues highlighted in D6.  

The FAIN active node runs active services and contains programmable management, data and control 
planes. We will develop three versions of this node until milestone M6 (April 2003) and one version 
until milestone M5 (May 2002). While active functions in the data and control plane will be 
demonstrated at milestone M5, active management functionality remains for demonstration at M6. 

All node types versions will exhibit the similar functionality vis-à-vis services and 
management components, i.e. they will all support the active service provisioning facilities 
(ASP) as developed in WP4. They will be different, however, in their respective Node OS 
architectures and performance characteristics.  
We will develop a single version of each of the two types of management nodes listed above. 
All FAIN management stations can interact directly with FAIN Active Network Nodes. 
In the first phase of the FAIN test-bed leading to M5 (May 2002), we will install, configure 
and evaluate only Active Network Nodes of type A, and the corresponding Element 
Management Station and Network Management Station. An initial version of an active node 
of type C will be developed and demonstrated by HEL. Intel IXP-based Active Network 
Nodes (type B) and full-featured Hybrid Active Router Nodes (type C) will still be under 
development at that time and will be ready for demonstration and evaluation as part of the 
work for M6 (April 03). 
As stated earlier, FAIN is developing two types of management stations, the Element Management 
Station (EMS) and the Network Management Station (NMS). Both management stations will have the 
same properties. The stations will be based in PCs with Linux OS. As programming platforms both 
stations need OpenORB and OpenCCM1 CORBA platforms over which management components will 
be build. At the end of the project both management stations will be implemented over FAIN Active 
Node middleware (i.e., the RCF) in order to be able to limit the amount of management station 
resources different management instances are consuming. 

FAIN currently allows for only one NMS per network. Therefore only one NMS will be operational 
during the demonstrations; however, partners may set-up their own NMS for testing purposes in their 
own realm. One EMS may manage multiple active network nodes, which may be assigned 
dynamically. However, it is anticipated that each partner will run an EMS to be able to locally manage 
his active network node while testing. 

 

                                                 
1 The use of OpenCCM platform is conditional of the availability of a new version of this platform during the 
project life offering the necessary functionality. 



Revised Specification of Case Study Systems   Page 5 of 17 

Copyright  2000-2003 FAIN Consortium  May 2002 

2 ARCHITECTURE REFINEMENT 
 In the deliverable D3 [8] of this project we presented already the architecture being designed and 
developed. This architecture is still valid nevertheless some changes have been pointed out as the 
project evolves. This chapter introduces and explains those changes that affect respectively the whole 
architecture view, the Management by Delegation and the management bootstrapping process. Finally 
the mapping of the Architecture and new concepts introduced so far in the FAIN enterprise Model is 
described in order to help understanding the whole system environment. 

2.1 Global Architectural refinement 
The management and active service provisioning frameworks are closely coupled in order to manage 
and maintain the active network infrastructure within the agreed quality of service parameters. 

As initially delineated in the previous FAIN Deliverable D3 [8] document both frameworks interact at 
all layers (i.e. network, element and node). The concrete interaction description between both 
frameworks was already detailed in D3 and therefore it will not be repeated here. Although some 
changes have been made since then: 

• The Active Service Provisioning framework will be able to send Service Policies to the 
management framework.  

These policies will allow the ASP to determine the best configuration for the 
Virtual Environment where the service will run, as well as configuring node 
facilities (such as the ASP or others) in a controlled way. E.g. a service policy 
may express that service X requests 50% of the CPU and another service policy 
lets service Y ask the node to download code module Y (z) and replace code 
module Y (y) with it, if the remaining memory for service Y is less than 
100kByte. 

This modification has been included in the second situation exposed in D3, where 
the management framework was requested to install a service within the active 
network. 

As a result the function named serviceMap has been changed to:  

void serviceMap(in:ServiceID string, in:Credential Credential, in:ReqResources 
ResourceList, out: ServicePolicies ServicePolicyList); 

Also the ReqResources parameter has been changed from mandatory to optional. 

• Requests for the installation of active services requiring fast decision and allocation 
of resources are solved within the active node 

In case that an active packet arrives to a FAIN Active Node with code, or a 
pointer to it, that should be installed in the node (third scenario in D3) there might 
be a latency restriction to process the packet. For example, in the capsules 
approach the capsules will probably require the fastest possible allocation, 
execution and forwarding. In those cases, contacting the management system (i.e. 
the corresponding EMS) to take a decision and allocate resources would be 
inefficient. The same thing can be said, when the packet does not carry the code, 
but just points to the code that has to process it. If the code has to be started with 
certain resources depending on the consumer, associated with the arriving packet 
(in particular with its credential), we have the same low latency restriction as on 
the capsules approach, in the sense that, since the code is started with different 
resources for each consumer, the decision has to be made very fast. Thus, making 
this decision outside the active node is inefficient (too slow). 



Revised Specification of Case Study Systems   Page 6 of 18 

Copyright  2000-2003 FAIN Consortium  May 2002 

The new approach designed to solve this problem is that for services that require 
fast allocation of resources, the management system will configure the Security 
Framework appropriately in order to allow the assignment of a certain amount of 
resources to the consumers. In that way, when the packet (either capsule or 
pointer) arrives to the node, the ASP will first ask the Security Framework 
whether the packet can be processed with the requested resources included within 
the active packet in the form of a node level security policy. The active packet 
will also carry the consumer credential information used by the Security 
Framework for making the final decision. As such, if the Security Framework has 
been previously configured with the necessary information to accept or reject the 
request it decides accordingly and the decision is rapidly taken. Otherwise the 
ASP will contact the management system (i.e. the EMS) to make a decision and 
allocate resources (if necessary) as described in D3. 

In Figure 4 the overall deployment of management and ASP stations for the maintenance and 
management of an active network. 

 
Figure 4 - Overall management and ASP stations deployment 

 

Within this figure there are several aspects that need more careful description in order to ease the 
complete understanding of the image: 

• Inside FAIN Active Nodes there will be certain management and ASP functionality. 
This functionality serves as helpful basis for the management framework to realise its 
functionality more easily. 

• Aside, some components from the management framework, in concrete from the 
element management system (i.e. the PEPs and PEPDemux components) run within 
the corresponding Virtual Environment inside the FAIN Active Node. The reason for 
this is that it reduces the data traffic between the management stations and the active 
nodes and might even, if necessary, permit fast decision making within the nodes in 
punctual cases [10] 



Revised Specification of Case Study Systems   Page 7 of 19 

Copyright  2000-2003 FAIN Consortium  May 2002 

• In FAIN there will be only one network level management station per administrative 
domain, and a variable rate of active nodes per element management station with a 
minimum of one. However, in case that there is more than one active node per 
element management station, the management station will treat each one of them in a 
completely independent way (isolated from the others). The reason for this approach 
is that it allows the infrastructure owner to have a flexible trade-off between a cost-
effective solution (several active nodes per EMSs) and a solution simpler, more 
distributed and more scaled (one-to-one ratio). 

The flexible element management stations vs. active nodes ratio, which was already described in D3, 
altogether with the approach of including PEPs inside the active nodes, impose to the Policy Decision 
Points (PDPs) the necessity of being able to distribute its decision to the affected enforcement point. 
The detailed description of this functionality and others from the PDP is provided in subsequent 
chapters. 

2.2 Management by delegation 
The Management by Delegation (MbD) concept within the FAIN Policy-based Network Management 
(PBNM) system has been refined so that the initial PBNM architecture described in D3 was revised.  

MbD was conceived to transfer the management logic from the central management system closer to 
the managed entity. This alleviates the management burden from the central management system [1]. 
The term “delegation” has been also interpreted in the context of Policy-based management. In [2] it is 
used to describe the transfer of access rights between subjects by means of delegation policies. Both 
interpretations of MbD have been incorporated in our revised architecture. Namely, we identify a 
component whose responsibility is the configuration of security components in order to delegate 
access rights. On the other hand, Yemini’s MbD approach is embedded in the whole framework and it 
is not realised by a single component. 

We extend the concept of MbD in the following sense: we allow multiple management systems to be 
instantiated With differentiated functionalities. Additionally, these different instances may be adopted 
by the different FAIN roles, e.g., a Service Provider (SP).  
The full-flavoured management by delegation based on policies can be applied to the FAIN enterprise 
model in its entirety. The delegation of functionality interactions, that take place between the ANSP 
and the SP, represent a pattern for network and node management and may be repeated at every level 
of the business hierarchy, namely, between the ANSP and the SP2, and between the SP and the 
Consumer.  

The SP acquires part of the resources of the ANSP, and in a similar manner the Consumer receives 
part of the SP’s resources. Furthermore, the SP may be presented with a variety of management 
options, ranging from installing its proprietary management architecture to installing varying instances 
of the ANSP’s PBNM architecture. In the latter case, the SP has the advantage of starting from a 
specific set of management components that may further be specialised according to the SP’s 
requirements. An advantage of this approach is that the PBNM management architecture may become 
a product that the ANSP sells to the SP. A similar situation may occur between the SP and Consumer. 

                                                 
2 For simplifying the management concepts used within FAIN, we have used the simplest mapping of the 
enterprise model actors to the management system. The complete mapping description of actors to our 
management framework will be given in section 2.2. 



Revised Specification of Case Study Systems   Page 8 of 20 

Copyright  2000-2003 FAIN Consortium  May 2002 

 
Figure 5: Policy-based Active Management architecture at the NL and EL 

The management architecture covers both the network and element management layers, as defined in 
the TMN [3]. This approach aims to solve scalability problems and to provide a more distributed and 
autonomous management of active networks [[6],[7]]. 
 

 
Figure 6. Delegation of management functionality at the Element Level 

 



Revised Specification of Case Study Systems   Page 9 of 21 

Copyright  2000-2003 FAIN Consortium  May 2002 

Figure 6 shows how the delegation of management functionality is realised by the creation of different 
management instances and its relation with the FAIN Active Node. This figure helps to understand 
how different management instances and node virtual environments are created. The management 
instances can be realised both at the network and element management level.  
The ANSP management domain is composed of the components in the framework shown in Figure 5. 
Either the SP’s own management components or instantiations of ANSP management components 
delegated to the SP can compose the SP’s management domain. 

The “management authority” is the owner of the management system that is delegating functionality to 
another subject or entity that we call “management instance”. 
The management installation procedure on the instance starts with functionality transfer, according to 
the access rights, from the management authority to the instance. That allows the instance owner to 
use the allocated resources for management purposes.  
The management authority may request to control which entity enters the management framework. 
This requires security checks before any party attempts to enter the management system. For that 
purpose we have introduced a new component called the “ANSP proxy”. 

Access rights transfer involves the control of the management system itself. For example, if a policy-
based system is used, the management instance should be given the access rights to control the use of 
the policies. The use of policies refers to the procedure that starts from the policy reception, decision 
and enforcement, as well as controlling the functionality of the policies, and ends by uninstalling the 
policies. 

An additional access rights transfer from the management authority to the management instance 
involves the acquisition of rights so that the latter can access the actual managed resources, such as 
routers, switches etc. These resources initially belong to the management authority and are, then, 
allocated to the instance creating a Virtual Environment (VE).  

In addition, the management authority also provisions physical resources (used for management 
purposes) to the management instance. 

The requirement for instantiating virtual environments as a result of a virtual network deployment 
implies specific relationships between the ANSP’s and SP’s management architectures that need to be 
captured by the overall management framework. Accordingly, within the SP’s virtual environment, its 
management architecture is instantiated by the ANSP, thereby, forming a parent-child relationship. 
Supporting such relationship requires introduction of an abstraction that we call the management 
domain depicted in as the ANSP and the SP management domains. Inside such domains the 
management architectures of the owners of the domain can be deployed/instantiated.  

There are a lot of possible interactions that may take place between the ANSP and the SP according to 
the Service Level Agreement contracted. For example, the SP may use the management functionality 
of the ANSP as it is. For that purpose, the ANSP will create a new instance and it can maintain the 
total control of that instance itself (thus creating a new ANSP instance). Total control refers to the 
ability to control the complete usage of the policies (e.g., which policies can be set, by whom, and 
when should they be uninstalled...). Alternatively, it can delegate the control of the policy usage to the 
SP (thus creating a SP instance). It must be noted however that even when the SP has the control of 
the management logic, the ANSP still maintains the control of the management instance itself. For 
example if that instance is implemented in the form of a thread, the ANSP can “kill” that thread if the 
SP performs an illegal operation. Moreover, in order to make the whole system more security robust, 
the ANSP may keep the control of who is entering the management system at any time with the use of 
the ANSP proxy. In any case, in the SLA, the entity that controls the access rights both for entering the 
management framework as well as for controlling the use of the policies, should be clearly defined.  
Consider another case when the SP wants to install its own management system. For this reason, the 
ANSP creates a SP instance where the SP can install its own management code. The ANSP can still 
delete or recreate the SP instance. Again in this case, it is important that the detailed interactions and 
the relationship between the ANSP and the SP should be explicitly defined in the SLA constructed 
between both parties. 



Revised Specification of Case Study Systems   Page 10 of 22 

Copyright  2000-2003 FAIN Consortium  May 2002 

2.2.1 Inter-PDP policy conflict resolution 
Another area that has received a lot of attention since D3, is the inter-PDP conflict resolution. By 
inter-PDP we mean between policies enforced by different PDPs within the same administrative 
domain, e.g. the SP-domain. 

Inter-PDP policy conflicts occur when two or more policies are eventually destined to access the same 
resources in a node from different PDPs conflict. If there is no co-ordination between these PDPs as 
far as conflict resolution is concerned, eventually there will be a conflict during the enforcement time.  
 
With the conflict resolution mechanism at the network level we can resolve some of the conflicts at 
deployment time, which is of course far better that waiting until the enforcement time to capture a 
conflict. 
We will try to avoid this kind of conflicts by defining a good information model that contains both 
complex and simple policies. In case this is not enough for avoiding conflicts we will solve possible 
appearing conflicts implementing one of the next two approaches that follow: 
1. Based on policy translation 
2. Based on a group of checkers 

 
The first solution is based on the policy translation from the PDP-specific format of the policies to 
another one more generic that is common to all PDPs, which might conflict. This policy translation is 
realised by the PDPs themselves, and once the policy is translated, it is send to a generic conflict check 
component, that will check this generic  policy against all previous policies (in the generic  form) 
enforced before. 
The second solution opts for a slightly different approach. Each set of possible conflicting PDPs will 
form a primary domain. Each primary domain will have a conflict check component. When a policy 
arrives to a PDP that might conflict with other policies in another PDP, this PDP will forward this 
policy to the corresponding primary domain conflict check component. This component will 
understand all possible conflicting policies from its related PDPs and will realise the conflict checking 
of the new policy against all previously enforced. When a new PDP is downloaded to the system that 
deals with policies that might conflict with others in one particular primary domain, the conflict-
checking component of that primary domain should also be extended so that it can understand and 
check the new policies from the new PDP. 
We ended up using one generic conflict check component, mainly because we wanted to avoid the 
direct communication between several PDPs for policy conflict resolution. The latter would most 
certainly lead to an increase in the complexity of the interfaces exported by the PDPs, and would also 
incur scalability problems by introducing a large number of messages that need to be exchanged 
between the PDPs. However, the use of a generic conflict resolution mechanism has drawbacks as 
well, as the scalability concerns are still not resolved.  

 

2.2.2 Resource manager 
The task of the resource manager (RM) is to assess the resource utilisation information that it has 
registered to receive from the monitoring system. This evaluation will drive short-term or long-term 
decisions for admission control, traffic re-routing, resource re-allocation etc.  

So far we have designed the resource manager module only at the network level. However, we found 
out that it should also be located at the element level as well. This is because both the network level 
and the element level management system must work in tandem for resource management. Since the 
resource management algorithm runs inside the RM component, this algorithm can be distributed 
between the network-level RM and the element-level RM. The RM component will also be located in 
the ANSP and the SP both domains. 



Revised Specification of Case Study Systems   Page 11 of 23 

Copyright  2000-2003 FAIN Consortium  May 2002 

2.2.3 Management bootstrapping process 
The bootstrapping process at every level of our management system, namely the network, the element 
and the node level mainly consists of two parts:  

a) Deployment and loading of the code that creates the management logic and  

b) Configuration of this logic so that for example, the ANSP PBNM will allocate resources for its 
own use. 

 The former falls within a wider scope of the ASP, whereas the ANSP PDPs captures the latter. In 
other words, the ANSP is entirely responsible for installing and initialising the management system in 
every part of the network needed. On the other hand, when the SP is assigned virtual resources, it is 
the SP that is responsible for the configuration of those resources (possibly with the association of the 
ANSP). 

Accordingly, in a bootstrapping scenario we assume that the ANSP functionality is somehow deployed 
and we only need to describe how it is configured. 

2.3 Mapping the Management Framework and FAIN Enterprise 
Model 

The complete understanding of the management framework, and particularly of the delegation of 
management concept, would not be possible without a clear mapping of this framework to the FAIN 
Enterprise Model defined in FAIN Deliverable  D1 [9]. The figure below along with the explanatory 
notes attached, describe this mapping and its main properties. Nevertheless, more detail regarding the 
actual architecture components designed to fulfil this functionality would be given in following 
chapters 4 and 5. 

Figure 7 also eases the understanding of the management system use cases presented in the next sub-
section. 

 



Revised Specification of Case Study Systems   Page 12 of 24 

Copyright  2000-2003 FAIN Consortium  May 2002 

Figure 7 – Framework mapping to the FAIN Enterprise Model 

In Figure 7 we can see the generic and complete mapping of the management framework and its 
implications (i.e. the delegation of management functionality approach) with the FAIN Enterprise 
Model defined in FAIN Deliverable D1[9]. The Network Infrastructure Provider owns the 
infrastructure that is, the programmable nodes (without Execution Environments) and the management 
framework to control the infrastructure. 

After a Service Level Agreement with one or more Active Network Service Providers (ANSP), the 
NIP might partition its infrastructure between those ANSPs creating virtual networks over which they 
can install one or more execution environments. The access to this virtual infrastructure is offered to 
the ANSPs through their Virtual Environments (VE) created by the NIP (relation represented by the 
<<creates>> arrow in the figure at the Virtual Environment level). In any case the NIP always keeps a 
privileged Virtual Environment and management instance so as to have complete control over its 
infrastructure.  

In order to allow the ANSPs to manage this virtual infrastructure the NIP also creates for the ANSPs 
new conveniently restricted instances of the management framework (represented by the <<creates 
arrow at the management instance, “MI”, level). Although in some very special cases, the ANSP 
would also be able to manage its infrastructure using the NIP management instance (relation 
represented by the diagonal arrow in the figure). 

All the possible interactions between the Active Network Service Provider and the Network 
Infrastructure Provider are contained in the FAIN Reference Point RP3. As shown in the figure these 
interactions can occur at different planes (business, management, node, etc.). It is also remarkable to 
note that the interactions realized between systems owned by the same actor (e.g. the ANSP MI and 
the ANSP VE) fall within the scope of internal interfaces of that particular actor. 

In a similar way the Active Network Service Provider can partition its virtual infrastructure into 
smaller ones and offer them to different Service Providers that will use this smaller virtual 
infrastructure to install active services, which they will offer afterwards to consumers. The interactions 
that allow this new delegation of resources between the ANSP and the SPs are almost the same that in 
the previous step between the ANSP and the NIP. The only difference is that in this case there is the 
obvious limitation that the maximum resources and access rights that can be allocated to a SP by an 
ANSP are all the resources and access rights this ANSP has obtained from the NIP.  

Again, all possible interactions between a Service Provider (SP) and an Active Network Service 
Provider are contained within the FAIN Reference Point RP2. 

Finally, the same process can be repeated with the Service Provider creating an even smaller virtual 
infrastructure to its consumers. In case that happens the interactions between these two actors would 
be those contained in FAIN Reference Point RP4b. 

Up to this point, we have described the generic mapping of the management framework to the FAIN 
Enterprise Model. As derived from the explanatory text above, this generic mapping is not 
straightforward. However, if we take into account some considerations we will soon realize that the 
mapping is not as complex as it seems. 

First of all, it is quite likely that most of the times the Network Infrastructure Provider decides to 
install by itself one or more Execution Environments over its virtual infrastructure and act directly as 
an ANSP. If that happens the ANSP and the NIP will be the same actor and therefore the first 
delegation “level” which was between the NIP and the ANSP disappears. We would have just three 
actors and two delegation levels.  

Now, let us consider that it is not really advantageous that a consumer obtains a virtual infrastructure 
from a SP, except for some very concrete services and highly prioritised consumers. We will find 
ourselves in a situation where the mapping between the most common enterprise model and the 
management framework is much more straightforward and easy to understand. It involves just three 
actors (NIP-ANSP, SP and C) and just one delegation level between the ANSP and the SP. 



Revised Specification of Case Study Systems   Page 13 of 25 

Copyright  2000-2003 FAIN Consortium  May 2002 

3 OVERVIEW OF THE MANAGEMENT SYSTEM ARCHITECTURE 
 This chapter gives an overview of the whole management system being built. In D3 we have already 
identified the three main sub-subsystems that composed the management system, namely PBANM, 
PBENM and ASP. Out of that we identified already a core policy based functionality that overlap both 
Network level and element level that have been abstracted as 2-tiers Policy Based Architecture. The 
following section outlines these sub-systems and their dependencies. The next section will describe the 
abstract functionality that will be inherited and specialize by the Network and element levels sub-
systems in order to avoid redundancy when describing those sub-systems in relevant chapter. 

3.1 Management System sub-systems  
 

 

Figure 8 – Management framework system relations 

The management framework designed in FAIN is a policy-based management framework at two 
levels: the network and the element level. Both this levels are specialization from a generic policy-
based management framework adapted in FAIN, represented by the 2-TiersPBA Package in Figure 8.  

The network level management sub-system (PBANM-NL) is the core of the whole management 
infrastructure, distributed in several element level management systems (PBANEM).  

Both network and element management sub-systems are using the ASP sub-system that provides the 
code mobility management functionality completing, in the whole FAIN management infrastructure. 

 

 

PBANM
<<sub-system>>

<<Generic>>
2-tiersPBA

PBNEM
<<sub-system>>

ASP-NL
<<sub-system>>

ASP-EL
<<sub-system>>



Revised Specification of Case Study Systems   Page 14 of 26 

Copyright  2000-2003 FAIN Consortium  May 2002 

  

3.2 The 2-tersPBA Use Cases 
This section describes the main generic use cases of the management system, which are shown in the 
Use Case Diagram of Figure 9. 

NIP

ANSP

SP

Consumer

delegate management functionality

request decision through signalling

automatically reconfigure after fault

provision policy in active packet

NIP, ANSP, SP 
or Consumer

NIP, ANSP, SP 
or Consumer VE

provision policy

<<communicate>>

<<communicate>>

<<communicate>>

<<communicate>>

<<<<configure>>>>

<<<<configure>>>>

<<<<configure>>>>

<<communicate>>

 
Figure 9 – Network Management Framework generic Use Case diagram 

 

For simplicity reasons, use cases that are related either with all NIP, ANSP, SP and Consumer actors 
have been grouped in a single actor named “NIP, ANSP, SP or Consumer”.  

As can be immediately deduced from the figure all use cases, and thus the functionality they represent, 
are supported by the generic policy-based management framework, and therefore by both the 
PBANM-NL and PBANEM systems that have already been introduced in the previous section. 

Provision policy 

This is probably the most important use case for a policy-based management framework. Together 
with the signalling use case they represent the basic functionality for policy processing in a policy 
based management system. 

The provision policy use case encloses all functionality realised in our management framework every 
time a policy is introduced in the system. 

The activity diagram in Figure 10 shows the main functionality within the provision policy use case.  

2-tiers PBA <<abstract>> 



Revised Specification of Case Study Systems   Page 15 of 27 

Copyright  2000-2003 FAIN Consortium  May 2002 

check 
identity

wait for 
policies

edit policies receive policies in 
active packet

forward to 
management instance

check access 
rights

check if needed 
PDP/PEP are installed

download & 
install PDP/PEP

no

make 
decisions

yes

send events

register 
events

event 
processing

enforce 
decisions

store 
policies

fail

success

fail

success

 
Figure 10 – Provision policy Activity Diagram 

 

Actor owned  
management instance 
and VE 

2 tiersPBA 
<<abstract>> 



Revised Specification of Case Study Systems   Page 16 of 28 

Copyright  2000-2003 FAIN Consortium  May 2002 

First, the pre-processing functionality is realised outside all management instances and realises: policy 
edition, checking of the identity through the credentials of the actor that pretends to use the 
management system, and demultiplexing of the policy to the corresponding management instance. 

Once the policy enters the particular management instance the functionalities that will be realised3 are 
mainly:  

• Checking the access rights in the management instance of that actor (this functionality 
will only be developed in very special cases). 

• Also in some cases, it might be necessary to extend the management functionality 
through the downloading of new components to correctly process the policy. 

• Finally, the core policy logic functionality. This functionality encloses the most usual 
functionality of a policy based system: policy storage in the repository, making 
decisions on when a policy should be enforced based on events received through the 
event processing functionality and, finally, the enforcement of decisions. As a 
refinement of the latter, just at the network level specialization of the framework, the 
policies should be distributed to the appropriate element level systems. 

Usually the result of the decision enforcement functionality ends in a set of configuration changes on 
the virtual environment owned by the same actor as the management instance that requests those 
changes. 

                                                 
3 In case the actor chooses to install and use its own management functionality within its management instances 
the functionality realised might not be the one described here 



Revised Specification of Case Study Systems   Page 17 of 29 

Copyright  2000-2003 FAIN Consortium  May 2002 

Request decision through signalling 

Another basic functionality of a policy-based system is that which covers the signalling approach; 
where the managed device requests through the policy enforcement point a set of resources to the 
decision point. Based on the resource consumption status, and on the policies available in the system, 
the policy decision point has to decide whether this request is accepted, and thus the resources are 
allocated, or rejected. 

In Figure 11 we can see the main functionalities contained within the signalling use case. 

wait for signalling 
requests

find PEP to process 
the request

check 
access rights

make 
decisions

enforce 
decisions

fail

success

 
Figure 11 – Request decision through signalling Activity Diagram 

 

Since we might have several enforcement points within the same virtual environment of an active 
node, the first functionality to be realised, is the demultiplexing of requests to the appropriate 
enforcement point. 

From there on, the functionality for processing the request is initiated. It contains basically two main 
functionalities: first, the access rights checking of the actor that is sending the request, and second, the 
concrete policy logic functionality related with signalling processing. 

Finally, the latter is composed by the decision making functionality based on the resource status and 
on the policies installed within the system, and also by the enforcement of the decision which, 
obviously, includes the forwarding of the decision notification to the entity that made the request, 
whatever the decision is. 

 

Delegate management functionality 

The delegate management functionality use case is conceptually almost the same than the provision 
policy use case. The only difference is that, in this case, the provisioning actions are the creation of a 
virtual environment and a management instance for a new actor with certain access rights. 

However, although being very similar to the already explained provision policy use case, the 
importance of the delegation concepts within our framework makes necessary the introduction and 
description of the delegate management functionality use case. 

Actor owned management instance and VE 

2 tiersPBA 



Revised Specification of Case Study Systems   Page 18 of 30 

Copyright  2000-2003 FAIN Consortium  May 2002 

In Figure 12 we can see the main functionalities included in the delegate management 
functionality use case. 

check 
identity

wait for 
policies

fail

edit policies receive policies in 
active packet

forward to 
management instance

success

check access 
rights

fail

check if needed 
PDP/PEP are installed

success

download & 
install PDP/PEP no

make 
decisions

yes

send events

register 
events

event 
processing

enforce 
decisions

store 
policies

create new 
management instance

instantiate 
new VE

 
Figure 12 – Delegate management functionality Activity diagram 

As said before, most of the functionalities are equal to the ones defined for the provision policy use 
case. For that reason we are not going to repeat them here. Nevertheless, we will try to highlight the 
main particularities of the delegation of management functionality use case. 

As stated in the use case diagram, only the NIP, ANSP or SP actors can in theory realise this use case, 
not the Consumer since it cannot delegate management functionality to any other actor. 

For the same reason, the result of the enforce decisions functionality are configuration actions over the 
virtual environments of the NIP, ANSP or SP only, since this configuration actions request the 
creation of the delegated virtual environment with the appropriate access rights. 

2 tiersPBA 
<<abstract>> 

Actor owned 
management instance 
and VE 



Revised Specification of Case Study Systems   Page 19 of 31 

Copyright  2000-2003 FAIN Consortium  May 2002 

Also, the enforce decisions functionality, in this particular use case, includes the functionality for 
creating the new delegated management instance within the management system for the actors that 
obtains the delegation of management functionality. Finally, those actors are notified with the handlers 
that they need to access both their virtual environment and management instance. 

Provision policy in active packet 

A new functionality we have introduced within the FAIN management framework is the one reflected 
in the provision policy in active packet use case. This functionality takes advantage of the fact of being 
managing an active network infrastructure in order to make even more flexible the distribution and 
introduction of policies in the appropriate management stations. 

In this use case the policy is included within an active packet and forwarded to the nearest 
management station each time a policy arrives to an active node where it should be applied. The 
functionality reflected in the use case is that covered since the policy arrives to the management 
station. 

Since the nearest management stations to active nodes are the element management stations, although 
the use case is in theory possible at both levels of the framework, it is in practice applied only at the 
element level. 

check 
identity

wait for 
policies

receive policies in 
active packet

forward to 
management instance

check access 
rights

check if needed 
PDP/PEP are installed

download & 
install PDP/PEP

make 
decisions

send events

register 
events

event 
processing

enforce 
decisions

store 
policies

fail

success

fail

success

no yes

  
Figure 13 – Provision policy in active packet Activity diagram 

 

Actor owned 
management instance 
and VE 

2 tiers PBA 



Revised Specification of Case Study Systems   Page 20 of 32 

Copyright  2000-2003 FAIN Consortium  May 2002 

The functionality contained in this use case is very similar to the one already described in the 
provision policy use case. There are basically two differences. The first is that the use case is initiated 
by the actor’s virtual environment that forwards the policy to its management instance in the nearest 
management station. The second is as previously explained, in practice this use case can only happen 
at the element level. 

Automatically reconfigure after fault 

The functionality included within this use case is quite original if we compare it with features of others 
policy-based systems. This functionality copes with the necessity of readapting the active node and 
network configuration when a fault occurs.  

The management framework, after the reception of the alarm warning of the fault occurred, will 
determine which are the policies that should be applied in order to correct the faulty situation. In that 
way we achieve an autonomous, distributed and fast resolution of problems and faults occurring in the 
active network infrastructure. 

Figure 14 below illustrates the main functionalities included within this use case. 

 

make 
decisions

enforce 
decisions

process received 
alarm

wait for 
alarms

send events

  
Figure 14 – Automatically reconfigure after fault Activity diagram 

In this use case, the alarm processing functionality monitors the resources. When an abnormal or 
faulty situation occurs it creates an alarm event, which is then forwarded to the event processing 
functionality that communicates the alarm to the decision-making functionality. Based on the alarm 
event it decides which policies should be applied, and requests their enforcement. 

The policy logic functionality in this use case is mostly the same as in the policy provisioning use case 
with the exception that there is no new policy introduced, thus there is no necessity to store any new 
policy in the policy repository. 

3.3 Components Overview 
In this section we will briefly introduce the main components of the FAIN management framework 
relating them to set of functionalities they realise from all those we have seen in the previous section.  

2 tiersPBA 

Actor owned management instance and VE 



Revised Specification of Case Study Systems   Page 21 of 33 

Copyright  2000-2003 FAIN Consortium  May 2002 

The main packages within the FAIN management framework have already been introduced in 
previous sections. Nevertheless, in this section we will map them to the functionalities they realised 
from the ones we discovered in the previous use cases so as to progressively introduce the reader to 
their capabilities and to the complete understanding of the architecture. A more accurate description of 
the components, the functionalities they cover, and how do they realise it will be given later on this 
document. 

Through the description of the main use cases we have introduced several functionalities or smaller 
use cases. Many times these functionalities are repeated through several use cases (e.g. the make 
decision functionality appears in the five use cases). In order to make a much more simpler and 
comprehensible mapping of functionalities and components we will show which component realises 
which functionalities in the table below. This is possible, instead of on use case after another 
describing all functionalities and mapping them to the package that covers them, since the component 
that realise a particular functionality is the same independently of the use case where the functionality 
is found. 

 

Functionality Component 

Edit policies Policy editor 

Check identity ANSP Proxy 

Forward to management 
instance 

ANSP Proxy 

Check rights Access rights check 

Dynamic management 
functionality extension 

PDPMgr 

Store policies Policy Database 

Make decisions 
PDP (e.g. delegation PDP, QoS PDP, fault management PDP, etc.) and with the 

support of the Resource Manager and the Monitoring system components 

Event processing Monitoring system (i.e. the event channel) 

Distribute policies PEP (i.e. the PEP components at the network level) 

Enforce decisions PEP 

Find PEP PEP Demux 

Create a new management 
instance 

PDPMgr 

Alarm processing Fault management PDP in close coordination with the monitoring system 

Table 1 – Functionality Vs. Component mapping table  



Revised Specification of Case Study Systems   Page 22 of 34 

Copyright  2000-2003 FAIN Consortium  May 2002 

4 R14 EMS (PBANEM) DESIGN 

4.1 EMS Use Cases 
This section introduces the main use cases, which are more closely related with the element level than 
with the network level. The use cases, which are going to be covered, are the signalling, the policy 
within active packet and the fault-triggered management reconfiguration.  

All three use cases have already been introduced in previous sections of this document. Nevertheless, 
we recover their description here in much more detail and particularized for the Element Management 
System (EMS), the PBANEM system. 

Although the amount of functionality contained in these use cases is high, the majority have already 
been described before. Therefore, our main focus in this section will be to introduce the new 
functionalities advancing a new step towards the complete comprehension of the management system 
presented. The new functionalities introduced are either specific for the element management system 
or more concrete, and less important but necessary, compared against those presented before. 

In the figure below a use case enclosing the three use cases presented in this section and their relations 
is presented. 

NIP, ANSP, SP
or Consumer ...

request decision through signalling

<<communicate>>

provision policy in active packet<<communicate>>

automatic reconfigure after fault

<<communicate>>

NIP, ANSP, SP
or Consumer VE<<<<configure>>>>

<<<<configure>>>>

<<<<configure>>>>

  
Figure 15 – General EMS Use Case diagram 

Before proceeding with the actual description of the use cases, I will just note that the NIP, ANSP SP 
or Consumer MI at NL actor, stands either for the Network Infrastructure Provider, Active Network 
Service Provider, Service Provider or Consumer Management Instance at the network level. This actor 
appears in the element level use cases because most of the changes occurring at the element level are 
notified to the network level in order to keep it informed of what is happening at the element level. In 
this way the network level always has a general view of the network resources and can act 
accordingly. 

Request decision through signalling 

The signalling use case particularized to the element management level includes three new 
functionalities that extend those described before. As can be seen in Figure 16, the new functionalities 
included are the demux decisions to PEP, dynamic conflict checking and notify configuration changes 
to NL MI. 

PBANEM 



Revised Specification of Case Study Systems   Page 23 of 35 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

wait for signalling 
requests

find PEP to process 
the request

check 
access rights

make 
decisions

enforce 
decisions

fail

success

check dynamic 
conflicts

demux decisions to the 
appropriate PEP

notify configuration 
changes to NL MI

fail

success

 
Figure 16 – PBANEM Request decision through signalling Activity diagram 

The demultiplexing decisions to PEP functionality extends the make decisions functionality previously 
described in the following sense. At the element level the policy enforcement points are located within 
the active network node, particularly within the virtual environment owned by the same actor as the 
management instance where the decision is made. Therefore, since there might be the case that a 
single element management system’s station manages several active network nodes, we will have a 
one-to-many ratio between decision points and enforcement points. Hence, the component which 
realises the make decision functionality at the element level should be extended with the functionality 
necessary to find the appropriate enforcement point to where this decision should be forwarded. 

The second new functionality included in the diagram is the dynamic conflict checking functionality. 
This functionality is the responsible for checking possible conflicts between different policies in the 
precise moment where a policy should be enforced. The need of this functionality in policy-based 
system is justified in [11].  

NIP, ANSP, SP or C MI at the EL 



Revised Specification of Case Study Systems   Page 24 of 36 

Copyright  2000-2003 FAIN Consortium  May 2002 

The dynamic conflict checking functionality is realised in part when the decision is made, and in part 
when the decision has to be enforced, that is the reason why it is in the middle of both functionalities 
in the diagram. The goal of the FAIN project is first to try to dynamic conflicts as much as possible 
making a clear and efficient allocation of resources, and keeping different allocations completely 
isolated from each other. However, if there are still dynamic conflicts the checking functionality will 
be realised in the this way: when a policy has to be deployed, it will be checked for conflicts, within 
the PDP, against other policies in that PDP, and if any conflict is found, it will be solved with policy 
priorities. If no conflict with other policies is found in this first step, the element management system 
will keep its normal process and will try to enforce the policy in the node. In this case, it might happen 
that the enforcement point finds out that there are not enough resources, that is, it detects a dynamic 
conflict. Then, the element management system will only enforce that request if it comes from the 
owner of the infrastructure, usually the NIP. If enforced, the node should notify the responsible entities 
of the removed resources so as to allow them to react accordingly. 

Finally, the last functionality included in the signalling use case at the element level being described, 
is the notify configuration changes to NL MI. This functionality is partly related with the previous one 
in the sense that when a reservation is made freeing resources of other actors because of a dynamic 
policy conflict, as introduced above, this functionality would be the responsible of sending the 
notification of the resource allocation and the freed resources to the network level, which will in turn 
forward it to the actors affected. 

However, the above described will be the less common use of this functionality, usually this 
functionality will be used in order to inform the network level management instance, owned by the 
same actor as the notification originator instance, the configuration actions realised on the managed 
resources so as to keep the network level informed and allow it to have a general view of the managed 
resources. 

 

Provision policy in active packet 

The provision policy in active packet use case, despite of what the diagram shown below might 
induce, does not change substantially when particularized to the element management level. There are 
just some small new functionalities, which should be specifically added to the element management 
level, and some others, general for both the network and the element level, which are introduced now 
in order to provide some more information about the management framework functionality. 

At the element management level the provision policy in active packet and the provision policy use 
cases are identical, except for the actor which initiates the request: the network level in the 
provisioning and the corresponding virtual environment in the policy in active packet use case. In 
consequence, all functionality description in this section applies as well to the policy provision use 
case at the element management level, which we are not going to describe explicitly. 



Revised Specification of Case Study Systems   Page 25 of 37 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

parse XML policy 
into JAVA classes

check 
identity

wait for 
policies

receive policies 
in active packet

forward to 
management instance

check access 
rights

check if needed 
PDP/PEP are installed

download & 
install PDP/PEP

no

make 
decisions send 

events

register 
events

event 
processing

enforce 
decisions

store 
policies

configure scheduler with 
PDP lifecycle control date

control the forwarding 
of policies

demux decisions to 
appropriate PEPs

notify configuration 
changes to NL MI

register in the scheduler the 
policy lifecycle control date

notify policy 
introduction to NL MI

check dynamic 
conflicts

yes

sucess

fail

fail

success
fail

success

 
Figure 17 – Provision policy in Active Packet Activity diagram 

PBANEM 

NIP, ANSP, SP 
 or C MI at EL 
 



Revised Specification of Case Study Systems   Page 26 of 38 

Copyright  2000-2003 FAIN Consortium  May 2002 

In the diagram above we can see several functionalities not included in the generic provision policy in 
active packet use case described in a previous chapter. However, from all these functionalities only six 
of them are really new (i.e. the scheduler, policy forwarding control, the PDP lifecycle control, policy 
lifecycle control, parsing and notify policy introduction to NL MI). The functionalities notify 
configuration change, dynamic policy conflict and demux to PEP have just been described in the 
previous section. From the six new functionalities introduced only the notify policy 
introduction is specific for the element management system, the rest apply at both levels. 

The scheduler functionality is just time trigger functionality. It is used by the PDP lifecycle control 
and policy lifecycle control to be triggered when either a PDP or a policy valid period expires. To do 
so it has, obviously, to be previously configured with the trigger time and the component to be 
triggered. Although not reflected in the diagram it might also be configured to trigger the make 
decision system when a time condition is met.  

The FAIN policy-based management framework supports the introduction of groups of policy rules in 
the form of a policy set. The policy rules within a policy set might need to be applied atomically, 
sequentially, independently, etc. The policy forwarding control functionality is in charge of controlling 
the forwarding of policy rules into the management framework based on the forwarding property in 
the policy set. 

The PDP lifecycle control is in charge of the maintenance of the policy decision points. It basically 
monitors the number of policies each policy decision point is treating. When a policy decision point is 
not processing any policy the lifecycle control functionality will remove it from the system freeing the 
resources that it was consuming. 

The policy lifecycle control functionality is similar to the functionality above but it controls the 
lifecycle of policy rules within the management framework. Each policy rule has a 
“policyRuleValidityPeriod” property [12] that indicates the date when a particular policy expires. The 
policy lifecycle control system will register this date in the scheduler, and when triggered it will 
remove the policy from the element management system. 

As described in the FAIN Deliverable D3 policies are expressed using XML language. In order to ease 
the manipulation and processing of policies these should be parsed afterwards to a JAVA class, this 
functionality is the parsing functionality in the diagram above.  

Finally, the notify policy intro functionality aims to keep the network management level informed of 
what policies are being processed at the element management stations. Each time a policy rule is 
stored at an element level policy repository, this functionality is in charge of sending a notification to 
the corresponding network level management instance. In case the policy had been sent by the 
network level this notification would just act as confirmation, otherwise it informs that a new policy, 
with its main properties, coming from the virtual environment has been introduced in the element level 
management instance. 

Automatically reconfigure after fault 

The last use case we are going to describe in this section is the automatically reconfigure after fault 
use case. It contains four new functionalities specific for the element management level (PBANEM 
system). Three of them have already been described in previous chapters (i.e. the demux decisions to 
PEP, dynamic policy conflict and notify configuration change), only the send alarm to NL MI 
functionality shown in the diagram below needs to be described still. 



Revised Specification of Case Study Systems   Page 27 of 39 

Copyright  2000-2003 FAIN Consortium  May 2002 

make 
decisions

enforce 
decisions

process received 
alarm

wait for 
alarms

send events

demux decisions to 
appropriate PEPs

check dynamic 
conflicts

notify configuration 
changes to NL MI

send alarm to 
NL MI

fail

sucess

 
Figure 18 – Automatically reconfigure after fault Activity diagram 

Both the send Alarm to NL MI and the notify configuration changes to NL MI can happen but never at 
the same time. In case a fault occurs within an active node virtual environment an alarm will be raised 
which will be captured by the corresponding element level management instance. The management 
instance will try to solve the problem, and in case it succeeds then the configuration changes realised 
should be notified to the appropriate network level management instance. However, it might be the 
case that for several reasons, the problem can not be solved at the element level, then the element 
management instance will send an alarm notification to the network level management instance to 
allow it to react accordingly. The functionality of creating the alarm notification and sending it to the 
corresponding network level management instance is the one included within the send alarm to NL MI 
bubble. 

4.1.1 Components overview 
In this section we will provide a table mapping the new functionalities introduced in the above 
described use cases with the components of the policy-based active network element management 
(PBANEM) system within which that functionality will be enclosed. All components listed have 
already been introduced in previous sections and they will be described in more detail later on this 
document. 

The table below shows the mapping between the new functionalities described and the element 
management system (PBANEM) components that cope with them. This table complements the one 
given for the mapping between generic functionalities of the whole management framework (both 
element and network levels) and the components of the generic framework. 

 



Revised Specification of Case Study Systems   Page 28 of 40 

Copyright  2000-2003 FAIN Consortium  May 2002 

Functionality Component 

Demux decisions to PEP PDP 

Dynamic conflict checking Part in PDP and part in PEP 

Notify configuration 
changes to NL MI 

PDP 

Scheduler logic PDP 

Policy forwarding control PDPMgr 

PDP lifecycle control PDPMgr 

Policy lifecycle control PDP 

Parsing PDP 

Notify policy introduction 
to NL MI 

PDP 

Send alarm to NL MI Fault management PDP 

Table 2 – Functionality Vs. Component at the element level mapping table  

4.2 EMS Components description 

4.2.1 ANSP Proxy Component in Element Level 
The ANSP Proxy at the element level works as a dispatcher of the policy data from the network level 
PEPs to the EL PDP Manager. 

4.2.1.1 Use cases 
When the ANSP Proxy receives the policy data from a PEP, it checks the parameters included in the 
policy data, such as VE id, and then finds an appropriate PDP Manager passing this VE id as well as a 
name, which indicates the domain. The ANSP Proxy also analyses reports from the PDP managers and 
may also create and send summarized reports to the operators. This reporting could be done directly to 
each SPs or through the ANSP in the NMS. 

 

Figure 19: Use cases of the ANSP Proxy at Element Level 

 

P E P  i n  N L P o l i c y  C h e c k

D i s p a t c h  P o l i c y

P D P  M g r

A n a l y z e  S t a t u s



Revised Specification of Case Study Systems   Page 29 of 41 

Copyright  2000-2003 FAIN Consortium  May 2002 

4.2.1.2  Class Diagram 
The ANSProxyImpl class provides two methods: forwardPolicy() and setReport(). When a PEP in the 
network level sends policy data to the EMS, forwardPolicy() is called. After the deployment of policy 
data, the NL PDP may send reports to the ANSProxy with the setReport() method. 

 

Figure 20: Class Diagram of the ANSP Proxy in Element Level 

4.2.2 PDPMgr Component 
The main functionality of this component is to demultiplexing received policies into the corresponding 
Policy Decision Point. Other important functionality are the PDP lifecycle control, controlled 
forwarding of policy sets and the PDP installation when an arriving policy needs to be processed by a 
non-installed PDP. 

In the actual design the policy lifecycle functionality is realised registering in a database the latest 
caducity date of all policies enforced by that PDP. 

In Figure 21 we show the general use cases of the PDPMgr component: 

 

ANSProxyImpl

forwardPolicy()
setReport()



Revised Specification of Case Study Systems   Page 30 of 42 

Copyright  2000-2003 FAIN Consortium  May 2002 

uninstall PDPcheckPDPLifecycle

ANSP Proxy

Control of forwarding of 
policy sets

<<communicate>>

AccessRight
sCheck

LifecycleTable

newPDPCadDate()

(from Logical View)

ask access rights 
checking

<<<<requests>>>

ASP

registerCaducity

findPDP

<<<<requests>>>

PDP

forward policy

<<communicate>>

 
Figure 21 –PDPMgr Use Cases 

The class diagram Figure 22 we have designed for this component is based on PForwControl and 
PDPmgrImpl classes, which realise most of the functionality helped by the other classes. 



Revised Specification of Case Study Systems   Page 31 of 43 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 22 – PDPMgr Class Diagram 

 

The PForwControl class implements the functionality of the “control of forwarding of policy sets” use 
case. When a policy set arrives, it checks whether it is just one policy or a policy set. in case of Policy 
set, it splits the set in individual policies, checks the forwarding mode of the policy set, and then 
forwards the individual policies accordingly. 

The PDPMgrImpl co-ordinates the core behaviour of the PDPMgr. The mapping of classes with use 
cases is the next one: 

·  The PDPMgrImpl uses the AccessRightsCheck component in order to realise the “ask access 
rights checking use cases” 

·  It uses the domainTable class in order to realise the findPDP use case and if the PDP is not 
found, the PDPMgrImpl class uses its downloadCode private function in order to request the PDP 
downloading to the ASP component.  

·  The PDPMgrImpl class is also the responsible of forwarding the policy to the PDP once it is 
installed. 

·  After the policy forwarding it realises the register caducity use cases using the 
PolicyLifecycle class, which in his turn uses the lifecycleTable. 

·  Finally the PolicyLifecycle class periodically checks the lifecycle table in order to realise the 
check PDP lifecycle use case. 

·  If the PolicyLifecycle detects that a PDP has expired, contacts the PDPUninstaller in order to 
remove it fulfilling the uninstall PDP use case. 

 



Revised Specification of Case Study Systems   Page 32 of 44 

Copyright  2000-2003 FAIN Consortium  May 2002 

4.2.3 QoSPDP Component 
The PDP component is the main component in a policy-based management architecture. Its main 
functionality is to check possible syntactic and semantic conflicts in policies (sometimes, even try to 
solve these conflicts4). Another piece of functionality of the PDP is to decide when a policy should be 
enforced. In order to realise this functionality the PDP needs to receive information from the 
monitoring system. The third important functionality is to forward decisions to PEP components in 
order to be enforced. Also, support for signalling requests; that is, realise the above-mentioned 
processes but for a signalling request. Finally, the PDP needs also to control the policy-validity period 
of policies in order to uninstall expired policies. 

In Figure 23 we show the main use cases of a PDP component. 

Syntatic Checking

Check_Policy

PDPMgr

<<communicate>>

ARCheck

Semantic Checking uninstall Policy

signalling support

<<<<requests>>>

DB
<<<<requests>>> <<<<requests>>>

MonitoringSyst
em

PEP

<<communicate>>

decisionEnforcement

<<communicate>>

makeDecision

<<communicate>>

<<<<requests>>>

<<communicate>><<include>>

<<<<requests>>>

 
Figure 23 – PDP Component use cases 

 

The class diagram we have designed for the PDP has its core in two classes the pdpQoSOpsImpl and 
the Evaluation class. 

The mapping of use cases to the classes that realise that functionality is the following: 

 ·  Check policy: it is the pdpQoSOpsImpl class that after receiving the policy checks whether 
there are syntax conflicts (i.e. using its private function checkPolicySyntax). After that check 
it contacts the SemanticConflictCheck class to realise the semantic conflicts checking. 

                                                 
4 We have not yet considered any semantic conflict resolution in our design, although in future versions we will 
consider it. 



Revised Specification of Case Study Systems   Page 33 of 45 

Copyright  2000-2003 FAIN Consortium  May 2002 

· makeDecision: this is the most complex use case. It is realised mostly by the Evaluation 
class but highly co-ordinated with the Condition_intepreter, EventRegister and 
EventInterpreter classes. It also uses the DBInterface and Scheduler classes in order to fulfill 
the functionality of this use case. When a policy arrives to be evaluated the Evaluation class 
forwards the policy to the Condition_interpreter in order to evaluate the conditions and know 
which information is needed in order to make a decision. If no information is needed a 
decision is made, if the policy has to be enforced it is forwarded to the ActionInterpreter 
class, and it is stored in the database as well as its validity date is registered in the scheduler.  

The second possibility is that some information is needed in order to take the decision. Then 
the Condition_interpreter class will either configure the Scheduler (if it is a time condition) 
or the EventRegister (in case monitoring information is needed), and the Evaluate class will 
store the policy in the database and register the validity period of the policy in the Scheduler. 
Afterwards, the Event Interpreter will receive all registered events from the event channel, 
and map them to a java class format. Then, it will contact the Evaluate class, to re-evaluate 
the affected policies, and the whole process starts again. 

· decisionEnforcement: we have already briefly described this use case before. The Evaluate 
class, when a decision has to be enforced contacts the ActionInterpreter class which builds 
the command that should be forwarded to PEPs and forwards this command to the 
command_demux class which finds and forwards the command to the correspondent PEPs 
(e.g. when we have one EMS per several nodes, and PEPs inside the nodes). 

·  uninstall: the Scheduler that contacts the PolicyUninstaller component when a policy has 
expired in order to uninstall it starts the functionality of this use case. If some actions are 
needed on the node to uninstall this policy the PolicyUninstaller component contacts the 
ActionInterpreter in order to realise them. 

·  Signalling support: this use case is reflected in signallingComp class. This class will create, 
with the help of the parser, the appropriate XML policy, contact the access rights checking to 
see if the requester is able to realise that functionality, and finally contact the 
pdpQoSOpsImpl class to continue with the rest of the process. It will forward the result of 
the policy processing to the PEP. 



Revised Specification of Case Study Systems   Page 34 of 46 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 24 – PDP Component Class Diagram 

 

4.2.4 QoSPEP Component 
The PEP (Policy Enforcement Point) component is also a very important one in policy-based 
management architecture. Its main functionality is enforcement of decisions in the policy target (i.e. 
the active node). It supports two ways of working: provisioning (the interactions are initiated by the 
PDP with a decision) and signalling (the interactions are started by a decision request coming from the 
node interface). 

Figure 25 shows the main use cases of the PEP component. 

 



Revised Specification of Case Study Systems   Page 35 of 47 

Copyright  2000-2003 FAIN Consortium  May 2002 

enforce decision

dynamic conflict checking

<<include>>

map action to interface

<<include>>

ActiveNode

<<<<requests>>> <<<<configure>>>>

PDP

<<communicate>>

ask for request decision

<<communicate>>

PEPDemux

<<communicate>>

<<communicate>>

 
Figure 25 – PEP Component Use Cases 

 

Figure 25 shows the classes that develop the PEP functionality. The main class for the decision 
enforcement is PEPImpl, while for signalling request forwarding is SignallingReq class. The mapping 
of the use cases to the classes that realise this functionality is the next one: 

 ·  Enforce decision: The functionality of this use case is developed by the PEPImpl class, 
which uses the classes DynCheck and IntMapper for realising the dynamic conflict checking and map 
action to interface use cases respectively. 

 ·  Dynamic conflict checking: The class DynCheck makes the dynamic policy conflict 
verification. For doing this job it might need to access the node interface. 

 ·  Map action to interface: The IntMapper is responsible for translating the decision into the 
actual commands understandable by the active node interface. 

 ·  Ask for request decision: The functionality of this use case is basically realised by the 
SignallingReq class which receives the requests from the node interface, parses them to the format 
understandable by the management system with the ReqParser class, and then forwards them to the 
PDP. 



Revised Specification of Case Study Systems   Page 36 of 48 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 26 – PEP Component Class Diagram 

 

4.2.5 PEPDemux Component 
The functionality of this component is to demultiplexing active node signalling requests to the 
appropriate PEP. It would be just one PDPDemux component per active node and per management 
system instance. 

The use cases for this component are shown in Figure 27. 

In a future version the 
PEPdemux might be 
able to request to the 
ASP the download of  a 
new PEP

PEP

register PEP

Active Node

find PEP

 
Figure 27 – PEPDemux Use Cases 

 

 



Revised Specification of Case Study Systems   Page 37 of 49 

Copyright  2000-2003 FAIN Consortium  May 2002 

In Figure 28 we can see the class diagram for this component. The mapping of these classes with the 
use cases is indeed quite straightforward. In fact, the Demux class with the help of the PEPfinder class 
mainly develops the functionality of the findPEP use case, while the registerPEP use case is realised 
again by the same two classes. 

 

Figure 28 – PEPDemux Class Diagram 

4.2.6  Delegation PDP Component 
As we described before, Management by Delegation (MbD) has two types of main functions, 1) The 
delegation of management functionality, 2) the delegation of access rights. Delegation PDP is one of 
the key components in PBANEM system and is in charge of controlling access rights attribute of 
active nodes and of decision for what kinds of management domain is prepared for the customers 
(SPs). Both functions are achieved by interacting with PDP manager, monitoring system and 
delegation pep. 

4.2.6.1.1 Delegation of management functionality 

When a SP wishes to use the exact management system of an ANSP, the ANSP delegates 
management’s functionality to the SP in one of the two ways described above. 

The delegation of management functionality is not realised by a single component in our framework. 
The PDP manager is actively involved in the whole procedure, since it is the component that co-
ordinates the other PDPs.  

4.2.6.1.2  Delegation of access rights 

The delegation of access rights involves the configuration of a security component. This task is done 
by the delegation PDP with the use of delegation policies. For example, the ANSP may want to release 
specific parts of its node management interface to the SP. Eventually, the element level Delegation 
PDP will configure the node-level security components  that exist in every active node that the SP 
wants to manage. The security component, based on the value of an VE will grant or deny the access 
rights. 

 



Revised Specification of Case Study Systems   Page 38 of 50 

Copyright  2000-2003 FAIN Consortium  May 2002 

4.2.6.1.3  Definitions of the Delegation Types 

The following options are provided by an ANSP for a SP to choose during the SLA process. These 
options could be chosen several times and are mapped into policy definitions, and then are translated 
into node readable parameters. 

(1) Superuser 

This allows a user to own his own management area. Access attributes to this management 
area are READ/WRITE. Expiry period is defined as well. This user can also delete another 
management areas. Usually this type is only assigned to ANSPs. 

(2) High  

This allows a user to own his own management area and to use/copy the super-user’s 
management functionality's and tailor it to its own needs. The access attribute to this 
management area is READ/WRITE. Expiry period is defined as well. 

(3) Monitor only 

This allows an SP to access somebody’s management area. The access attribute to this 
management area is READ only. This type could be used by a user who intends only to 
monitor (e.g. a billing service provider). 

 

4.2.6.2  Access Rights Control 
Delegation PDP is in charge of mainly controlling the access rights of the active nodes collaborating 
with the security framework.  

4.2.6.2.1 Access Rights Definition 

The access rights attributes define what type of accesses are allowed for the customers (ANSP, SP) on 
the active node interfaces. These access attributes will be verified by the security (SEC) component in 
order to avoid malicious accesses.  

4.2.6.2.1.1  Attributes 
(1) ReadWrite 

A customer can configure the interface of an active node (RCF, Demux) and monitor the 
information of an active node (RCF, Demux) through the interface.  

(2) ReadOnly 

A customer can only monitor the information of an active node (RCF, Demux) through the 
interface. 

(3) Disable  

A customer has no access rights. While the attributes are disabled, the customer cannot configure 
or modify the active node interface nor can he monitor the information.  

 

Also each component (RCF, Demux) of an active node may provide an access right attribute 
explicitly, so a customer may choose the attribute with the following matrix: 

Node Component RCF Demux 

ReadWrite 3  

ReadOnly  3 

 



Revised Specification of Case Study Systems   Page 39 of 51 

Copyright  2000-2003 FAIN Consortium  May 2002 

n RCF access (Write) 

This allows a customer to access the RCF interface in order to configure and modify the 
resource allocation. The configuration of the RCF would be done by the QoS PDP. 

n RCF access (Read) 

This allows a customer to monitor the status of the resource consumption using the RCF 
interface. 

  

4.2.6.2.1.2  Assigned groups 
An access rights attribute is assigned for the VE. Moreover, additional definition could be supported. 
For instance, one VE involves several active nodes (see pictures below) and the customer of this VE 
may need to assign distinct attributes for each active node. So the Delegation PDP may support the 
following definitions: 

(1) VE 

An access rights attribute can be assigned only for each VE. In this case, all of the active nodes, 
which are involved in a certain VE, have the same attributes. 

 

(2) Group of active nodes 

Some active nodes could be categorised in groups and this group may have the same access rights 
attributes. We propose two groups of active nodes, namely edge node group and core node group. 

 

Figure 29: Access Rights for Nodes 

 

4.2.6.2.1.3  Period of access rights 
The Customers configure the access rights attributes during the contract period. For instance, the 
attributes may not be changed until the contract has expired. However, the customers may wish to 
configure the access rights based on a time-table:  

 

Edge

CoreCore
Core

VE2

Edge

Access Right ;
“ReadOnly”

Access Right ;
“ReadWrite”

Access Right ;
“ReadWrite”

VE2 for SP-1 ReadWrite

Contract starts Contract ends

VE3 for SP-2 ReadWrite ReadOnly ReadWrite

Time



Revised Specification of Case Study Systems   Page 40 of 52 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

 

Figure 30: Period of Access Rights 

 

(1) Weekly 

The Customers can configure the access rights attributes by indicating days of a week. 

 Mon Tue Wed Thu Fri Sat Sun 

VE2 RW RW RW RW RW RW RW 

VE3 RW RW RW RW RW RO RO 

 

(2) Days 

The Customers can configure the access rights attributes by indicating specific days. For instance, 
a customer may configure "VE1 attribute = Read/Write from 1st January to 31st March" 

(3) Hours 

The Customers may need to configure the access rights by indicating specific hours, however this 
function is not supported in this version. 

 

4.2.6.2.2 Super-user 

The right of a super-user allows a customer to disable the access rights that belong to other customers. 
Normally this right would be owned only by an ANSP. 

 

 

VE2

Access Right for VE2 ;
“ReadWrite”

Access Right ;
“ReadWrite” Active node

VE

VE2 for SP-1 ReadWrite

Contract starts Contract ends

VE3 for SP-2 ReadWrite ReadOnly ReadWrite

Time



Revised Specification of Case Study Systems   Page 41 of 53 

Copyright  2000-2003 FAIN Consortium  May 2002 

4.2.6.3  Delegation PDP use-cases 
The Main use cases of the Delegation PDP, Configure, Operate and Reconfigure are depicted in 
Figure 31. 

 

Figure 31: Main Use cases of the Delegation PDP 

Configure when a new customer joins, this use case starts. Configuration of access rights in active 
nodes will be done. 

Operate: When configuration is completed for a new customer during Configure steps, this use case 
starts working until the policy for this customer is expired.  

Re-configure: when some configuration changes are needed, this use cases starts. For instance, a 
customer may need to reconfigure the access right attributes or if an error has occurred, a modification 
is necessary to avoid further problems. 

  

 

We would mainly focus on the use cases "Configure" and "Operate" in the following 

4.2.6.3.1 Configuration 

When a new customer joins one ANSP, a configuration of the active nodes should be made. 
Configuration data are written in the policy rules, therefore the policy data need to be checked first, 
and then distributed to the proper active nodes through the Delegation PEP. The detailed use cases are 
depicted below: 

Reconfigure

Operate

PDP Manager

DB

Delegation PEP

Configure

Monitor System



Revised Specification of Case Study Systems   Page 42 of 54 

Copyright  2000-2003 FAIN Consortium  May 2002 

Monitoring System

Register Event

PEP

Evaluate Monitor Event

Evaluate Conditions

Check inputPDP manager

Make decision

DB

Register New SP

Syntax Check

Check Policy

Semantics Conflict Check

 
Figure 32: The detailed Use-cases of “Configure” in Delegation PDP 

  

 

4.2.6.3.1.1  Use Case of "Check Input" 
When the policy data is dispatched from the PDP manager, this use case starts. The Delegation PDP 
checks the type of policy data that is received from the PDP manager. If the policy is not a Delegation 
one, it notifies the PDP manager. The Delegation PDP stores the newly received policy data in a data 
table locally. This data table is located in the local memory assigned to the Delegation PDP when 
instantiated. At the same time, other information, which comes inside policy data from PDP Manager, 
is checked as well. 

4.2.6.3.1.2  Use Case of "Check Policy" 
The Delegation PDP checks the newly received policy data as far as the syntax and the semantics are 
concerned. The syntax check will verify that the delegation policy is syntactically correct, and the 
semantics check will verify that this policy is not going to conflict with other policies already 
installed. If there are no errors, the policy data is stored in the database. If there are errors, it notifies 
the PDP manager. 

(1) Syntax Error 

(2) Semantics Error 



Revised Specification of Case Study Systems   Page 43 of 55 

Copyright  2000-2003 FAIN Consortium  May 2002 

In the case that a definition of time condition may have invalid values or invalid variable 
combination, this is determined as a semantic error. 

 

4.2.6.3.1.3  Use Case of "Register Monitor Event" 
There may be the case when the monitoring system is required for the evaluation procedure to be 
concluded. Thus, an event is registered to the monitoring system. For example such an event may be 
the access rights status check on an active node. Also, the Delegation PDP may periodically check the 
access right status on the active nodes in order to verify that the SLA between the SP and the ANSP 
for instance, is not breached. The monitoring system is again used for this purpose. 

(1) register information 

The following information is sent to the Monitoring System and used to check the status of the 
access rights in the active nodes. 

A) report interval 

The PDP receives the report from the Monitoring System in this interval. Defined in 
milliseconds (e.g. every 5 ms a report is given from the monitoring system.) 

(2) Error 

If the registration in the Monitoring System fails, an error notification is returned to the delegation 
PDP (monitoring registration error). 

 

4.2.6.3.1.4  Use Case of "Evaluate Conditions" 
The delegation policy condition is evaluated with time period conditions such as dayofWeek. Then the 
“make decision” use case is executed. A delegation policy example is shown later. 

 

4.2.6.3.1.5  Use Case of "Make Decision" 
If the delegation policy condition is met, the “Make Decision” use case starts and the delegation PEP 
is asked to enforce the delegation policy. It then waits for notification of the results from the 
delegation PEP. A scheduler function is used to detect the exact time to enforce the policy in the case 
that the policy data include a time period. An example of this case is shown below:  

 

Figure 33: Policy Enforcement 

  

(1) Information  

To distribute the policy to the appropriate active nodes, the PDP passes the policy action data that 
contain the node list to the PEP. 

 

VE2 for SP-2 ReadWrite ReadOnly ReadWrite

Enforce Policy Enforce Policy

Time

Mon. Sat. Mon.

Enforce Policy



Revised Specification of Case Study Systems   Page 44 of 56 

Copyright  2000-2003 FAIN Consortium  May 2002 

4.2.6.3.1.6  Use Case of "Register/Unregister new SP" 
If the delegation policy for a new SP is enforced successfully and no error is returned from the 
delegation PEP, a positive reply and a report is sent to the PDP manager. 

Then the Delegation PDP stores the policy data of the new customer (SP) in the DB with a Java 
format. The “current_status” is set as stand by, which means that a policy is not being enforced at the 
moment. 

If the operation is removal of a customer, the PDP removes the policy entry from the DB. 

(1) Current_status of policy data. It indicates the status of the related policy data. This variable has the 
following values. 

A) stand by 

B) operating 

C) halt 

 

Figure 34: status of policy data delegation 

(2) Error 

If the registration has failed, an error is returned to the PDP Manager (registration error). 

 

When the SP registration has finished, the operation is returned to the PDP Manager with a report. 
Then the next processes continue asynchronously. 

4.2.6.3.2 Operate 

After configuration, Delegation PDP deals with the access rights in active nodes, with checking status, 
reconfiguring and reporting to other components, e.g. PDP Manager, as necessary. 

operatingstand by hault

Enforce PolicyRegistration Enforce Policy/ Stop

Time



Revised Specification of Case Study Systems   Page 45 of 57 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 35: Active Diagram of "Operate" 

4.2.6.3.2.1  Status Evaluation 
Delegation PDP needs to check the overall status in order to honour the SLA of the customers and to 
discover potential malicious usage. The Monitoring System is required to achieve this with the 
following information. The Delegation PDP evaluates the information (event), which is given by the 
Monitoring System periodically as follows: the PDP accumulates a number of errors in a given 
interval, then compares the number with a predefined threshold.  

(1) variables for evaluation  

If the number of malicious accesses or the number of errors exceeds a threshold, an alarm report is 
prepared. For this purpose, the following value and information are used in the PDP. 

(a) interval 

(b) threshold 

(c) error level definition 

 

Figure 36: Evaluation 

 

 

Compare
Num < threshold

Accumrate
Compare

Num > threshold

Accumrate Accumrate

Notify to PDP Manager

Compare
Num < threshold

interval

Register Event 
to  Mon Sys

Wait  for  Event  
f rom Mon Sys

Evalua te  Event

Report to
 PDP  Manage r

over threshold



Revised Specification of Case Study Systems   Page 46 of 58 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

(2) Information from Monitoring System  

Delegation PDP needs to obtain the number of invalid access with a VE id and active nodes ids 
from the Monitoring System. 

 

4.2.6.3.3 Reconfigure 

During normal operation, configuration may be needed. We can assume the following cases: 

1) Some customers may reconfigure their policies for accommodating their services or 
consumers,  

2)  The ANSP may need to maintain the active nodes and thus change the customers 
configuration temporarily,  

3) In the event of a malicious attack is detected in specific active nodes, the ANSP may 
compulsory configure these active nodes. "Reconfiguring" functions need to handle negative 
conditions in order to keep the access rights status stable.  

The functions in "Configuration" section may support also the cases of 1) and 2).  

  

4.2.6.3.4  Policy Example 

Each policy data is controlled based on VE id individually. The example shows delegation policy for a 
certain VE which involves multiple active nodes (node id = 1, 2, 3, 4, 5). Let’s imagine here that the 
Customer (SP) may want to configure the access right differently for active nodes and frameworks. 
For instance this SP may do some maintenance on weekends and forbid access to active nodes. 

IF (dayOfWeek= Monday, Tuesday, Wednesday, Thursday, Friday, Satuday, Sunday) AND  

  (frameWork= Demux) THEN (accessRight= ReadWrite for Demux) 

IF (dayOfWeek= Monday, Tuesday, Wednesday, Thursday, Friday) AND  

  (frameWork= RCF) THEN (accessRight= ReadOnly for RCF) 

IF (dayOfWeek= Monday-Sunday) AND 

   (frameWork= Demux) THEN (accessRight= ReadOnly for RCF) 

The activity diagram of the Delegation PDP is presented below: 

 

4.2.6.3.5 Delegation PDP class diagram  

In this section the class diagram that corresponds to the Delegation PDP is presented. 

 

 



Revised Specification of Case Study Systems   Page 47 of 59 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 37: Class Diagram of the Delegation PDP 

 

After the delegation policy is dispatched to the Delegation PDP, the latter checks it for syntactical 
errors via the checkPolicy() method of the DlgPDPImpl class. If an error is encountered, an exception 
is raised and sent to the PDPmanager through the PDPManagerInterface. If the policy is syntactically 
correct, it is checked for conflicts by the checkSemConflict() method of the DlgCheck class. If a 
conflict is detected it will be resolved by the resolveConflict() method. However, the conflict cannot 
be resolved an exception is raised and the PDP manager is notified, via the PDPManagerInterface.  

If the PolicyCtrl needs to register an event to the monitoring system in order to check status, it does 
that by accessing the MonitoringSystemInterface. When the event arrives from the monitoring system, 
it is delivered to the PolicyCtrl class. When the conditions are met, the policy is delivered to the 
ActionInterpreter class to be enforced. The validity period of the Policy is set in the Scheduler class. 
And the PDPManager is notified about the policy deployment. 

 

4.2.7 Element level Delegation PEP component 
The functions of the delegation PEP at the element level are the following: It receives policies from 
the delegation PDP and translates them into commands being in a node readable format. Then it 
enforces the commands to the active node. 

 We can show the functionality of the element level delegation PEP with this sample high-level policy: 
A SP sends the following policy: “For the Edge nodes of my Virtual network that exist in the United 
Kingdom, I want medium security, and for the Core nodes I need high security”.  

In the network level delegation PEP, the “high security” is resolved into RO (read only) and the 
“medium security” is resolved into RW (Read/write). Moreover, the Core and the Edge routers are 
now routers with specific IP addresses, due to the translation done by the Network level Delegation 
PEP. 

PDP Mgr

Parser

XMLtoJava()
JavatoXML()

PEP

DB

DlgCheck

checkSemConflick()
resolveConflict()

Monitor 
System

DlgPDPImpl

dispatch()
getReport()
procPolicy()
checkPolicy()

Scheduler

PolicyCtrl

registerEvent()

+1..*

Evaluation

evaluate()
re_evaluate()



Revised Specification of Case Study Systems   Page 48 of 60 

Copyright  2000-2003 FAIN Consortium  May 2002 

At the element level, timing conditions are put into play. Specifically, the Delegation PDP decides 
when the time is right to enforce the delegation policy. When this time comes, it passes the action to 
the delegation PEP in order for the latter to enforce it. 

In the case that we find ourselves inside the SP management domain, which means that the SP is 
responsible for deploying and enforcing the policies, the SP’s ability to enforce the particular policy 
will be questioned. The EL Delegation PEP will create a restricted schema and store it in the Schema 
repository, where it will be collected by the Access Control Check (ACC) component. The Access 
Control Check component will check if the SP is able to enforce a particular policy by comparing this 
policy against the restricted schema. If the outcome is positive, the PDP manager will send the policy 
to the delegation PDP for further processing. 

There is a special type of policy coming from the Delegation PDP that dignifies that a new user wants 
to instantiate management components. In that case the PEP will use the instantiateDom() method 
offered by the PDP manager interface. The parameters passed to the PDP manager should be the name 
of the entity that wishes to instantiate (e.g SP) and the components that the entity wishes to be 
instantiated. The PEP will receive the result of the instantiation procedure. 

4.2.7.1 Use cases of the element level Delegation PEP 
The following use cases diagram captures the above iterations: 

D l g P D P R e c e i v e  D e c i s i o n

S c h e m a
R e p o s i t o r y

A c t i v e  n o d e

t r a n s l a t e P o l i c y

S e n d

P D P M g r

 
Figure 38: Use cases of EL Delegation PEP 

4.2.7.2  Class diagram for the EL Delegation PEP 
The class diagram for the delegation PEP at the element level is the following: 



Revised Specification of Case Study Systems   Page 49 of 61 

Copyright  2000-2003 FAIN Consortium  May 2002 

DlgPDPInt

NodeInt

Schema 
Repository

DlgPEPCore

sendDecision()
translatePolicy()

PDP Mgr

 
Figure 39: Class diagram of EL Delegation PEP 

The sendDecision() method is used by the delegation PDP in order to pass the policy to the delegation 
PEP for enforcement.  

The translatePolicy() method is used internally by the Delegation PEP in order to translate the policy 
action into a node understandable format.  

4.2.8  Conflict Check Component 
The functionality of this component, which appears in figure 2 both at the network and element levels, 
has already been introduced in section 2.2.1 and it will not be repeated here. 

In section 2.2.1 two solutions were presented to fulfil the functionality needed in case we are not able 
to avoid the necessity of this component appropriately defining the FAIN policy information model. 
Nonetheless the actual election between one of the two solutions as well as, the design of such a 
solution has been left for the next deliverable document, when we will have evidences of whether this 
component is needed or not. 

4.2.9  Monitoring Component 

4.2.9.1 Monitoring Component Use Case Diagram 
Figure 40 describes Monitoring component of FAIN management system use case diagram. This 
diagram summaries services (subscribe, add a probe, information retrieval and being informed of 
events) provided to authenticated users (subscriber). 



Revised Specification of Case Study Systems   Page 50 of 62 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 40: Monitoring system Use Case Diagram 

Actors description 

Actors taking part to the monitoring component use case diagram are any component, system or 
software unit that interacts with him/her. The following describes actors identified in the monitoring 
system use case diagram: 

- The Device, 

is an abstraction of either the FAIN Active Node, software unit or device that interact with the 
monitoring system. The FAIN Active Node represents infrastructure provider that offers shared 
resources via its Resources Control Function (RCF) to the Management system. Others devices 
controlled by the management system or software unit provided by some customers might furnish to 
the monitoring system any interfaces in order to access their internal probe 

- Dbase, 

 is the Database Management System being use to store information for users of the monitoring system 

- Subscriber, 

Subscribers to the monitoring component are PDPs included the Resource Manager and 
network level Monitoring system that register events for which they are interested in after having 
subscribed to the monitoring system usage. 

 

C h e c k

A c e s s  R i g h t

S u b s c r i b e

S u b s c r i b e r

D b a s e

R e t r i e v e  I n f o r m a t i o n

< < r e a d > > < < i n c l u d e > >

I n f o r m  S u b s c r i b e r

P r o c e s s  P r o b e

< < u p d a t e > >

< < i n c l u d e > >

< < i n c l u d e > >

A d d  P r o b e

D e v i c e

< < g e t M e a s u r e m e n t s > >



Revised Specification of Case Study Systems   Page 51 of 63 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 41: Subscribers to the monitoring component 

Use Cases Description 

Subscribe  

 This use case allows the monitoring system users to subscribe to the service and register 
events to be monitored. The monitoring component affects them an Id that identifies them for 
notifying them or used for future event registration 

Retrieve information 

 This use case provides for users the ability to ask for any information or data registered in the 
monitoring system. It consists of a synchronous delivery of the event based on the pull model of a 
notification service. 

Inform Subscriber 

 When a given threshold is triggered, this use case generates the adequate event to the 
concerned users asynchronously. 

Process Probe 

 This use case is responsible for translating policies introduced by user into managed 
components’ resource structure being measured 

Check Access Right 

 This use case checks authenticated users. 

Add Probe 

 This use case allows to introduce application specific probes into the monitoring system to 
extend its capability on behave of users. 

4.2.9.2  Monitoring System Design 
The monitoring system can be considered as a set of traditional metering blocks that are enhanced by 
the use of policy based control mechanisms and improved distribution channels. Although it is 
foreseeable that the active node will be accessed through P1520 interfaces, the design should be 
flexible enough to support other network interfaces as well. 

S u b s c r i b e r

P D P
n lMon i to r i ng

The  NL  Mon i t o r i ng  sys tem reg i s t e r  t o  

E L   M o n i t o r i n g  s y s t e m  t o  g e t  l o c a l  

r e s o u r c e s  s t a t u s



Revised Specification of Case Study Systems   Page 52 of 64 

Copyright  2000-2003 FAIN Consortium  May 2002 

As the figure below shows, the monitoring system will be distributed among the active nodes and the 
element management node. The P1520 objects and probably certain high performance monitoring 
PEPs will be hosted in the active node, whereas the main components and control logic will be placed 
in the management node. 

 

Figure 42. Monitoring system deployment diagram 

The diagram corresponds to a three-tiered design in which a CORBA Component Model will be 
adopted as the base for the co-operation among the distributed objects. Also, the monitoring 
enforcement component and the monitoring control components will communicate through COPS 
interfaces. These two components are associated to the PEP and PDP respectively, although they 
contain additional objects and functionality that extend their basic behaviour. An event database 
completes the basic monitoring infrastructure in the management node. 

A set of P1520 objects running in the active node will be accessed by the monitoring components. To 
model this interaction, a P1520 interface component has been included in the active node, which 
should define the interfaces that allow accessing monitoring information from an external module and 
presenting them to their clients. 

Finally remark that the management node and the active node could be connected using a local area 
network in the case a management node is planned to be set up for each active node5. 

4.2.9.2.1 Monitoring System Packages 

The monitoring system will contain a set of traditional metering blocks, an additional part for policy-
based control and a distribution part required to support multiple PDPs. The different packages that 
have been identified reflect this structure. The diagram in Figure 43shows a draft of the system 
package decomposition. We have tried to minimize the number of packages by determining the 
expected functional areas and reducing the number of dependencies between packages. Thus, each 
package should group the classes with closer relationship.  

                                                 
5Other scenarios could be possible  if a management node were to manage several distant active nodes. 

 



Revised Specification of Case Study Systems   Page 53 of 65 

Copyright  2000-2003 FAIN Consortium  May 2002 

Some of the packages, as in the case of the Protocol Handler, group other packages that are 
specialization for the different protocols. For example, it would include handlers for SNMP, COPS, 
LDAP, etc. The diagram does not include those packages embedded in other systems (such as the 
name service package), although they will be accessed as part of the normal operation of the system. 
The packages have been grouped into three functional layers: the control, distribution and acquisition 
layer. 

The control layer is fulfilling the PDP role in the monitoring system while both distribution and 
acquisition layers realize the PEP role. The policy-based monitoring has been already presented in D3 
at section 2.4.2.2.3 and 2.4.3.1.4. 

 

Figure 43: Monitoring System Packages 

The CIM (Core Information Model)6 package is intended to contain the data structures associated to 
the Policy. The notification package is in charge of distributing events to consumers. 

Notification 

The Notification Package is the main package of the acquisition layer. It provides extended 
capabilities around the basic CORBA event and notification service in order to deal with authenticated 
users and policies efficiently. It contains patterns that allow simultaneous treatment of several 
notifications in parallel.  
                                                 
6Internal Note: The policy classes could include XML serializing and deserializing methods. This 
seems to be an appropriate design decision since in XML, further meta-information is required to 
process the information correctly. Thus, since such meta-information cannot be obtained just by 
analysing the neither data type nor value of the data item, it would be difficult to proceed with the 
serialization in external classes. If possible, it would be interesting to implement any  existing 
interface that allows us to link our specialized code with the existent code developed in general XML 
parsers. (To be done) 

 

Distribution
Layer

Control
Layer

Parser

PIB

Notification CIM

Acquisition
 Layer

Metering
P1520

Interface

Protocol
Handler

Monitoring
PDP

PEP

P
D
P



Revised Specification of Case Study Systems   Page 54 of 66 

Copyright  2000-2003 FAIN Consortium  May 2002 

The extended notification service allows a simplification of the process of connecting to the event 
channel and the distribution of complete information on the consumer event subscriptions. This would 
lead to a more precise configuration of event suppliers that is currently achievable. 

The CORBA notification channel has shown itself insufficient to transfer configuration information to 
the data acquisition layer. As a consequence, it has been necessary to extend the basic service to 
include the required new capabilities. In this way, while the notification service only announces the 
event type and domain name the consumers are interested in, managing its proper distribution, the 
extended notification service will also provide information on the filters being set up for each of the 
events. This information is broadcast to every interested entity. 

This behaviour will facilitate the creation of entities being in charge of configuring the monitoring 
sensors and probes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44 Extended Notified Service Architecture 

The Subscription Broker 

In order to enable the transference of event filter information from consumer to suppliers, a 
subscription broker has been defined. The subscription broker is responsible for connecting the 
consumers and suppliers to the event channel, controlling the way the subscription process is realized. 
As part of its mediation, the broker performs a delivery of filtering information to a series of interested 
entities. Such entities should provide the handlers (notifiers) required realizing additional 
configurations on the event sources, based on the fields contained in the event filters. 

The subscription broker highly simplifies the process of connecting and disconnecting to/from the 
channel, hiding the peculiarities of the CORBA event channel. Bellow a part of the Broker interface 
description: 

 

readonly attribute CosNotifyChannelAdmin::EventChannel channel; 

 

ProxySupplier subscribe( inout EventDescriptor eventDescriptor, 

in CosNotifyComm::NotifyPublish subscriber) 

      raises (InvalidSubscriber); 

  

void unsubscribe( in EventDescriptor eventDescriptor,  

PDP 

Event 
Interpreter 

Subscription 
Broker 

Notification Channel 

Acquisition layer 

Proxy filter 

subscribe(event_descriptor, 
event_interpreter_ref) 

filters event 

creates 

Sensor Registry 

Sensor Sensor 



Revised Specification of Case Study Systems   Page 55 of 67 

Copyright  2000-2003 FAIN Consortium  May 2002 

in CosNotifyComm::NotifyPublish subscriber); 

  

// Methods related to the event suppliers. 

ProxyConsumer offer( in EventDescriptor eventDescriptor,  

    in CosNotifyComm::NotifySubscribe notifier)  

      raises (InvalidNotifier); 

   

void withdraw(in CosNotifyComm::NotifySubscribe notifier)  

    raises (WithdrawalFailure); 

}; 

 

The channel attribute contains a reference to the CORBA event channel being used by the subscription 
broker, so that it can be retrieved whenever an administration operation, not implemented by the 
broker, is required. 

The subscribe method is invoked by the subscriber to ask for interest in events. The connection to the 
event channel is implicitly realised. The type of the subscriber should correspond to the type of events 
that are requested. That is, if the requested event is of type StructuredEvent, then the subscriber should 
be either a StructuredPushConsumer or a StructuredPullConsumer.  

The unsubscribe method is called when the subscriber no longer needs the reception of events. The 
subscription broker releases the resources, which had been associated to such subscriber. 

In a similar way, two symmetric methods are available for event suppliers: the offer method, which 
allows an event’s source entity to offer a handler to manage, to configure the notifiers according to the 
filters defined by the event consumers. 

The withdraw method withdraws an offer. Thus, the notifie r will no longer send events to the channel. 
The subscription broker proceeds to disconnect the event supplier from the event channel. 

The information regarding the event is included in a common structure named EventDescriptor. The 
IDL definition of this structure is the following: 

 

typedef sequence<CosNotifyFilter::Filter> FilterSeq; 

typedef sequence<octet> encapsulated; 

 

union DescriptorBody switch (short) { 

case 1: FilterSeq filters; 

  case 2: NotifyConfigure interested_entity; 

  case 3: CosNotifyFilter::FilterIDSeq filterIDs; 

  default: encapsulated content; 

}; 

  

struct EventDescriptor { 

  CosNotification::EventType event_type; 



Revised Specification of Case Study Systems   Page 56 of 68 

Copyright  2000-2003 FAIN Consortium  May 2002 

  string event_name; 

  DescriptorBody body; 

}; 

 

Each event descriptor contains the event name and type, together with and additional field that may 
include either a filter sequence, in case a subscription is to be performed, or an event handler for the 
considered event. This handler would be the one to receive the filters defined for each event type. The 
interface is open to new possibilities by the use of an encapsulated field. 

If it is considered that the same subscriber may be interested in the reception of several event types, it 
would be necessary to be able to identify the concrete event we are interested in dropping from the 
interest list. It is therefore required to be able to name the filters we want to remove from the channel, 
so that the subscription broker can control them. This is the reason why a sequence of filter identifiers 
has been included as one of the possible fields being contained in the descriptor body. 

This sequence will be returned by the offer function in the event descriptor (defined as an inout 
parameter), and might be used during the subscription removal. 

The Extended Notify Server 

The extended notify server is in charge of obtaining the reference to the ORB and the notification 
channel, connect the subscription broker to the ORB and transfer the obtained references to it. It will 
also register the broker in the name service, so that the event suppliers and consumers may access it. 

The NotifyConfigure Handlers  

The event handlers should offer the following IDL external interface: 

 

 interface NotifyConfigure { 

 void configure(in FilterSeq addedFilters); 

 void reconfigure(in FilterSeq removedFilters); 

 }; 

 

This interface should be implemented by the entities interested in receiving filtering information for 
the events they could generate. This information may be useful to appropriately configure the different 
objects involved in event generation. The subscription broker will use call-back requests to broadcast 
the information requested by the registered handlers. 

The reconfigure method has been added to provide a way to inform to the configurators about the 
removal of filters, so that appropriate actions can be realized on the monitoring system. 

The subscription broker is able to detect the removal of event handler and update its information tables 
without explicitly informing it. 

Metering Package 

The Metering package includes classes that implement the measurement algorithms and the specific 
controllers required managing monitoring devices. The overall diagram in Figure 45 depicts the main 
classes and their relationships of this package. 



Revised Specification of Case Study Systems   Page 57 of 69 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 45 Metering class diagram 

Following the classes allowing the operation on the metering blocks are described. (Implementation 
Note: As an important non-functional requirement, the event handling mechanisms should not block 
the event generators). 

Class Threshold 

This class is in charge of the Threshold analysis and the delivery of threshold events to the event-
dispatching queue. It is also responsible for monitoring whether a threshold has been reached and 
obtaining other statistical data. Two classes of threshold may be differentiated: those that check 
whether a certain value is surpassed and those that check whether a value goes down a certain limit. 

 



Revised Specification of Case Study Systems   Page 58 of 70 

Copyright  2000-2003 FAIN Consortium  May 2002 

The class Threshold should be able to analyse the amount of time a value is over a defined limit, 
since in some situations this is an important data. For this reason, each Threshold class, which fits a 
certain ThresholdType, defines a TriggerCondition whose evaluation will determine whether to raise a 
threshold event or not (note that it is possible to define a complex CompositeTriggerCondition). A set 
of constraints restricts the definition of trigger conditions so that they are properly formed. The 
constraints might be obtained from the device being monitored. These constraints are thus checked 
when establishing the trigger conditions for the threshold. 

At the same time, an appropriate set of probes is required when the threshold configures the statements 
and trigger conditions. The probes will be the only means of accessing the devices.  

Class Statement 

A statement is formed by an expression, a value and a match operation. Subclasses of the Statement 
class should implement the match method according to the expression and value types and semantics. 

Class Sensor 

The Sensor is the central class of the metering package, being in charge of creating and coordinating 
the rest of classes. This class should obtain the available information on the device and specify the 
corresponding Thresholds and Probes as necessary to fulfil the measures. 

The Sensor event handlers are able to locate the source of threshold events by inspecting the 
ThresholdEvent class. Since each sensor stores the relationship between a device and the Thresholds 
that have been defined for it, it is always possible to obtain the reference to the device on which an 
action is demanded. 

The metering processes can be activated and deactivated by invoking the operations activate and 
deactivate respectively. Below some descriptions of the class main attribute:  

• deviceReference: stringfied object reference to the device representative class. This 
reference will be used to connect the necessary probes to the device or resource being monitored. 

• metric: contains a description of the metric being used by the Sensor. 

• gatheringPeriod: specifies the time interval during which data is processed by the sensor. 
When the interval has finished, the resulting high level metric is delivered by the sensor. The 
special value 0 makes the sensor to deliver each collected event. However, be aware that this may 
cause an increase in the overhead. 

• resolution: the resolution provides information about the amount of data that the meter should 
collect. The higher the resolution the more the resources that are consumed. 

Class Probe 

A Probe implements engines being in charge of checking the data of interest from the devices. 
Either metering blocks or threshold classes would use probes to obtain monitoring information. The 
logic associated to the data capture is confined within strategies. Therefore, the Probe class should 
only offer the strategy control and adjustment, whereas at the same time guarantees the data delivery. 
Several strategies could be used to obtain the data, such as polling  

Once the probe has been retrieved from the repository, the attach operation should be invoked in 
order to connect the probe to a specific device. The device reference may be passed to the method as 
an interoperable object reference in string format. The configurationCompleted method 
should be called when the configuration of the Probe has been completed, i.e. it has been attached to a 
device and the strategy to access such device has been defined. Finally, the detach method closes 
the connection with the device and releases the associated resources. The Probe finalizer should check 
whether the Probe has been detached or not, taking the appropriate measures to assure that the system 
recovers the resources assigned to the Probe. 

 



Revised Specification of Case Study Systems   Page 59 of 71 

Copyright  2000-2003 FAIN Consortium  May 2002 

-Care must be taken to avoid a too low polling interval since it could become a bottleneck or injecting 
traffic in the network to measure the packets delay, errors, etc. Thread based engines might suspend 
until they receive appropriate exceptions or CORBA messages. Main attribute of probe are the 
following: 

• Configured: informs whether the probe has been configured or not. 

• Functionality: contains a description of the probe functionality. The description will be 
structured in several fields separated by blank spaces. The first field represents the strategy to be 
used by the Probe ("sample", "poll", etc). The second field explains the type of Member that 
should be accessed (a "field" or a "method"). The third field provides the name of the field or 
method to be accessed. This way, an example of functionality description would be: 

"poll method getNumberOfLostPackets" 

During the configuration process, the probe ensures a coherent state between the stated 
functionality, the connector and the strategy being used. Anytime a configuration change occurs, 
there is a convenient functionality update. 

• connector: This parameter should contain the set of references that allows dynamically calling 
a method from another class. In that sense it becomes the "connector" of the Probe. It provides the 
necessary support for binding to anonymous classes, based on the introspection capabilities offered 
by the Java language. To avoid loosing generality, the connector has been defined Member, so that 
either Field or Method values can be accessed.  

Class ProbeRepository 

A ProbeRepository stores the probes available for a given device. The probe functionality 
becomes the key to access the repository. A probe repository might exist per device. 

 The following diagram depicts the structure of the strategy related classes.  

 

Figure 46: Strategy pattern class diagram 

 



Revised Specification of Case Study Systems   Page 60 of 72 

Copyright  2000-2003 FAIN Consortium  May 2002 

Class StrategyFactory 

This class is responsible for creating the data capture strategies depending on their algorithm 
definition. It follows the strategy pattern. 

The createStrategy method will be invoked in order to create a new DataCaptureStrategy that 
will use the algorithm corresponding to the type parameter. It may throw an 
UnsupportedStrategyException if the strategy is unknown or unsupported. The isSupported 
operation allows checking in advance whether the factory is able to create the requested 
DataCaptureStrategy. 

Class DataCaptureStrategy 

The DataCaptureStrategy class allows specifying several algorithms that can be used when 
accessing information on a given device. This way it is possible to alter the algorithm without having 
to change the rest of the system. The method adjustBehavior allows the specification of 
parameters that are required to adjust the algorithm. For example, in the case of a polling strategy, the 
polling interval could be defined by realising the following operation: 

strategy.adjustBehaviour(new Integer(1000)); 

The concrete semantic of this method depends on the type of algorithm. This method only provides a 
convenient way to pass parameters to algorithm and adjust them on runtime. 

Class DataCaptureStrategyType 

Defines the type of the data capture strategy. The constructor is made private to avoid trying to create 
illegal types. Different data capture strategy types could include polling or waiting for an 
asynchronous event. So far, the following strategy types have been defined: 

Class InterceptionDataCaptureStrategy 

This Strategy will be used when an interceptor is required in order to capture data related to a request 
performed between two components. One of the components may be a middleware platform, such as a 
CORBA ORB and is specially useful in service activity monitoring. 

Class PollDataCaptureStrategy 

This Strategy is intended to be used when it is necessary to periodically poll a device or resource for 
data. The data will then be automatically sent to the output queue. Attribute PollingInterval 
defines the polling interval in milliseconds. The default polling interval will be 1 second. 

Class SampleDataCaptureStrategy 

This strategy is intended to be used when taking a single data sample is enough to perform a value 
capture. In this case it might be possible to define the exact time when the sample is required. This 
information could be passed as part of the algorithm parameter list. 

ProtocolHandler Package 

This package contains the protocol handlers for the protocols required for the system operation, such 
as COPS, SNMP or LDAP. Other packages, such as the notification or the metering ones, depend on 
classes contained in ProtocolHandler. However, a good design should minimize the possibilities 
of affecting external packages by defining interfaces that comply with the protocol specifications. 
Figure 8 displays the main classes that are required for COPS operation. Although the concrete 
package design would appear as part of other sections, the diagram is intended to highlight the 
existence of delegate classes that connect the client and server entities with external package modules 
implementing part of the behaviour. 



Revised Specification of Case Study Systems   Page 61 of 73 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 47: COPS protocol handler class diagram 

Class COPSClient 

The COPSClient contains the algorithms and the state machine of a COPS client. However, since a 
part of the state machine depends on the PIB, such part of the behaviour has been delegated to certain 
classes in the PIB package.  

Class COPSServer 

The COPSServer class contains the algorithms and state machine corresponding to a COPS server. 
Since part of its behaviour depends on the PIB modules it is associated with, the COPSServer 
delegates such part on the COPSServerDelegate defined in the PIB packages. 

Class Context 

The Context classes contain the information that associate a COPS client/server with its 
corresponding delegate in the PIB module. 

 P1520 Interface Package 

This package will contain the P1520 wrappers required to communicate with the monitoring entities 
hosted in the active node. The P1520 interfaces will allow accessing monitoring information from 
external sources in a standard way. 

 



Revised Specification of Case Study Systems   Page 62 of 74 

Copyright  2000-2003 FAIN Consortium  May 2002 

5 R15 PBANM (NL-MS) DESIGN 

5.1 Network Level Management System use cases 
 PBANM is using the generic use cases diagram of the NMS described in the previous chapter. 
However two additional components supporting decision-making with regards to resources control 
and the inter-domain communication have been introduced: Resource Manager and the inter-domain 
Manager components. The roles of both components are capital to deal with network wide concerns. 
The resource manager component will provide PDP with the best route domain wide according to 
resources status. The inter-domain component will be in charge of furnishing all mechanisms allowing 
communication with other domains. The inter-domain issue encompasses a lot of views that should be 
carefully tackle in order to avoid unnecessary complicated vision. In the PBNM system, the inter-
domain component will be in charge of conveying and managing requests over FAIN domains.  
Figure 48 illustrates PBANM’s components and how Inter-domain and Resource Manager are 
integrated in the whole sub-system. 

  

Figure 48: PBANM’s Components 

We are not going to deal with both components in this document since they have been postponed to 
future works (Y3) when prioritising activities.  

5.2  components description 
According to the 2-tiers Architecture, we will avoid redundancy. Only specific components (resource 
Manager, Inter-domain management) and whatever is specific to the network level in others 
components are described. However according to our priorities and time constraint the two most 
specific component (resource manager and inter-domain management components) of this level have 
been shifted to Y3 where they will be deeply investigated. 

 



Revised Specification of Case Study Systems   Page 63 of 75 

Copyright  2000-2003 FAIN Consortium  May 2002 

5.2.1 ANSP Proxy Component in Network Level 
Policies coming from the ANSP or the SP policy editor are forwarded to the ANSP proxy. The ANSP 
proxy forwards the policies to the appropriate domain instance (either ANSP or SP domain). The 
ANSP proxy functionality is to authenticate the requests and then to find the instances to which the 
policies must be forwarded. The actual policies are processed by the proper instances and not by the 
ANSP-proxy. 

In other words the ANSP proxy makes the management architecture more robust from the security 
point of view. After the ANSP proxy has performed the necessary security checking, and the SP is 
allowed to enter the management framework, the SP can perform SP-specific checking within the SP 
domain. This is similar to a proxy of a web site where a proxy checks if you are allowed to send traffic 
and then the web server software does additional security checks. 

Although a proxy may be located to a different physical station, it could also be the case that is co-
located with the ANSP or SP instances. 

 

This component in network level works with interactions of Policy Editor and PDP managers, which 
can be multiple instantiation for an ANSP and several SPs. ANSP Proxy needs to dispatch policy data 
towards to an appropriate PDP manager. 

5.2.1.1 Use cases 
Firstly the ANSP Proxy checks the credentials of the incoming policy data, then dispatches it to one of 
the PDP managers. Also the ANSP proxy component will verify the reports sent by the PDP managers 
and will notify the results to the customers. This notification could be done via a GUI used by the 
Policy Editor. 

 

Figure 49: Main Use cases of the ANSP Proxy in Network Level 

5.2.1.2  Class Diagram 
 The ANSProxyImpl class provides two methods. The sendPolicy() is used by the Policy Editor to 
install the policy data and the setReport() is used by the PDP Manager in order to report the status of 
the policy deployment. 

 

Check Credent ia l

D ispa tch  Po l i cy

P D P  M g r

Analyze Sta tus

Pol icy  Edi tor



Revised Specification of Case Study Systems   Page 64 of 76 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 50: Class Diagram of the ANSP Proxy in Network Level 

 

5.2.2  PDPMgr Component 
The functionality of the PDP component at the network level is exactly the same as the one described 
previously for the element level in section 4.2.2.  

5.2.3 QoSPDP Component 
At the network level the PDP component is also, as in the element level, one of the key components of 
our policy-based management architecture. There are not many differences between the PDP 
component designs at different levels, as one would rapidly notice comparing the element level and 
network level use case diagrams of this component. The network level use case diagram is given in 
Figure 51 below.  

decisionEnforcement

Syntatic Checking

PDPMgr

Check_Policy

<<include>>

<<communicate>>

InterdomainMan
ager

ResourceMana
ger

<<communicate>>

<<communicate>>

MonitoringSyst
em

Semantic Checking

<<include>>
DB

<<<<requests>>>

makeDecision

<<<<requests>>>

<<communicate>>

<<include>>

<<<<requests>>>

EML

<<<<requests>>>

uninstall Policy

<<<<requests>>>

PEP

<<communicate>>

<<communicate>>

<<<<requests>>>

<<communicate>>

 
Figure 51 – NL-PDP Component use cases Diagram 

In this section we are going to describe the network level QoS PDP functionalities and design. Since 
this description does not vary significantly from that given in a previous chapter for the element level 
QoS PDP, we are just going to point out here the main differences instead of repeating the whole 
description. The main differences in the functionalities with which the PDP at the network level deals 
with in relation with the element level are: 

 ·  The result of the enforcement of the decisions taken by the PDP component at the network 
level are element level policies and not commands to the active nodes interfaces as in the element 
level case. 

 

ANSProxyImpl

sendPolicy()
setReport()



Revised Specification of Case Study Systems   Page 65 of 77 

Copyright  2000-2003 FAIN Consortium  May 2002 

 ·  There is no support for signalling functionality at the network level. This is due to the fact 
that signalling requests for decisions are processed only at the element management stations. 
Nevertheless a similar type of functionality can be realised using the event notifications to the network 
level. 

 ·  The most important difference between both levels is the support for the “makeDecission” 
functionality. At the network level most policies request network-wide resources. Before deciding 
whether these policies should be enforced or not, the makeDecision functionality has to know the 
availability and location of requested resources in the network. To obtain this information the 
makeDecision functionality will contact the resource manager component. With the help of its peer at 
the element level, the monitoring system and the interdomain manager, the network level RM gathers 
information needed by makeDecision functionality. 

 Another difference in the makeDecision functionality at the network level enforcement is that, 
we do not have the same situation of having the enforcement points replicated at different active nodes 
virtual environments. So that we do not need to demultiplex the decisions to the appropriate 
enforcement point because there is only one suitable and it is well known. 

The class diagram at the network level shown in Figure 52 reflects the network level PDP design. 
Again as with the use cases we are not going to provide the whole description of the QoS PDP class 
diagram, but just the main differences of this component design against the design of the element level 
QoS PDP described before: 

 ·  Since no signalling support functionality is realised, the class that developed this 
functionality disappears from the design (i.e. the SignallingComp class). 

  ·  Also, the command_demux class is removed from the PDP design at the network level 
because, as described above, there is no need of demultiplexing decisions to the correct enforcement 
point since there is only one suitable enforcement point. 

 ·  The Condition_interpreter class adds the necessary functionality to interact with the resource 
manager component for coping with policies requesting network-wide resources. 

 ·  Finally, the pdpQoSOpsImpl is also briefly modified since its request function is changed for 
supporting requests of resources from other domains coming from the interdomain manager and 
through the resource manager. At the element level this function was used to support signalling 
requests for decisions. 



Revised Specification of Case Study Systems   Page 66 of 78 

Copyright  2000-2003 FAIN Consortium  May 2002 

DBInt

PEPInterface

decision()

PolicyUninst
aller

uninstall()

Event 
Interpreter

eventMap()
involvedPol()

ActionInterpr
eter

execute()

DBInterface

setPolicy()
getPolicy()

MonitoringSystemInterface

Event Register

registerEvent()
buildMonPolicy()

Scheduler

RegTrigger()

<<policy_caducity>>

EastboundExtI
nterface

Parser

XMLtoJava()
JavatoXML()

PDPMgrInterface

Evaluation

evaluate()
re_evaluate()

SemanticConflictCheck

checkSemConflict()
resolveConflict()

Condition_Interpreter

interpret_conditions()
evaluate_conditions()

<<polling>>

InterdomainMgr

reqResToPeerDom()
reqResFromPeerDom()

pdpQoSOpsImpl

dispatch()
checkPolicySyntax()
request()

RMgr-ELInterface

reqRes()

RMgrInterface

findResources()
buildResPolicy()

 
Figure 52 – PDP Component Class Diagram 

5.2.4 QoSPEP Component 
The PEP component at the network level has, from the conceptual point of view, the same 
functionality as the element level ones, except that at the network level they do not include signalling 
support functionality for the reasons previously exposed. However, the concrete processes needed for 
realising the functionality (i.e. translation of policy decisions into the target understandable 
commands) vary significantly since these processes at the network level are policy translations from 
network to element level policies. This fact is reflected in the use case diagram shown in Figure 53 in 
two ways: 

 - First the map action to interface functionality is now oriented to the translation of network to the 
element level policies, 

- Second, since the policies between the network and the element level stations travel expressed in 
XML for several reasons that were already carefully described in FAIN Deliverable D3, we have 
included the translateToXML functionality, which covers this task. 

 Another important difference in the functionality of the PEP component (i.e. the QoS PEP 
component) regarding the element level is the de-multiplexing of the enforcement command to the 
appropriate PBANEM systems. 

Finally, the dynamic conflict checking functionality appearing at the element level is not need at the 
network level and thus not designed.  



Revised Specification of Case Study Systems   Page 67 of 79 

Copyright  2000-2003 FAIN Consortium  May 2002 

EMS

demux policies to EMSs

<<communicate>>

map action to interface

enforce decision

PDP

<<communicate>>

<<include>><<include>>

Parser Component translateToXML

<<extend>>

<<<<requests>>>

 
Figure 53 – QoSPEP Component Use Cases 

 

In Figure 54 we can see which classes develop the PEP functionality at the network management 
level. As for the element level the PEPImpl class controls the decision enforcement process and, 
obviously, the classes that supported the signalling and dynamic conflict checking functionality at the 
element level have been removed. The mapping of the use cases to the classes that realise this 
functionality is the next one: 

 Enforce decision: The functionality of this use case is developed by the PEPImpl class, it 
basically initiates and keeps control of the enforcement process. 

 Map action to interface and translateToXML: The IntMapper is the responsible class for these 
two functionalities. The two functions of this class mapAction() and JavatoXML realise each one of 
the two functionalities respectively. In order to parse the JAVA element level policy into the XML 
policy the IntMapper class contacts the Parser component included within the PDP so as to avoid 
unnecessary replication of functionality. 

 Demux policies to EMSs: The functionality of this use case is realised by the EMS_Demux 
class which extracts from the XML element level policies the active nodes where they should be 
applied and maps this information to the corresponding PBANEM system associated to those active 
nodes. Then, it forwards each policy to the corresponding element management station. 



Revised Specification of Case Study Systems   Page 68 of 80 

Copyright  2000-2003 FAIN Consortium  May 2002 

 
Figure 54 – QoSPEP Component Class Diagram 

 

5.2.5 Network level Delegation PDP 
The Basic functionality of the Delegation PDP in the network level is similar to that of the element 
level. However, from the network administration viewpoint, the functions dealing with notifications, 
which are sent, from active nodes or EMSs and the functions interacting with the end user (operators 
of ANSP and SPs) should be mentioned in the network level. 

5.2.5.1  Delegation PDP use-cases 
The Main use cases of the Delegation PDP in the network level are similar to the ones in element 
level, which are namely for Configure, Operate and Reconfigure stages. In Deployment, incoming 
policy data are checked and forward to Delegation PEP in Network Level. After deployment of policy 
data, Delegation PDP moves in Operate stage, which are checking the status of access right with 
information from Monitoring System of network level and PBANEMs. Here we can show the use case 
of Operate, which deals notification function. With this function, operators can know the status of 
access rights in their virtual networks. 



Revised Specification of Case Study Systems   Page 69 of 81 

Copyright  2000-2003 FAIN Consortium  May 2002 

 

Figure 55: a Detailed Use cases of Operate stage in Delegation PDP 

 

5.2.5.1.1 Messages  

Notifications from Delegation PDP are made when necessary. These messages are sent both the 
synchronous and the asynchronous way, then finally arrived to Policy Editor or other components to 
display messages for users. 

(1) Result of Configuration/Change 

When the configuration of a new customer is completed successfully, this notification is sent. On 
the contrary, if the configuration of a new customer fails, an error message is sent with the alarm 
level and the error type. 

A) Configuration error types 

-policy check error 

-policy syntax error 

-policy semantics error  

(2) Other Errors 

-Invalid Operation: a customer’s operation mismatches the attribute. 

-Node Error: A node is down.  

(3) Alarm Level 

An alarm level is included in the error messages in order to indicate how critical is an error. 

A) Critical 

B) Warning 

 

Check Status
Monitoring 

SystemPDP Manager

Policy Editor Notification

Decision for Reconfigure



Revised Specification of Case Study Systems   Page 70 of 82 

Copyright  2000-2003 FAIN Consortium  May 2002 

C) Notification 

 

5.2.5.1.2 Delegation PDP Class Diagrams  

Since basic functionality of delegation PDP in network level is similar with one in element level, most 
of classes of element level could be reused in this level. 

  

Figure 56: Class Diagram of Delegation PDP 

 

5.2.6 Delegation PEP at the NL  
 

The functions of the delegation PEP at the network level are: Firstly, it receives the delegation policies 
from the delegation PDP, it makes the necessary translations and then it delivers them to the EMS 
(namely the EL ANSP proxy). 

We will use a policy example in order to make the functionality of the NL delegation PEP more vivid. 
An SP sends the following policy7:  

“For the Edge nodes of my Virtual network that exist in the United Kingdom, I want medium security, 
and for the Core nodes I need high security”. 

                                                 
7 For the sake of simplicity, we assume that the SP uses the ANSP management framework, and since 
the ANSP has the rights to perform any kind of operations, there are no checks needed as to whether 
the ANSP has the rights to install the policy. 

 

 

PDP Mgr

Parser

XMLtoJava()
JavatoXML()

PEP

DB

DlgCheck

checkSemConflick()
resolveConflict()

Monitor 
System

DlgPDPImpl

dispatch()
getReport()
procPolicy()
checkPolicy()

Scheduler

PolicyCtrl

registerEvent()

+1..*

Evaluation

evaluate()
re_evaluate()



Revised Specification of Case Study Systems   Page 71 of 83 

Copyright  2000-2003 FAIN Consortium  May 2002 

This Delegation policy will arrive through the Delegation PDP, to the DlgPEP. The DlgPEP will 
extract the proper parameters from the policy and will substitute certain fie lds in it. In our example it 
will substitute “high security” with ReadOnly (RO), and “medium security” with Read/Write (RW). It 
will also analyse that edge nodes are the nodes described in e.g. IP address list 1 and Core nodes are 
the nodes described in IP address list 2.  Thus the NL Delegation PEP will create brand new EL 
Delegation policies. It will then send these policies to the ANSP proxy of the element level. 

 

In the case that we find ourselves inside the SP management domain, which means that the SP is 
responsible for deploying and enforcing the policies, the SP’s ability to enforce the particular policy 
will be questioned. The NL Delegation PEP will create a restricted schema and store it in the Schema 
repository, where it will be collected by the Access Control Check (ACC) component. The Access 
Control Check component will check if the SP is able to enforce a particular policy by comparing this 
policy against the restricted schema. If the outcome is positive, the PDP manager will send the policy 
to the delegation PDP for further processing. 

 

There is a special type of policy coming from the Delegation PDP that dignifies that a new user wants 
to instantiate management components. In that case the Delegation PEP will use the instantiateDom() 
method offered by the EL PDP manager interface. The parameters passed to the PDP manager should 
be the name of the entity that wishes to instantiate (e.g SP) and the components that the entity wishes 
to be instantiated. The PEP will receive the result of the instantiation procedure. 

5.2.6.1 Use cases of the NL Dlg PEP 
The following use cases diagram captures the above iterations. 

DlgPDP Receive Policy

Schema 
repository

ANSPproxy

translatePolicy

Send Policy

PDPMgr

 
Figure 57: Use cases of NL Delegation PEP 



Revised Specification of Case Study Systems   Page 72 of 84 

Copyright  2000-2003 FAIN Consortium  May 2002 

5.2.6.2  Class diagram for the NL Delegation PEP 
The corresponding class for the delegation PEP at the network level is the following: 

 

 

 

Delegation 
PDP

PDP Mgr

ANSP 
Proxy

Schema 
Repository

DlgEvaluation

evaluate()

DlgActionInt
erpreter

execute()

fainNLDelegationAction

execute()

Deleml1gen

write()

NLparams
DelMgmte

ml1gen

write()

Parser

XMLtoJava()
JavatoXML()

DlgPEPImpl

sendPolicy()
translatePolicy()

 
Figure 58: Class diagram of NL Delegation PEP 

The sendPolicy() method is used by the delegation PDP in order to pass the policy to the delegation 
PEP for enforcement.  

The translatePolicy() method is used internally by the Delegation PEP. In the policy example given 
above, this translation can be from vague router names such as Core or Edge to specific IP addresses 
of routers. The Deleml1gen and the DelMgmteml1gen classes generate the two EL Delegation policies 
that will be sent to the EL ANSP Proxy.  

5.2.7  Conflict Check Component at NL 
The text at section 4.2.10 for the conflict check component at the element level applies as well to the 
network level of this component, since the requirements, the functionality and the approach taken are 
the same. 



Revised Specification of Case Study Systems   Page 73 of 85 

Copyright  2000-2003 FAIN Consortium  May 2002 

5.2.8 Monitoring system-NL 

Although a monitoring system at network level has been identified, it remains to define how it will 
operate. This section glances at some issues that have been identified and being on the list of a 
potential solution to be investigated. As the whole network level, the NL-Monitoring system would be 
in charge of gathering the state of resources in a given domain nodes in order to provide the other 
network level components (DelegationPDP, QosPDP, NL-Resource Manager) with domain wide 
resources information, refreshed at a time scale to be dimensioned.  

To assume efficiently this role, the NL-Monitoring system subscribes to Monitoring Systems present 
on each Active Node of its domain. Then it registers the events which status it would like to receive 
either at some given interval of time or on demand. The choice for such refreshment of resources’ 
status is related to their natures. Further investigations in this direction to integrate fully this view in 
the management architecture have been elicited and are being developed.  

Figure 59 illustrates the network level monitoring system relationship to the EMS monitoring systems 
in a given administrative domain. 

As well as the interactions with EMS monitoring system, NL Resource Manager and NL Delegation 
PDP in a given domain are obvious, the reflexive interaction (between) NL Monitoring system still 
needs to be developed. Indeed this interaction will be strongly connected to the FAIN network model 
solution vis à vis of sub-networking solution and inter-domain management that are still being tackled. 

 

Figure 59: NL and EL monitoring Systems relationship 

 

 

Monitoring 
System 

Element Level 

 
L 
e 
v 
e 
l 

Network 

Monitoring 
System 

Monitoring 
System 

Monitoring 
System 

Administrative 
Domain 

Active 
 Node i 

Active 
 Node 1 

Active 
 Node n 

Resource. 
Manager 

Del.PDP 

 Monitoring 
 System 



Revised Specification of Case Study Systems   Page 74 of 86 

Copyright  2000-2003 FAIN Consortium  May 2002 

6 R16 ACTIVE SERVICE PROVISIONING – ASP 
The Active Service Provisioning (ASP) is the sub-system of the FAIN Management system in charge 
of providing deployment of new or needed services in the relevant area of the FAIN network on 
demand either by the network operator or the network users (Customer, Service providers). The goal 
of this chapter is to focus on this functionality of the of the FAIN architecture pointing out its main 
features. To this instance, an incremental description from capturing main functionality, thus the main 
components to a deeper description of those components will be adopted through this chapter. 

6.1 ASP use cases 
 Figure 61 depicts the main use case diagram of the ASP system. The main use cases of the ASP sub-
system are: 

• Release service . It describes the capability of the ASP system to make a service available for 
deployment in the active network.  

• Deploy service . It describes the capability of the ASP to deploy a released service in a target 
environment within the active network. 

• Remove service . It describes the capability of the ASP system to remove a service from a target 
environment. 

• Withdraw service. It represents the capability of the ASP system to withdraw a service from a list 
of available services in the active network. 

The main actors communicating with the ASP system are: 

• Service Provider, 

• Active Network Service Provider 

• Network Infrastructure Provider, 

The roles are described in the FAIN Enterprise Model in detail.  

The ASP system capabilities represented by the main use cases are related to each other in that there is 
a valid sequence in which they occur for a given service. An activity diagram in depicts these 
relationships. 



Revised Specification of Case Study Systems   Page 75 of 87 

Copyright  2000-2003 FAIN Consortium  May 2002 

service 
registered

 service installation 
deployed

service installation 
removed

service 
withdrawn

register service

deploy service

remove service

withdraw service

 
Figure 60 Activity diagram for an active service processed by the ASP. 

• First, a service is released by the Service Provider in the active network. This means that 
the service provider makes the service available to the users by registering the service in 
the active network and storing the service metadata and service code modules with the 
ASP system.  

• After having been released, a service may be deployed to a target environment in the 
active network. The Service Provider initiates this process by interacting with the ASP. In 
order to find out the target environment required by the service requirements, the ASP 
communicates with the Active Network Service Provider (who may also interact with the 
NIP) to request the information about the state of the network and to allocated needed 
resources to the service.  

• A deployed service, i.e. a service installation, may be removed from the target 
environment it has been deployed to, if needed. Some interaction with Active Network 
Service Provider may occur when removing a service. 

• Finally, the Service Provider may withdraw a service from a network.  



Revised Specification of Case Study Systems   Page 76 of 88 

Copyright  2000-2003 FAIN Consortium  May 2002 

release service

withdraw service

NIPANSP

deploy service

SP

remove service

 
Figure 61 Main Use Case of the ASP. 

The following subsections explain the use cases identified above. 

6.1.1 release service  
The Service Provider who decides to offer his service in the active network has to release it in the 
active network. It does so by contacting the NMS, which allows accessing the service release 
capability of the ASP. Figure 62 shows the release use case diagram. The service is released by 
registering its name and some deployment information (a list of required service component 
descriptors) with the network service registry, and uploading the service code including all the 
dependent code into the network-wide service repository.  

register service description

store code module

SP

 
Figure 62 release service use case diagram. 

6.1.2 deploy service 
After the service is released in the network, the Service Provider may want to deploy his service to a 
specific target environment, which is most suitable for the given Consumer requesting access to the 
service. A target environment is formed by a set of active nodes on which the code modules of the 
active service are deployed.  



Revised Specification of Case Study Systems   Page 77 of 89 

Copyright  2000-2003 FAIN Consortium  May 2002 

Figure 63 depicts deploy service use case. The deployment process starts at the network level 
with mapping the service properties to target environment properties. The ASP identifies the target 
environment of the service in that matches the information about the current state of the active nodes 
available to the Service Provider (in terms of their static and dynamic properties and capabilities) 
against the requirements of the service described in the service component descriptor. This capability 
is represented as the map service to target nodes use case included by deploy 
service use case.  

When deploying a service, downloading of the service is usually needed. It consists of downloading 
deployment descriptor (download descriptor use case) and its code modules (download 
code module use case) as well as all other services it depends on. To discover these dependent 
services, service dependencies are resolved (resolve dependencies use case). The fetched code 
modules may be cached locally on the target active nodes (cache code use case).  

Another capability of the ASP is service installation. The service code modules fetched onto the node 
have to be installed in the appropriate execution environments (EEs) of the target environment. The 
ASP installs the code modules by performing some EE-independent pre-configuration of the service 
code modules and making them available to the target EEs. Some interaction with Network 
Infrastructure Provider (the active node) is needed to perform the latter deployment steps.  

 

download code module

resolve dependencies cache code

download descriptor

download

<<include>>

make avail-
able to EE

preconfigure 
and setup

install service

SP

map service
to target node(s)

deploy service
on the node

<<include>>
<<include>>

deploy service
in the network

<<communicate>>

<<include>>

ANSP

 
Figure 63 deploy service use case diagram. 

 



Revised Specification of Case Study Systems   Page 78 of 90 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.1.3 remove service 
The Service Provider (or Network Management System representing him) may request to remove a 
deployed service from the environment it was deployed in. This ASP capability is described in remove 
service use case depicted in Figure 64. The SP communicates with ASP system at the network level in 
remove service from network use case. The ASP identifies the target environment of the 
deployed service and removes the service from every active node forming the target environment 
(remove service from node use case). It includes:  

• resolving dependencies of the service components to identify all dependent service 
components to remove.  

• uninstalling the service components from the execution environments of the target 
environment. This includes removing the code modules from the execution environment and 
resetting the execution environment to the state before the service component installation. The 
uninstall service involves some interaction with Active Network Service Provider. 

• and removing the code modules from cache if needed.  

resolve dependencies

SP

remove code from EE

remove service
from the node

unintall service remove from cache

reset EE configuration

remove service
from the network

<<communicate>>

<<include>>

ANSP

find target environment

 
Figure 64 remove service use case diagram. 

6.1.4 withdraw service 
The SP who release his service in the network, may also want to withdraw the service from the active 
network. The withdraw service use case describes the capability of the ASP to unregister the 
service from the network service registry (unregister service description use case) and 
to discard the service code modules and their dependent code modules from the network service 
repository (discard code module use case). 



Revised Specification of Case Study Systems   Page 79 of 91 

Copyright  2000-2003 FAIN Consortium  May 2002 

unregister service description

discard code module

SP

 
Figure 65 withdraw service use case diagram. 

6.1.5 manage service installations 
When deploying or removing a service from its target environment, the ASP performs management 
functions on the database with all service components installed on the active node. The manage 
service installations use case describes the capabilities of the ASP to manage the service 
components on the node that the service provider may use, like service component’s code expiry.  

SP

version check expiration check

manage code

 
Figure 66 manage service installations use case diagram. 

6.2 Components description 
From those well-identified and isolated functionality of the ASP, relevant components have been 
identified and aligned to the 2-tiers Architecture assumption when needed. For more information on 
this aspect of the design, we invite the reader to have a look to the deliverable D3 [8]. The following 
describe those components. 

6.2.1 Network ASP Manager 
The Network ASP Manager is the initial point for the Active Service Provision on network level. An 
FAIN Service Provider or Customer which are authorized to take the role of a Service Provider may 
act as an ASP manager/user (person or component) in order to initiate a service deployment either via 
an IDL or GUI interface.  



Revised Specification of Case Study Systems   Page 80 of 92 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.1.1  Network ASP Manager use case diagram 
 

Service Provider 
(or Customer) 

InstallService 
(network level) 

 
Figure 67 – Network ASP Manager use cases 

 

6.2.1.1.1 installService 

For execution of the installService operation, the network ASP manager fetches the service 
deployment descriptor, which is an XML document, from the Service Registry. The descriptor is 
partially processed by the ASP network manager to determine an optimal code distribution on the 
network level, i.e. to find a set of active nodes that the service components have to be deployed onto. 
For a special case (as for M4) the user of this operation may specify the nodes on which to deploy the 
service explicitly.  

The network ASP manager sends the deployment request in form of a mobile deployment agent to 
each of the active nodes’ Node ASP Manager. The deployment agent is sent in an active packet that is 
dispatched to the node level ASP on each node. The deployment descriptor is then passed to the Node 
ASP Manager (agent system), which is the access component of the node level ASP for handling the 
deployment request. The Node ASP manager may perform additional functions and passes the 
deployment request with its description to the Service Creation Engine and Code Manager. 

After execution of the install/deploy Service on one node, the deployment agent travels to next 
specified active node. After finishing execution on all active nodes, the deployment returns to the 
originator Network ASP Manager and passes back the interface references to the installed/deployed 
service components. These installed components can afterwards be instantiated and configured. 

6.2.1.2  Network ASP Manager design 
The Network ASP manager is realized as an stationary agent with a Graphical User Interface running 
in a priviledged Java i.e. agent system execution environment. 

The Network ASP Manager interacts with the Service Registry and will generate a mobile deployment 
agent, which travels encapsulated in an ANEP packet to the Node ASP Manager (agent system). 

The Network ASP Manager requires a connection of the Demux to the Agent Environment 
(Grasshopper), which is realized by using the Communication Service facilities of Grasshopper. 

The main operation of the Network ASP Manager is the installService operation on a network level. 

6.2.2 Node ASP Manager 
The Node ASP Manager is the initial point for the Active Service Provision on node level. The Node 
ASP Manager is connected to the Demux (WP3) component, from which it receives the request for 
Active Service Deployment/Provision from the Network ASP Manager in form of a deployment agent. 



Revised Specification of Case Study Systems   Page 81 of 93 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.2.1  Node ASP Manager use case diagram 
 

Network ASP Manager  
(deploymentAgent) 

InstallService 
(node level) SCE 

 
Figure 68 – Node ASP Manager use cases 

 

6.2.2.1.1 installService 

For deployment of a service on a node, a deployment agent arrives on a Node ASP Manager. The 
deployment agent is created from a Network ASP Manager (although the deployment might come 
from a neighbour Node ASP Manager, if a service has to be deployed on a set of active nodes).  

The Node ASP manager may perform additional functions and passes the deployment request with its 
description to the Service Creation Engine and Code Manager. The result of the installService 
operation of the Service Creation Engine is collected from the deployment agent. Potentially, the 
deployment agent travels to next specified active node if more than one node is given as target nodes 
for deployment. After finishing execution on all active nodes, the deployment returns to the originator 
Network ASP Manager and passes back the interface references to the installed/deployed service 
components. 

6.2.2.2  Node ASP Manager design 
The Node ASP Manager is implemented as a stationary agent running in a Grasshopper agent system. 
The connection of the Node ASP Manager to the Demux component is realized by using the 
Communication Service facilities of Grasshopper. A (mobile) deployment agent will be received via 
that Communication Service which is encoded in an ANEP packet and received from network level 
(i.e. Network ASP manager). 

The main operation of the Network ASP Manager is to provide an “installService” operation on a node 
level. 

 

6.2.3 Code Manager 
The Code Manager is a node-level ASP component, which maintains the information about the code 
modules installed on the node. It also supervises the process of fetching, installation and withdrawal of 
the service code modules. Code Manager mediates fetching service component descriptors, as well. 

6.2.3.1 Use Cases 
Figure 69 depicts the use cases of the Code Manager. 



Revised Specification of Case Study Systems   Page 82 of 94 

Copyright  2000-2003 FAIN Consortium  May 2002 

Code Manager provides a capability to fetch and install a service. The component is contacted after 
the Service Creation Engine has resolved the dependencies of the service component requested to be 
deployed (fetch and install service use case). Code Manager receives information what 
code modules to fetch from the Service Registry and install them in what execution environments of 
the node and supervises the fetching process (which is performed by the Local Service Repository) 
and installation process (performed by Node Manager). This use case includes managing the data base 
of the code modules installed on the node (manage installation use case).  

Another capability of the Code Manager is to uninstall given code modules from their execution 
environments on the node (uninstall service use case). Code Manager receives the 
information on code modules and their execution environments from SCE after it has resolved 
dependencies of the service. The uninstallation process involves updating the data base with installed 
code modules maintained by Code Manager. 

Code Manager also mediates in fetching service component descriptors from the Service Registry. It 
communicates with the Local Service Registry, which represents the Service Registry on the node.  

 

SCE

fetch and install service Local Service 
Repository

get service component descriptors Local Service 
Registry

uninstall service

NodeManager

(from NodeManagement)

manage installations

 
Figure 69 main use case diagram of the Code Manager. 

6.2.3.2 Code Manager Design 
Code Manager provides an Element ASP-internal interface. This interface is used by the SCE and 
includes definitions of the following operations: 

• FetchAndInstallService triggers fetching and installation of a given list of code 
modules belonging to the service to deploy. The operation contacts the Local Service 
Repository to fetch the code modules and the Node Manager to install the fetched code 
modules. However, the installation process is triggered by Code Manager, it is performed by 
the EE-specific components of the Node Management Framework. 



Revised Specification of Case Study Systems   Page 83 of 95 

Copyright  2000-2003 FAIN Consortium  May 2002 

• UninstallService manages the uninstallation process. As input parameters, it receives a 
list of code modules to remove. It triggers the EE-specific uninstallation process 
communicating with Node Manager and updates the Code Manager data based maintaining 
information on code modules installed on the node.  

GetServiceComponentDescriptor contacts the Local Service Registry 
to fetch a descriptor list of released service components 
realizations for a request 

 

6.2.4 Service registry Component 
 In the ASP part of the FAIN architecture, the service registry is in charge of managing the description 
of services that can be loaded into active nodes (register, unregister, find services). 

This section aims to present the design of this component and to show its interfaces (defined in IDL). 

The interfaces are detailed and based on the interfaces specified in the deliverable D3. 

6.2.4.1  Service Registry Use cases 
The actors are the NASPM, LSR and the NMS. 

• NASPM: Network Level Active Service Provisioning Manager.??? 

• LSR: Local Service Registry 

• NMS: Network Management System. 

 

Fetch service description Use case. 

The first use case starts either when the NASPM needs to fetch the description of a service or when 
the LSR is asked by the Node Code Manager for the description of a service it doesn’t have locally. 

Fetch service description 

<<<Component: service registry>> 

NASPM 

NMS 

Manage service descriptions 

   LSR 



Revised Specification of Case Study Systems   Page 84 of 96 

Copyright  2000-2003 FAIN Consortium  May 2002 

In the first case, the NASPM gets the list of the available service descriptions by calling the method 
getServicesList of the CORBA interface. Then the NASPM can choose a service in the list and it asks 
for its descriptions (a sequence of XML file) by calling the method fetchService. There might be 
several descriptions for a service, then several XML schemes might be returned. 

In the second case, the LSR then asks the descriptions for this service to the service Registry by 
calling the method fetchService. 

The LSR can also get the list of the available service descriptions by calling the method 
getServicesList of the CORBA interface (if needed). 

 

Manage service descriptions use case. 

The second use case starts when the NMS wants to install a new service in the active node. The NMS 
registers a new service description with registerService and unregisters it with unregisterService. 

 

6.2.4.2  Service registry Design 
The service registry must register new services, unregister old services when requested by the 
Network Management System. 

It must get the list of all available services and the descriptions of a given service when requested by 
the Network ASP Manager. 

It must get the descriptions of a service to the Local Service Registry when the latter doesn’t have it 
already in cache. 

 

The service name must be unique (in order to clearly distinguish services): it is composed by the name 
of the service concatenated with the name of the service provider (example: 
VideoTranscoder_FTR&D). 

 

No public attribute are necessary. Only 4 methods are public  

• registerService: In order to register a service into the Service Registry, the service name must 
be passed with a descriptor, describing the service. This descriptor is a XML file, mapping the 
Chameleon requirements. If the service is already registered (one previous version has already 
been registered) then the service registry registers this new request as a new version of the 
service and increments the number of the version. 

• unregisterService: Only the service name is passed to the service Registry, and the latter 
removes it from the database and removes all the descriptions related to it. 

• fetchService: Only the service name is passed to the service Registry, and the latter is in 
charge of retrieving the XML descriptors in the database and sending it back to the client 
(ASP Network Manager or Local Service Registry). If there are several versions of the service 
(then several XML descriptors), all the XML descriptors are sent back. 

• getServicesList: No input parameter is given. When receiving this request, the Service 
Registry sends back all the registered services. 

 

Some exceptions are also defined: checking the correctness of the name, the syntax of the XML 
descriptor…. 



Revised Specification of Case Study Systems   Page 85 of 97 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.5 The Local Service Registry 
 

Inside an active node, the local service registry is in charge of managing the description of services 
that are requested by the Code Manager and can be loaded into active nodes. It the local service 
registry hasn’t the description of the given service, it asks the network service registry for it. 

This section aims to present the design of this component and to show its interfaces (defined in IDL). 

 

6.2.5.1  Local Service Registry Use cases Diagram 
 

  

 

 

 

 

 

 

 

The actors are: the CM and the NSR. 

• CM: Code Manager. 

• NSR: Network Service Registry. 

 

Use case Fetch service description. 

The first use case starts when the CM wants the description of a service fetchService. The CM asks it 
to the LSR. If the latter has this description locally (in cache), it returns it to the CM. If the LSR 
doesn’t have the descriptions of the service, it then asks it to the network Service Registry, gives it 
back, stores it and sends it back to the CM. 

 

6.2.5.2  Local Service Registry Design 
 

The Local Service Registry is in charge of managing service descriptions locally inside the active 
node. Its role is then to fetch service descriptions and to store them (cache). 

When the Code manager want to deploy a service, it asks the LSR the descriptions of this service. 

If this service has already been deployed (or requested by the CM), the LSR has keep the descriptions 
in cache and then can give them back to the CM. 

If this description is not know locally by the LSR, then the latter will contact the network service 
registry and fetch the descriptions for this service. 

The LSR will then store it locally (keep it in cache) and will send back this information to the CM. 

 

Fetch service description 

System: Local Service Registry 

   CM 

   NSR 



Revised Specification of Case Study Systems   Page 86 of 98 

Copyright  2000-2003 FAIN Consortium  May 2002 

The LSR can also reply to the CM if the CM wants to get the list of all available services. This option 
will certainly not be used because it’s not the role of the CM but it is possible. 

If the CM requests that, then the LSR will contact the Network Service Registry to retrieve the list of 
services. This list is not cached in order to get always the up-to-date list. 

 

No public attribute is necessary. Only 2 methods are public (the same than the service Registry 

• fetchService  

• getServicesList  

Some exceptions are also defined: checking the correctness of the name, the syntax of the XML 
descriptor…. 

 

6.2.6 Local Service Repository  
The purpose of the local service repository (local cache) is to decrease the latency for the installation 
of a new service. The local cache stores recently used service components in the node, so that if they 
are requested by a new service, they will not have to be downloaded from a remote code repository. 

The amount of components that are cached depends on the available storage space on the node. In the 
case that available space is exhausted, a replacement algorithm must be applied, to delete an 
unnecessary component from the cache in order to store a new one. The repository itself does not have 
the necessary logic for these checks. This is the responsibility of the code manager. In this context the 
local cache can be considered as a simple “back-end” of the code manager. 

The code manager is the main “client” of the local repository and it is the only other ASP component, 
which uses the local repository interface. The most important functionality required is the fetching of 
code modules, which are necessary for the instantiation of a new service on the node. The code 
manager requests a code component from the local repository. The repository then has to check if the 
module is already cached, or else it must be downloaded from the network. The local cache also 
carries out this operation. For this reasons the cache has knowledge of the location of the network-
wide service repository, which stores the implementation components of the services, which are 
available in the network. 



Revised Specification of Case Study Systems   Page 87 of 99 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.6.1  Local Service Repository use case diagram 

lookup cache

get component store component

Code Manager

delete component

fetch code

Service Repository 
(Network)

 
Figure 70 – Local Service Repository use cases 

 

As we can see from the use case diagram, the actors that interact with the Local Service Repository are 
the Code Manager and the network-wide Service Repository. The use cases are described below. 

6.2.6.1.1 get component 

After a service descriptor has been parsed, the Code Manager is in charge of retrieving the necessary 
code modules, which implement the desired service. The Code Manager contacts the Local Service 
repository and requests the necessary components. From this moment the responsibility of locating 
and fetching the code modules passes to the Local Service Repository. The following two use cases 
are included: 

• lookup cache 

The Local Service Repository first looks up in its cache, to see if the requested component is 
already available at the node. 

• fetch code 

If the component is not cached locally, it has to be downloaded from a code server. The code 
module is retrieved from the Service Repository and is returned to the Code manager. 

6.2.6.1.2 store component 

As we mentioned above, the Code Manager manages the components stored in the cache, so it may 
request the storage of a new component. 



Revised Specification of Case Study Systems   Page 88 of 100 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.6.1.3 delete component 

As with storing, the Code Manager can also decide that it is necessary to delete a component from the 
local cache. 

 

6.2.6.2  Local Service Repository design 
It is foreseen that because of disk space restrictions the amount of components that will be cached in 
the node will be relatively small, so it is not necessary to use a database or a more complex storage 
system for the caching of code modules.  

The code files are stored in the cache directory and a hashtable is used as an index of the local 
repository. The code manager can get a reference to the implementation files, when a component is 
requested. 

 

6.2.6.2.1 Local Service Repository Interface 

The interface of the local service repository is described in IDL. The operations provided are the 
following: 

• getComponent 

This operation is responsible for retrieving a code module. The repository first checks if the 
requested component is cached locally. If the code does not exist locally, it is downloaded from 
the network service repository. The operation returns a reference of the local file, which contains 
the code. 

• storeComponent 

This operation is used to store a new component in the cache. 

• deleteComponent 

This operation deletes a cached component. It is used by the code manager, when it decides that a 
stored component must be deleted, either because it has been cached for a long time or has to be 
refreshed, or because more disk space is required to cache other components. 

The IDL description of the Local Service Repository Interface is the following: 

 

typedef string CodeModuleID; 

typedef string CodeModuleRef; 

 

interface ServiceRepository { 

 

boolean storeComponent(in CodeModuleRef codeComponent, 

        in CodeModuleID componentName); 

boolean deleteComponent(in CodeModuleID componentName); 

CodeModuleRef getComponent(in CodeModuleID componentName);  

}; 

   

 



Revised Specification of Case Study Systems   Page 89 of 101 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.7 Service Repository 
The service repository contains the implementation components for the services, which are available 
in the network. These components can be specific to an implementation from a particular vendor, or 
for a specific EE-type. The main idea is that the repository stores only the code files. Additional 
information, about which components are required for the service, or how these must be configured, is 
stored in the service registry. 

A service can be created by assembling together a set of required components (creating a package), 
which are specified using a descriptor. The components that make a service package can either be 
grouped together in a single archive, or they could be stored individually. In the service repository we 
choose to have each component in a separate file for the following reasons. First, because one 
component may be used by different services, so it could belong to different packages and second 
because a service could be updated by replacing one of each component with e.g. a new 
implementation version.  

The exact format of the stored components varies according to the type of the Execution Environment, 
for which they are designated. For example, an implementation for a (Java Virtual Machine) Jvm-
based EE may be a Java.jar file, while an implementation for a high-performance EE will be in a 
native object file.  

 

6.2.7.1 Service Repository use case diagram 

store component

NMS

delete component

Local Service 
Repository

get component

 
Figure 71 – Service Repository use cases 

 



Revised Specification of Case Study Systems   Page 90 of 102 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.7.1.1 store / delete component 

The addition/deletion of code modules in the repository is performed by the Network Management 
System, as described in the corresponding use cases store/delete component. A new service first has to 
be registered with the Service Registry and then its components are stored in the repository. Likewise, 
when a service is removed from the network, first its description must be removed from the Service 
Registry and then its code modules will be deleted from the Service Repository. 

6.2.7.1.2 get component 

The Local Service Repository residing on an active node may request the download of a specific code 
module to that node. 

 

6.2.7.2  Service Repository design 
The main functionality required from the Service Repository is similar to that of the local cache. 
However, while we do not expect the local cache to store a large number of components, this is not the 
case with the Service Repository. It acts as a code server, which contains all the service 
implementations, which may be installed in the active nodes of the network. For this reason, 
scalability should be taken into consideration for the design and implementation of the service 
repository. The component files are stored in the repository using a directory-based structure. Each 
component stored in the repository must have a unique name. The code modules are stored using a 
pathname, which is determined using the information such as file name, developer name, target 
Execution Environment type, and implementation version. 

The main operations of the Service Repository are the following: 

• storeComponent 

• deleteComponent 

These two operations are used to add/remove software components to/from the 
repository. These operations are used by the Network Management System and 
they are not available for a user of the system, as the storage and deletion of a 
service component are coupled with the registration or deregistration of the 
corresponding service. Accordingly, the Network Management System offers an 
interface for the service providers to make their services available and then it 
uses the ASP interface to register the service and store its components. 

• getComponent 

This operation is used to download a specific component to the active node. The component is 
identified by its name, which must be unique. 

6.2.8  The Local Service Creation Engine (SCE) 
This document describes the Local Service Creation Engine (SCE), which is a sub-component of the 
active service provisioning (ASP) component offered by a FAIN active node [1][2]. The SCE is 
responsible to map a service component name to an implementation suitable to the local node 
environment.  

6.2.8.1  SCE use case diagram 
 



Revised Specification of Case Study Systems   Page 91 of 103 

Copyright  2000-2003 FAIN Consortium  May 2002 

Resolve Dependencies Virtual Environment
Manager

Get EEs

Fetch and Install Implementations

Get Service Component Descriptor 
References

CodeManager

ASP Node 
Manager

Install Service Component

<<includes>>

<<includes>>

<<includes>>

Local Code 
Repository

Service Requester

Get Component

PDPMgr

<<includes>>

Demux

 
Figure 1 Service Creation Engine Use Cases 

6.2.8.1.1 Install Service Component 

This use case starts when a servic e requester requests the installation of a service component into a 
particular VE. The SCE starts with a service component name that stands for a specific type or 
functionality. Based on the service component name, the SCE requests a list of matching service 
component descriptors (included use case “Get Service Component Descriptor”) from the code 
manager. The SCE further consults the Virtual Environment (VE) manager to get information about 
the available Execution Environments (EE) in a specific Virtual Environment (VE) (included use case 
“Get EEs”).  

From the list of service component descriptors, the SCE selects – based on the mapping policies and 
the available EEs – the appropriate service component descriptor. If a service component descriptor 
contains a non-empty list of service component names that it depends on, the resolution process 
continues in a recursive manner (included use case “Resolve Dependencies”). 

A service component descriptor might also contain a reference to code. If such a service component is 
selected by the SCE, the necessary information is stored in the installation map. The resolution process 
terminates when all dependencies are resolved. The SCE subsequently requests the download and 
installation of the compound implementations and implementations from the code manager. The 
necessary information is in the installation map, which is passed to the code manager (included use 
case “Fetch and Install Implementations”). 



Revised Specification of Case Study Systems   Page 92 of 104 

Copyright  2000-2003 FAIN Consortium  May 2002 

6.2.8.1.2  Get Component 

This use case starts when the PDPMgr wants to download a management component. The SCE gets an 
implementation identifier and delegates the downloading of the appropriate implementation to the 
local service repository. Dependencies are not resolved. The PDPMgr executes installation and 
configuration of the module autonomously. 



Revised Specification of Case Study Systems   Page 93 of 105 

Copyright  2000-2003 FAIN Consortium  May 2002 

7 CONCLUSION 
 This document has provided a revised outline of the case studies that are to be used to evaluate the 
overall FAIN approach and associated architecture. The work documented here has focused in 
particular on the design and development of case studies associated with policy based network 
management and the dynamic provisioning of services (ASP) in an active networking domain. A trade 
of between a too detail presentation of the design and a focus on components main purposes has been 
adopted to ease reading of this document.  

The system implementation is currently on going with the development of components that realise 
these case studies. An advanced version has already been developed, and is being demonstrated as M4 
and part of M5 major events. This work is of course on going and as such it is likely that the 
prototypes will undergo further refinements and enhancements as the work on FAIN progresses. As 
such, it is expected that the prototypes and the scenarios that they support will evolve into a more 
complete final FAIN demonstration. This will highlight the success of the general overall approach, 
i.e. that the FAIN architecture is sufficiently well defined (through generic components and interfaces 
between the different actors) to support a variety of different services and management capabilities in 
a dynamic (active) manner. This will also show the overall benefits of an active networking approach 
for service provisioning and network management.  

 



Revised Specification of Case Study Systems   Page 94 of 106 

Copyright  2000-2003 FAIN Consortium  May 2002 

8  APENDICES 



Revised Specification of Case Study Systems   Page 95 of 107 

Copyright  2000-2003 FAIN Consortium  May 2002 

9 ACRONYMS 
AC: Active Code 

AN: Active Networks 

ANE: Active Network Element 

ANN: Active Network Node 

ANSP: Active Network Service Provider 

API: Application Programming Interface 

ASN: Abstract Syntax Notation 

ASP: Active Service Provisioning 

BML: Business Management Layer 

CDB: Conflict Detection Block 

CIM: Common Information Model 

CLI: Command Line Interface 

CMIP: Common Management Information Protocol 

COPS: Common Open Policy Service 

CORBA: Common Object Request Broker Architecture 

DAP: Directory Access Protocol 

DCE: Distributed Computing Environment 

DCN: Data Communication Network 

DEN: Directory Enabled Networks 

DIT: Directory Information Tree 

DME: Decision Making Entity 

DMTF: Distributed Management Task Force 

DPE: Distributed Processing Environment 

DSCP: Diffserv Code Point 

EE: Execution Environment 

EM: Element Management 

EMS: Element Management System 

FAIN: Future Active IP Networks 

FAIN TA: FAIN Technical Annex 

FCAPS: Fault Configuration Accounting Performance Security 

FIFO: First In First Out 

GDMO: Guidelines for Definition of Managed Objects 

GUI: Graphic User Interface 

IDL: Interface Definition Language 

IETF: Internet Engineering Task Force 

ISE: Information Storage Entity 



Revised Specification of Case Study Systems   Page 96 of 108 

Copyright  2000-2003 FAIN Consortium  May 2002 

ITU: International Telecommunication Union 

JDBC: Java Database Connectivity 

JNDI: Java Naming and Directory Interface 

LAN: Local Area Network 

LDAP: Light Directory Access Protocol 

LPDP: Local Policy Decision Point 

LRU: Least Recently Used 

LSP: Label Switched Path 

MA: Mobile Agents 

MD: Mediation Device 

MF: Mediation Function 

MI: Management Instance 

MIB: Management Information Base 

MIF: Management Information Format 

MPLS: Multiprotocol Label Switching 

NACK: Not Acknowledged 

NE: Network Element 

NEF: Network Element Function 

NIP: Network Infrastructure Provider 

NM: Network Management 

NMF: Network Management Forum 

NMS: Network Management System 

ODBC: Open Database Connectivity 

OMG: Object Management Group 

ORB: Object Request Broker 

OSD: Open Software Description 

OSF: Operating System Function 

PBANEM: Policy-based Active Network Element Management 

PBANM: Policy-based Active Network Management 

PBM: Policy-based Management 

PBN: Policy-based Networking 

PBNM: Policy-based Network Management 

PBVPN: Policy-based Virtual Private Network 

PCIM: Policy Core Information Model 

PCIMe: Policy Core Information Model extensions 

PDP: Policy Decision Point 

PEP: Policy Enforcement Point 



Revised Specification of Case Study Systems   Page 97 of 109 

Copyright  2000-2003 FAIN Consortium  May 2002 

PHB: Per-hop Behaviour 

PIB: Policy Information Base 

QAF: Q Adaptor Function 

QoS: Quality of Service 

QPIM: QoS Policy Information Model 

RAP: Resource Allocation Protocol 

RCF: Resource Control Framework 

RDBMS: Relational Database Management System 

RSVP: Resource Reservation Protocol 
SC: Security Context 

SID: Security ID 

SLA: Service Level Agreement 

SML: Service Management Layer 

SNMP: Simple Network Management Protocol 

SP: Service Provider 

SPPI: Structure of Policy Provisioning Information 

SQL: Structured Query Language 

SSL: Secure Sockets Layer 

TCA: Traffic Control Agreement 

TINA: Telecommunications Information Networking Architecture 

TMF: Telecommunications Management Forum 

TMN: Telecommunications Management Network 

TOM: Telecom Operations Map 

ToS: Type of Service 

TTCN: Tree and Tabular Combined Notation 

UML: Unified Modelling Language 

VE: Virtual Environment 

VPN: Virtual Private Network 

WAN: Wide Area Network 

WSF: Workstation Function 

XML: Extensible Markup Language 

10 REFERENCES 
  

[1] Yechiam Yemini, Germán Goldszmidt, and Shaula Yemini. Network Management by Delegation. 
In The Second International Symposium on Integrated. Network Management, Washington, DC, 
April 1991. 

[2] N.Damianou, N. Dulay, E. Lupu, M. Sloman, “The Ponder Policy Specification Language”. 



Revised Specification of Case Study Systems   Page 98 of 110 

Copyright  2000-2003 FAIN Consortium  May 2002 

[3] “Principles for a Telecommunications Management Network”, ITU-T Recommendation M.3010. 

[4] FAIN Internal document, “PBNM architecture proposal” WP4-HEL-032-PBNM-ARCH-Int-v0.2 

[5] P.Martinez, M. Brunner, J.Quittek, F. Strauss, J, Schönwalder, S.Mertens, T. Klie, “Using the 
Script MIB for Policy-based Configuration Management” IEEE/IFIP Network Operations and 
Management Symposium 2002 

[6] Steve Jackowski, “Bury Policy Management!”, Deterministic Networks (September 1999) - 
http://www.deterministicnetworks.com/burypolicy.html 

[7] K.L.E. Law, A. Saxena, "UPM: Unified Policy-Based Network Management," in Proc. SPIE 
ITCom 2001, Vol.4523, pp.326-337, Denver, August, 2001 - 
http://www.comm.toronto.edu/~eddie/Papers/upm_spie_itcom2001.pdf 

[8] FAIN Deliverable 3 “Initial Specification of Case Study Systems”, May 2001 – http://www.ist-
fain.org 

[9] FAIN Deliverable 1 “Requirements Analysis and Overall AN Architecture”, May 2001 – 
http://www.ist-fain.org 

[10] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, " The COPS (Common Open 
Policy Service) Protocol", IETF RCF2748, January 2000 

[11] Emil Lupu, Morris Sloman, “ Conflicts in Policy-based Distributed Systems Management”, IEEE 
Transactions, November 1999 

[12] IETF “Policy Core Information Model -- Version 1 Specification”, RFC3060, Feb 2001 

[13] Internal FAIN document, WP4-UPC-003-R14-Int, “Management Components Design” 

[14] Matthias Bossardt, Lukas Ruf, Rolf Stadler, Bernhard Plattner: A Service Deployment 
Architecture for Heterogeneous Active Network Nodes. Kluwer Academic Publishers, 7th 
Conference on Intelligence in Networks (IFIP SmartNet 2002), Saariselkä, Finland, April 2002 

[15] Matthias Bossardt, Lukas Ruf, Rolf Stadler, Bernhard Plattner: Service Deployment on High 
Performance Active Network Nodes. IEEE Network Operations and Management Symposium 
(NOMS 2002), Florence, Italy, April 2002. 

[16] FAIN Document: WP4-ETH-001-I16-Int.doc 

[17] M. Bossardt, R. Stadler. Service Deployment on High Performance Active Network Nodes. TIK-
Report 122, Swiss Federal Institut of Technology (ETH), Zurich, Switzerland, September 2001 

 


