
Deliverable Title - Document Distribution

Copyright 2000-2003 FAIN Consortium May 2003

 Project Number: IST-1999-10561-FAIN

Project Title: Future Active IP Networks

D40

CEC Deliverable Nr: D40

Deliverable Type: PUB

Dissemination: Int

Deliverable Nature:

Contractual date:

Actual date:

Editor: Placi Flury, ETH

Workpackage(s): WP3, WP4, WP5

Abstract:

Keyword List: Scenarios, Testbed, Evaluation Framework

Deliverable Title - Document Distribution

Copyright 2000-2003 FAIN Consortium May 2003

Project Number: IST-1999-10561-FAIN

Project Title: Future Active IP Networks

D40

Editor: Placi Flury

Document No: D40

File Name D40.doc

Contributors: c.f. Authors Section below

Version: 1.0

Date: Wednesday, 14 May 2003

Distribution: WP3, WP4, WP5

Copyright 2000 – 2003 FAIN Consortium

The FAIN Consortium consists of:

Partner Status Country
UCL Partner United Kingdom
JSIS Associate Partner to UCL Slovenia

NTUA Associate Partner to UCL Greece
UPC Associate Partner to UCL Spain
DT Partner Germany
FT Partner France

KPN Partner Netherlands
HEL Partner United Kingdom
HIT Partner Japan
SAG Partner Germany
ETH Partner Switzerland

FhG/Fokus Partner Germany
IKV Associate Partner to

FhG/Fokus
Germany

INT Associate Partner to
FhG/Fokus

Spain

UPEN Partner USA

Deliverable Title - Document Distribution

Copyright 2000-2003 FAIN Consortium May 2003

The FAIN Consortium

University College London (UCL)
Josef Stefan Institute (JSIS)
National Technical University of Athens (NTUA)
Universitat Politecnica De Catalunya (UPC)
T-Nova Deutsche Telekom Berkom GmbH (DT)
France Télécom / R&D (FT)
Koninklijke KPN NV, KPN Research (KPN)
Hitachi Europe Ltd. (HEL)
Hitachi Ltd. (HIT)
Siemens AG (SAG)
Eidgenössische Technische Hochschule Zürich (ETH)
GMD Forschungszentrum Informationstechnik GmbH (GMD)
IKV++ GmbH Informations- und Kommunikationstechnologie (IKV)
Integracion Y Sistemas De Medida, SA (INT)
University of Pennsylvania (UPEN)

Project Management

Alex Galis
University College London
Department of Electronic and Electrical Engineering,

Torrington Place

London WC1E 7JE

United Kingdom

Tel +44 (0) 207 679 5738

Fax +44 (0) 207 388 9325

E-mail: a.galis@ee.ucl.ac.uk

Authors

Arso Savanovic (JSIS) Bernhard Plattner (ETH)

Chiho Kitahara(HIT) Cornel Klein (SAG)

Drissa Houatra (FT) Dusan Gabrijelcic (JSIS)

Elisa Boschi (FhG) Epi Salamanca (UPC)

Evelyn Pfeuffer (SAG) Juan Luis Manas (INT)

Lukas Ruf (ETH) Marcin Solarski (FhG)

Matthias Bossardt (ETH) Placi Flury (ETH) - Editor

Reiner Schmid (SAG) Richard Lewis (UCL)

Spyros Denazis (HEL) Thomas Becker (FhG)

Toshiaki Suzuki (HEL) Walter Eaves (UCL)

Yannick Carlinet (FT) Carsten Meyer (SAG)

Evelyn Pfeuffer (SAG) Reiner Schmid (SAG)

Deliverable Title Page 1 of 6

Copyright 2000-2003 FAIN Consortium May 2003

Table of Contents

1 INTRODUCTION... 1

2 FAIN FUNCTIONAL CONCEPTS ... 2

3 SCENARIO DEFINITION FRAMEWORK... 5

3.1.1 Scenario Building Block ... 5
3.1.2 Generic Application Scenario.. 6
3.1.3 Application Scenario... 6

4 CORE SCENARIOS .. 6

4.1 CORE SCENARIO MAPPING TO SBBS ...8
4.1.1 CS 1: Virtual Network Creation including Privileged Virtual Active Network Bootstrapping...... 8
4.1.2 CS 2: Flow and Data Path Creation for Service and User Communication...................................34
4.1.3 CS 3: Deployment and Instantiation of Services and Service Components.....................................48
4.1.4 Security Aspects of FAIN ..54

5 GENERIC APPLICATION SCENARIOS ..93

5.1 DIFFSERV SCENARIO ..93
5.2 WEBTV...95
5.3 WEB SERVICE DISTRIBUTION SCENARIO...101
5.4 VIDEO ON DEMAND SCENARIO...107
5.5 MANAGED ACCESS SCENARIO ..109
5.6 MOBILE FAIN DEMONSTRATOR...113
5.7 SECURITY SCENARIO..114

6 THE FAIN DISTRIBUTED TESTBED..116

6.1 ACTIVE NETWORK NODES (ANN) ...116
6.1.1 AN Node Type A...116
6.1.2 AN Node Type C...116
6.1.3 FAIN Network and Element Management Stations...116

6.2 NETWORK TOPOLOGY AND INTERCONNECTION...117
6.2.1 Testbed topology..117
6.2.2 Tunnel configuration...117
6.2.3 Partner Network Data /Properties..118
6.2.4 Domain Name service ...118
6.2.5 Sites overview...119
6.2.6 Monitoring tool ..119

7 APPLICATION SCENARIOS ..120

7.1 DIFFSERV SCENARIO ..120
7.1.1 HEL Test-bed Configuration..120
7.1.2 FHG Test-bed Configuration...121

7.2 SECURITY SCENARIO..122
7.2.1 Demonstration Objectives..122
7.2.2 Setup and Demonstration ...123

7.3 WEBTV SCENARIO ...123
7.4 WEB SERVICE DISTRIBUTION SCENARIO...124

7.4.1 Network Setup...125
7.4.2 Description of Demos..128

7.5 VIDEO ON DEMAND..138
7.5.1 Architecture/Setup...138
7.5.2 Network Setup...138

7.6 FAIN MOBILITY DEMONSTRATOR...139
7.6.1 Architecture/Setup...139
7.6.2 Network Setup...140

Deliverable Title Page 2 of 7

Copyright 2000-2003 FAIN Consortium May 2003

8 EVALUATION OF THE ARCHITECTURE AND IMPLEMENTATION...142

8.1 EVALUATION METHODOLOGY ..142
8.1.1 Templates and Representation...143
8.1.2 CLASSIFICATION OF THE FAIN COMPONENTS ...144

8.2 EVALUATION RESULTS..145
8.2.1 Flexibility ..145
8.2.2 Security..148
8.2.3 Interoperability...152
8.2.4 Openness ...155
Portability...156
8.2.5 Performance ...158
Performance ...158

9 CONCLUSIONS ..169

10 ACRONYMS ...170

11 REFERENCES ...172

12 APPENDIX – MOBILITY SCENARIO EVALUATION ...175

12.1 INTRODUCTION..175
12.2 FAIN MOBILE NETWORK DEMONSTRATOR: PRINCIPLE MECHANISMS..176
12.3 THE FAIN MOBILE TESTBED...178
12.4 FAIN MOBILE SCENARIOS...179
12.5 EVALUATION OF THE FAIN MOBILE DEMONSTRATOR...180

12.5.1 Evaluation Methodology...181
12.5.2 Evaluation Results...181

12.6 CONCLUSIONS AND RECOMMENDATIONS..182
12.6.1 Summary of the state of the art in active mobile networks research and development...............182
12.6.2 Future directions in active mobile networks research and development.......................................183

12.7 REFERENCES ...184

Table of Figures

FIGURE 3-1: SCENARIO DEFINITION FRAMEWORK MODEL..5
FIGURE 3-2: SEQUENTIALLY CONNECTED SBBS...6
FIGURE 4-1: EXAMPLE OF VIRTUAL ACTIVE NETWORK SETUP FOR TWO SERVICE PROVIDERS.9
FIGURE 4-2: SBB FOR VIRTUAL ACTIVE NETWORK SETUP ...9
FIGURE 4-3: DATA PATH CREATION SBB DECOMPOSITION..35
FIGURE 4-4: SERVICE CUSTOMIZATION SBB. ..42
FIGURE 5-1: DIFFSERV DEMONSTRATION SCENARIO ...93
FIGURE 5-2: WEB TV SCENARIO..95
FIGURE 5-3: PHYSICAL NETWORK ARCHITECTURE OF WEB SERVICES. ..101
FIGURE 5-4: WEB CACHES, CONTENT DISTRIBUTION SERVERS AND LOAD DISTRIBUTION SERVERS..........................102
FIGURE 5-5: SERVICE NODES AND REDIRECT SERVERS IMPLEMENT ACTIVE WEB SERVICES.......................................104
FIGURE 5-6: USE-CASE: CUSTOMER AND ACCESS PROVIDER...109
FIGURE 5-7: USE-CASE: CUSTOMER AND SERVICE PROVIDER..110
FIGURE 5-8: DEPLOYMENT : ACCESS NETWORK..110
FIGURE 5-9: DEPLOYMENT : BACKBONE AND DMZ..111
FIGURE 5-10: USE-CASE : ACCESS AND SERVICE PROVISIONING..112
FIGURE 5-11: ACCESS NETWORK OPERATIONS...112
FIGURE 5-12: NETWORK ELEMENT CONTROL..113
FIGURE 6-1:TESTBED TOPOLOGY ...118
FIGURE 6-2: NODES OVERVIEW ...119
FIGURE 7-1: DIFFSERV DEMONSTRATION SCENARIO ...120
FIGURE 7-2: HEL TEST -BED CONFIGURATION..121
FIGURE 7-3: FHG TEST -BED CONFIGURATION..121

Deliverable Title Page 3 of 8

Copyright 2000-2003 FAIN Consortium May 2003

FIGURE 7-4: WEB TV MAPPED TO TESTBED...124
FIGURE 7-5: NETWORK TOPOLOGY USED BY THE DEMOS...125
FIGURE 7-6: GENERAL STRUCTURE OF A PROMETHOS DEMO ..126
FIGURE 7-7: NETWORK SET -UP FOR DEMONSTRATION AT FHG..127
FIGURE 7-8: NETWORK SET -UP FOR DEMONSTRATION AT JSIS...128
FIGURE 7-9: STRUCTURE OF DEMO1..129
FIGURE 7-10: STRUCTURE OF DEMO2 ...130
FIGURE 7-11: STRUCTURE OF DEMO3 ...131
FIGURE 7-12: STRUCTURE OF DEMO4 ...132
FIGURE 7-13: STRUCTURE OF DEMO6 ...134
FIGURE 7-14: NETWORK TOPOLOGY FOR VIDEO ON DEMAND SCENARIO..139
FIGURE 7-15: NETWORK TOPOLOGY USED BY THE DEMOS...140
FIGURE 7-16: STRUCTURE OF DEMO2 ...141
FIGURE 8-1: EVALUATION MODEL FOR FEATURES AND PROPERTIES. ...142
FIGURE 8-2: REFERENCE MODEL FOR OPERATIONAL PLANES AND LEVEL/LOCATION LAYERS................................143
FIGURE 8-3: TWO LEVEL EVALUATION TEMPLATE FOR PROPERTY TYPES...144
FIGURE 8-4: DEMUX TEST SYSTEM...159
FIGURE 8-5: SYSTEM DIAGRAM FOR DEMULTIPLEXING EVALUATION..160
FIGURE 8-6: BLOCK DIAGRAM OF THE DEFAULT DATA TRANSMISSION...160
FIGURE 8-7: TOPOLOGY FOR EVALUATION MEASUREMENT..162
FIGURE 8-8: NETWORK FOR PERFORMANCE MEASUREMENTS...166
FIGURE 8-9: EVALUATED COMPONENTS...166

Table of Tables

TABLE 8-1:– CLASSIFICATION OF THE FAIN COMPONENT S..144
TABLE 8-2:- TABLE FOR FLEXIBILITY PROPERTY TYPE..145
TABLE 8-3: - TABLE FOR SECURITY PROPERTY TYPE...149
TABLE 8-4:- - TABLE FOR INTEROPERABILITY PROPERTY TYPE...152
TABLE 8-5: - TABLE FOR OPENNESS PROPERTY TYPE..155
TABLE 8-6: - TABLE FOR PORTABILITY PROPERTY TYPE...156
TABLE 8-7: SPECIFICATION OF THE PACKET SENDER...159
TABLE 8-8: SPECIFICATION OF THE ACTIVE NODE..159
TABLE 8-9: SPECIFICATION OF THE SENDER NODE ...160
TABLE 8-10: SPECIFICATION OF THE FLOW THAT IS 5KBYTE LONG DATA...161
TABLE 8-11: SPECIFICATION OF THE FLOW THAT IS 1KBYTE LONG DATA...161
TABLE 8-12: SPECIFICATION OF THE FLOW THAT IS 2.5KBYTE LONG DATA...161
TABLE 8-13: BOOTSTRAPPING MEASUREMENTS...164
TABLE 8-14: NMS MEASUREMENTS...164
TABLE 8-15: EMS-SANTANA MEASUREMENTS...165
TABLE 8-16: EMS-KUBRICK MEASUREMENTS...165
TABLE 8-17: PROMETHOS MEASUREMENTS...166

Deliverable Title Page 1 of 9

Copyright 2000-2003 FAIN Consortium May 2003

1 INTRODUCTION
This document presents the effort of the FAIN project in defining application scenarios that reflect the
novel functional concepts of FAIN and that support the evaluation of the work done in FAIN. It is a
refined version of the deliverable D9, providing detailed information about the FAIN evaluation effort,
while D9 has been written to convey a reasonably concise presentation of the same material.

Our approach is the following: First, we elaborate on the concepts introduced and used in FAIN.
Second, we define application scenarios that reveal and demonstrate these concepts; these scenarios
are thereafter used to qualitatively validate the concepts, matching them to the facilities offered by
FAIN.

The document is isomorphic to this approach. The first chapter is dedicated to the FAIN concepts. In
order to deduce scenarios from the concepts, a scenario definition framework has been designed and is
described in chapter 3. The framework permits reusability of functionality by following a component-
based approach. The components, called Scenario Building Blocks, allow for the specification of
arbitrary scenarios. The scenario definition framework provides the abstraction needed to define
scenarios focusing on the concepts they embody rather than a specific implementation in a specific
network topology. This method of abstraction is comparable to the one found in programming
languages, where one differentiates between declarations and instantiations. After defining the abstract
scenarios (called generic application scenarios) they are mapped onto the infrastructure provided by
FAIN: The Fain testbed, consisting of the FAIN active network nodes, management stations and
supporting servers and repositories. An executable scenario (showing all the details of the
implementation, as needed for actually executing a demonstration of such a scenario) is called an
application scenario. To validate the relevance and usefulness of the FAIN concepts, an extensive
evaluation framework has been defined. The purpose of the evaluation framework is to assess whether
the key properties identified in the FAIN architecture documents (flexibility, security, interoperability,
openness, portability and performance) are actually fulfilled. This chapter 8 will allow the reader to
assess the quality of the design and implementation of the FAIN technology. Appendix 1 contains
detailed evaluation of the FAIN Mobility demonstrator

Deliverable Title Page 2 of 10

Copyright 2000-2003 FAIN Consortium May 2003

2 FAIN FUNCTIONAL CONCEPTS
Looking back at the original project objectives as described in the Technical Annex (TA), we find that
although they are still valid as general objectives, we can clarify and refine them as a result of
experience gained during the project. We can also map the main objective onto a number of few more
manageable objectives. We therefore rephrase our overall objective as follows:

To develop Active Network architecture oriented towards service deployment and execution in
heterogeneous networks.

From this overall objective the following sub-objectives result:

1. Design and implement an AN node that is dynamically extensible and simultaneously supports
different types of technologies and communities.

2. Design and implement a platform independent approach to service description and deployment.

3. Achieve Network Interoperability for service execution.

4. Increase the pace of standardization.

5. Design and implement a Policy-based Network Management Architecture suitable for the global
management of active networks: it should be not only capable of delegating management
functionality but also management responsibility to multiple authorities.

The FAIN project has originated a number of innovative concepts in order to achieve these objectives.
It is these concepts that we need to identify here and explain in what sense they meet our objectives.

Creating Virtual Environments as part of Virtual Networks Creation

A series of Virtual Environments (VEs) has been established across an Active Network as part of the
Virtual Network topology proposed during the Service Level Agreement (SLA) negotiation. The VEs
also include admission control of the virtual network: resources are reserved and/or released and a
number of node interfaces are instantiated and exported that allow VE clients to access and control
their own partition; a common format for resource profiles and policies that are used for enforcement
and configuration of the node, are also included in the VE.

Here, by creating VEs as part of the same Virtual Network, we provide different communities with
their own resource space, from a single physical infrastructure, by which to deploy and use services in
their own way. In this way objective 1 is partly achieved.

Resource Control for hard Resource Partitioning

Policing, resource partitioning, authentication and authorization are operations that are supported by
the Active Node. Security makes sure that packets from different VEs are not mixed, and VE flows
stay within their contract as defined by their SLA etc.

Resource control makes sure that the infrastructure is shared fairly among the different customers,
while making sure that they are fully isolated from each other. Isolation involves the cooperation of a
number of components in the network such as security, resource managers and policers etc. This is
another contribution to the achievement of objective 1.

Deployment of different Types and Instances of EEs

A number of different types of Execution Environments (EEs) are available for example Java EE,
Kernel based EE (PromethOS), SNAP (Active SNMP). These EEs run in different operational planes
namely Transport and Control plane. The EEs must be deployed before the service components can be
deployed within them.

In order to justifiably claim platform independent deployment of any given service, Active Service
Provision (ASP) identifies which EEs are required to host which service components. The Active
Node embodies the necessary mechanisms for EE deployment, and for the deployment of the service
components. In some sense this is technology deployment followed by service deployment.

Deliverable Title Page 3 of 11

Copyright 2000-2003 FAIN Consortium May 2003

With technology (EE) deployment mechanisms the network is programmed to behave as required for
any given service, so meeting objective 1 and indirectly objectives 2 and 3.

Creating and Operating Component-based EEs

The Active Node incorporates a component-based data path creation capability, implemented in a
variety of ways to a single specification. A specific service comprises several components deployed
and linked in meaningful ways. Flexibility in the network is achieved through the availability of
different types of EE (component-based), and a variety of components.

By means of enabling technologies like Network Processors or Java VM we build EEs that can accept
a service in the form of linked components that, in turn, may be introduced at different times. Defining
and implementing these types of EE we are able to increase the degree of flexibility while allowing
new functionality to be dynamically introduced. In this way we increase the pace of standardization
thereby achieving objective 4 (speedier standardization) and objective 1 (extensibility).

Interoperable Infrastructure

With the need to deploy a service across different EEs and different platforms, the Active Service
Provision system (ASP) identifies the different implementations of EEs and collaborates with VE
manager to deploy the service components. The ASP performs these functions, using in combination
two of the Active Node concepts previously identified (i.e. Deployment of different Types and
Instances of EEs, and Creating and Operating Component-based EEs) to build (deploy) an
interoperable infrastructure. In this way objective 3 is achieved.

Creation of a new VN Management Domain as Part of the VN Creation

New VN management domains are created as a pre-requisite for VN creation. This concept actually
concludes the cycle of VN creation.

Use of new VN Management Domain to manage Services and Resources

Simultaneous operation of two different management domains to manage their own services, possibly
using different policies that are only meaningful by the corresponding domain. This concept also
includes requirements such as customized monitoring for each domain, and a variety of Resource
Monitoring systems (RMs) that may be installed and used to achieve specific objectives.

 ASP Specification and Deployment

A service suitable for the scenarios must be described here that demonstrates the ASP functionality
and combined with concepts 3 and 4.

Tuning the Active Network for maximizing Performance

Maximal performance can be achieved with an intelligent combination of the different platforms
available. According to the type of Active Node (within FAIN, Type A & Type C nodes) the right EEs
are deployed to maximize gains through performance and flexibility tradeoffs. By using the EE and
service component deployment mechanisms an Active Network substrate that is tuned for achieving
the desired gain can be created. This may involve Control and Transport plane EE collaboration as
part of the same service. For instance, a service provides a network API that is implemented by means
of distributing parts of it in a control EE and a transport EE. The control part of the service running in
the control EEs (distributed across different platforms Type A and Type C) configures the transport
plane functionality either by controlling the resources of the nodes and/or by introducing additional
functionality (service components)

Using Active Networks for Policy Distribution

The use of active packets for distributing policies provides a higher degree of flexibility to the FAIN
management system and demonstrates that the system takes advantage of active technology also for
management tasks.

Deliverable Title Page 4 of 12

Copyright 2000-2003 FAIN Consortium May 2003

Simple fault management functionality

The idea should be to demonstrate some simple fault management functionality. Functionality such as
alarm filtering or correlation is clearly unrealistic for the actual deadlines.

Network-level deployment mapping

The deployment process at the network level includes finding a target environment (a set of nodes/EEs
which are most suitable for the service deployment) and a mapping: service components to the
corresponding EEs.

Concepts (3) and (4) deal with the deployment of multiple service components and their interactions.
Finding an optimal target environment is also important when deploying a service. This is the core
functionality of the network ASP.

Active Network Upgrades

A deployed service has to be redeployed and replace the service previously deployed.

Active Networks promise extendibility. As the service evolves and new (better) versions are available,
the services deployed on active nodes have to be replaced. After an active service is deployed, it may
be the case that it needs to be upgraded for some reason (malfunctioning, a better service variant
available)

Deliverable Title Page 5 of 13

Copyright 2000-2003 FAIN Consortium May 2003

3 SCENARIO DEFINITION FRAMEWORK
In order to define expressive scenarios, a framework, called scenario definition framework is
introduced. As depicted in Figure 3-1 the framework consists of three layers. The lowest layer holds so
called Scenario Building Blocks (SBBs), which are used for building the Generic Application
Scenarios shown on layer two. The last layer represents the Generic Application Scenarios. Those are
instances of the Generic Application Scenarios.

Figure 3-1: Scenario Definition Framework Model.

The framework provides transparency and abstraction on the upper layers and guarantees component
reusability at the lowest layer. Implementing different Application Scenarios does therefore not result
in individual implementations of per se identical functional concepts.
The functional concepts instead, are broken down to basic functionality that is expressed and
implemented as SBBs. The requirements of an Application Scenario (better Generic Application
Scenario) need to be mapped to the corresponsive SBBs only.

3.1.1 Scenario Building Block
As mentioned previously a SBB expresses and implements elementary functionality of FAIN
concepts. The SBB specifies the functional aspects of those elementary subcomponents, the
interactions among them and the conditions they depend on.
SBBs are defined for reusability. They often depend on other SBBs. Their functionality should
therefore not overlap.
SBBs make up a Generic Application Scenario by sequential interconnection. An example for the
interconnection is given in Figure 3-2. In order to keep the SBB specification simple, nested
combinations of SBBs are not allowed.

SBB
SBB

SBB

SBB

SBB SBB

Generic Application Scenario

Application Scenario

Instantiation

Abstraction

Configuration Interconnection

Deliverable Title Page 6 of 14

Copyright 2000-2003 FAIN Consortium May 2003

Figure 3-2: Sequentially Connected SBBs.

Typically SBBs rely on conditions or status they expect, in order to be able to perform correctly. Upon
correct execution an SBB leaves a proper state that other SBBs are relying on. The definition and
identification of SBBs therefore, always includes those pre- and post conditions.

3.1.2 Generic Application Scenario
From a bottom up perspective, a Generic Application Scenario consists of interconnected SBBs, each
contributing with elementary functionality, to the overall functionality of the scenario. The Generic
Application Scenario declares however, similar to an object declaration in programming languages,
the functional scope and purpose of a scenario. This enfolds the FAIN concepts it is going to show, the
premises it requires (in terms of hardware and software requirements), the protocol the scenario
follows etc. Note, the Generic Application Scenario does not make assumptions that specify
ascertained entities as its premises (e.g. like a specific testbed). The determination of the role of
ascertained entities in the scenario is done by the Application Scenario. Using the analogy of objects
in programming languages again, the Application Scenario is the instantiation of the Generic
Application Scenario.

3.1.3 Application Scenario
As told the Generic Application Scenario is a theoretical and logical definition of a demonstration, i.e.
of a scenario. In order to become a presentable demonstration it needs to be translated to a physical
environment, which is the testbed, with its different sites and nodes, in FAIN. The mapping of the
Generic Application Scenario to an Application Scenario consists in associating the logical entities
and roles that have been identified and specified in the Generic Application Scenario to physical (and
logical) entities and locations of the active network. The Application Scenario specifies the
participating entities, the responsibilities and the protocol of the demonstration.

4 CORE SCENARIOS
To alleviate the identification of all the necessary SBBs for the intended generic application scenarios
we make use of simplified ‘mini’ scenarios called core scenarios. The core scenarios are not part of the
scenario definition framework. However, they represent our way to start with braking down
functionality to basic and reusable components for scenario definition. Three core scenarios are used
for that purpose. Each refers to the concepts and objectives it reflects.

Security aspects of FAIN are handled in an overall way. They have therefore not been associated to a
particular core scenario, but are instead, since they apply equally to all core scenarios, discussed
separately.

 CS1: Virtual Network Creation including Privileged VN Bootstrapping

CS1 is one of the most important of the core scenarios as it requires the collaboration between the
different work packages as well as different components within the individual work packages. It is
obvious that the generic scenarios rely on the SBBs resulting from this core scenario for the
instantiation of the SP’s VN.
SP requirements are submitted to the portal of the ANSP in the form of arguments. This enfolds also
the request for the creation of VNs, resulting in the bootstrapping of the Privileged VN (Privileged
VEs + ANSP management domain + ASP.
Following stages for the realization of CS1 have been identified:

• Admission Control

During this stage the ANSP checks the availability of the resources in order to admit the SP’s VN.

SBB 1 SBB 2

Deliverable Title Page 7 of 15

Copyright 2000-2003 FAIN Consortium May 2003

• VN Activation and SLA Enforcement by means of policies

After successful admission the ANSP registers the new VN across the network nodes that are part of
the topology. It enforces the SLA by configuring components like the security component for
authentication and authorization enforcement, resource managers for resource enforcement etc. Part of
this stage is also the configuration of routing tables so that packets that belong to a certain VN flow
within the topology of the VN. Furthermore, we also need to include policers to enforce an SLA and
make sure that the SP stays within his contract. Such policing mechanisms belong to the ANSP and
keep the different service providers isolated from each other.

• A minimum number of flows

• VN instantiation must include the creation of a number of initial flows that are required for the
communication among the management entities of the newly created SP management domain.
Additional flow creation may happen at another occasion when services are deployed.
Privileged VN Bootstrapping

During the bootstrapping stage the Privileged VE is created and the corresponding interfaces are
exported. Although this is the first step in realizing this core scenario it has also to go through all the
previous stages. The configuration may be carried out in a hard coded and automated way.

CS 2: Flow and Data Path Creation for Service and User Communication

After the creation of the VN and its corresponding management domain, the SP must be able to use
the assigned resources. One core functionality will be flow creation across the VN network by
configuring the corresponding virtual nodes, as well as data path creation that is used for processing
the flows. According to this scenario the SP management domain must create a policy, based on which
a flow is enforced and the VN’s resources are reserved. Before that, the corresponding ANSP RMs
must check if the request is authorized, it does not violate the SLA and finally carry out the request.
Note that part of a flow creation is the association with a number of resources (computational and
communication). These facilities are configured so that packets that belong to this flow are directed
through the proper EEs and service components. To carry out this important scenario we need a model
based on which we will implement the flow and data path creation concepts.

CS 3: Deployment and Instantiation of Services and Service Components

This core scenario involves the service description, deployment, and binding of the service
components inside an EE (deployed previously). It has network level (ASP) and node level aspects
(VEM). It is also associated with the created flows as it is obvious that these components will process
packets that belong to specific flows.

We start by making some assumptions for CS3:

• There is one source of the video stream. It emits video data with a given format. The format
does not have to be suitable for the network it is sent through.

• There may be a number of users interested in receiving the signal. The users can access the
active network at any of the edge points through a link defined by different parameters than
the core active network, like a limited bandwidth, worse communication reliability, etc.

• Format conversion is needed as the users can receive a format different from the one sent by
the video source.

• Conversion has to happen in the active network as the users use terminals with limited
processing power

Three variants of the scenario are proposed for further investigation:

Deliverable Title Page 8 of 16

Copyright 2000-2003 FAIN Consortium May 2003

1. The transcoder service consists of one service component that has to be deployed onto a most
suitable node. A group of users are interested in receiving the same video stream in the same
format. The location of all the users is known. The objective is to choose a target node so that only
one instance of the transcoder needs to be deployed for the group. The node has to provide ample
performance to deal with resource consumption of the transcoding process. As the user terminals
cannot handle multicasts, point to point connections are needed. To reduce the network traffic,
generated by the transcoder resending the data in the format suitable to the receivers, the target
node location should be selected so that the node is as close as possible to the group of users.

2. The transcoder service consists of two service components to deploy on two different active
nodes. The sender is an end user using limited capabilities of his terminal to send a video stream.
The video stream is to be received by a few of other end users connected to the network at
different locations. Their terminal processing capabilities are limited as well. For optimal data
transfer through a network, the signal needs to be converted into another format. The solution is to
install a distributed transcoder. One service component should be installed close to the sender of
the video stream and convert a video format that the sender uses into an intermediate format that is
most suitable to transmit in the network, i.e. be optimized to match the network traffic
characteristics. The other part of the transcoder has to convert this intermediate format into a
format most suitable for the video receiver. The latter component of the transcoder has to be
installed in a most suitable location as described in scenario a)

3. The transcoder service consists of data path and control service components. The components
have to be deployed on two or more active nodes. The data path component(s) are as described
given by CS2. The control component is the controller (known from the Barcelona demo) that has
to be deployed onto the node where the application and web servers are installed.

4.1 Core Scenario Mapping to SBBs

4.1.1 CS 1: Virtual Network Creation including Privileged Virtual
Active Network Bootstrapping

Setting up a virtual active network (VAN) for a service provider (SP) includes the creation of virtual
environments (VEs) on the appropriate active network nodes (ANNs) by the active network service
provider (ANSP) (see figure). Finding the appropriate ANNs involves the alignment of requested and
available resources. This implies that the ANSP has to configure its infrastructure. To carry out the
necessary steps the ANSP uses its management system. Once the ANSP knows which ANNs to set up,
it will try to make a reservation of requested resources and if they are available on all ANNs the ANSP
will then request their activation. Once all needed VEs are activated the ANSP will set up the default
routes to complete the setup of the VAN.

Deliverable Title Page 9 of 17

Copyright 2000-2003 FAIN Consortium May 2003

C1

C2

VE of ANSP VE of SP1 VE of SP2

Figure 4-1: Example of Virtual Active Network Setup for two Service Providers.

A special case is the setup of the privileged VAN owned by the ANSP. In this case there is no need to
calculate a VAN topology. When the ANNs are booted this includes the (automatic) creation of the
privileged VEs forming the privileged VAN.

Figure 4-2: SBB for Virtual Active Network Setup.

This chapter starts with presenting the scenario building blocks describing how a VAN is created from
the network perspective and then shift the focus to the scenario building blocks related to the creation
of a VE on a particular ANN.

SBB Calculate VAN
This building block describes how the ANSP calculates which of all ANNs of the topology will be
part of the VAN; it also identifies the corresponding profile and set up parameters of each of VE.

Pre-conditions

The Resource Manager of NMS must be up and running.

All of EMS and ANNs must be up and running

The NMS is also up and running

I assume that we only have one administrative domain, that is, only one NMS.

3list of
{node,profile,setup
}

4SLA

4User Identity

Calculate VAN

3report

4list of
{VEid,setup}

4VAN

Activate VAN

3list of
{VEid,setup,}

4list of
{node,profile,
setup}

4VAN Identifier

Create VAN

Deliverable Title Page 10 of 18

Copyright 2000-2003 FAIN Consortium May 2003

Post-conditions

The ANSP holds:

• List of tuples (node, profile, setup)

• VAN Identifier (An unique identifier associated to an unique SP)

• Identity of the owner of the VAN

Dependencies

This building block depends on

• SBB Boot Node

• SBB Boot EMSs

• SBB Boot Resource Manager

• SBB Boot NMS

Sequence Diagram

1. SP negotiates a SLA with ANSP.

Deliverable Title Page 11 of 19

Copyright 2000-2003 FAIN Consortium May 2003

2. The ANSP allocates the agreed resources, in the form of a VE to the SP. It introduces the
necessary information through the GUI offered by the FAIN Network Management System.

3. The Policy Editor component at the network level station receives this information and translates
it into a group of policies that should be enforced atomically. That is, either all policies are
enforced or none is. The policies that conform to the group are two: a QoS policy that creates a
VE and reserves the resources to it, and a Delegation policy that assigns access rights to that VE,
instantiates the VE, as well as creates a new Management Instance for that SP at the element level
to allow it to manage these resources.

The Policy Editor sends the policies from the policy group to the ANSP Proxy element at the
network level station, which based on the user information authenticates it and forwards policies
to the correct management instance, in this case the ANSP’s MI

4. The PDP Manager receives the policy group, stores it in the DB, and starts the processing of the
policies that conform to that group. It detects that the policies should be enforced in order and that
the delegation should be processed if the result of the processing of the QoS policies is correct.
Thus, it starts the processing of the QoS policy requesting to the Access Right Check Component
(Not shown) to check whether the sender of the policies (the ANSP) is authorized to introduce
such policies.

Once a positive reply is received, the policy is demultiplexed to the correct PDP component to
process that policy.

5. The QoS PDP will retrieve the policy from the DB.

6. Request to the Resource Manager, where in the network the resources requested by the SP can be
allocated.

7. With the information about which nodes are involved and since there are no conditions or actions
that need to be realized at the network level, the QoS PDP forwards the decision to the PEP. (Here
SBB Create VAN starts) QoS PEP will use all these information (nodes, QoS NL Policies, that is
information about resources required) and will translate it into the corresponding QoS EL policy
and send the policy into the EMS of the established nodes.

When the enforcement results of the QoS Policy arrive to the QoS PDP, it is forwarded back. The
PDP Manager will process it to decide upon the policy group processing.

Implementation Status

Right now the ANSP administrator, who uses the templates offered by the policy editor to generate the
NL policies needed for generating the VAN, does the mapping of SLA into a policy set manually.
Right now, there are only a few templates defined. Templates required for core scenario will be
implemented. There is also a proposal to implement some specific wizard, which will be in charge of
creating automatically policies from the SLA.

With respect the resource manager component it needs to be designed and implemented. Right now his
functionality has been hard coded.

Also exits a proposal for creating a VAN between two sites separated by more that one administrative
domain, which involves that there should exist a component in charge of INTERDOMAIN matters.

Subcomponents:

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

Policy Editor Helps the ANSP the
introduction of policies,
offering a set of templates,
which will be used by the
ANSP in order to generate
those policies he wants to

Define default wizards,
which automatically
generate policies from
data inserted by the
administrator.

D5

Deliverable Title Page 12 of 20

Copyright 2000-2003 FAIN Consortium May 2003

those policies he wants to
enforce.

Offers a panel with
information related to the
actual enforcement status
of the policy submitted.

Enhanced the way we
show information about
current policies already
being enforced on the
system.

ANSP Proxy Authenticate incoming
requests

Dispatch incoming
request to one of the
management instance
(PDP managers)

Mechanism of
authentication must be
implemented

D5

PDP Manager

Domain Manager Maintain a list of
domains already
installed on the
management station

If a new one is
required then it
dynamically extends
itself loading the
appropriate class and
creating a new
instance of it.

Interact with ASP in
order to trigger
deployment of new
code for the new
domain.

D5

Forward Controller Receives policy group
and process it
according to the
forwarding policy
defined.

 D5

Local Repository Stores policy and
returns an unique id,
which will be used by
other components to
retrieve policy stored.

Uses of a database. D5

Access Rights Check Checks if the sender of
policies is authorized
to introduce such
policy

Enhanced it D5

Deliverable Title Page 13 of 21

Copyright 2000-2003 FAIN Consortium May 2003

PDP

Semantic Policy Check Check if the policy
under evaluation is
going to enter in
conflict with any of the
others policies already
enforced in the system

The current version is
obsolete due to the fact
we have modified some
field of policies so it
must be upgrade!!

D5

Condition Interpreter The Evaluation engine
use it and making use
of monitoring system to
decide when a policy
should be enforced

Basic functionality is
done but it needs to be
performed and
enhanced

D5

Action Interpreter There is an action
interpreter for each
policy action. It
includes code, which
knows what to do in
order to collect all
information required,
which will be sent to
the PEP.

If new policy actions
are need then new
action interpreter
should be implemented.

D5

Monitoring System It is in charge of

gathering the state of
resources in a given
domain nodes in order
to provide the other
network level
components
(Delegation PDP,
QoSPDP, NL-Resource
Manager) with domain
wide resources
information, refreshed
at a time scale to be
dimensioned

D5

Resource Manager Hard coded Assess the resource
utilization information
that it has registered to
receive from the
monitoring system.
This evaluation will
drive short-term or
long-term decisions for
admission control,
traffic re-routing,
resource re-allocation

(It would be in charge
of find out the
appropriate nodes,

D5

Deliverable Title Page 14 of 22

Copyright 2000-2003 FAIN Consortium May 2003

which conform VAN)

It must be designed and
basic functionality
implemented.

SBB Create VAN
This building block is in charge of assuring that all resources, assigned to the SP, are available all
along the appropriate AN. All these resources are offered in the form of VEs.

Pre-conditions

The Service PEP (QoS PEP Instance) has been registered, deployed (in the pVE)

The Service PDP has been registered (QoS PDP instance) (It’s going to be deployed into the
Management Station)

Post-conditions

The NMS has received a report about the actual policy enforcement

The NMS, more exactly, the resource manager knows the mapping between VAN Identifier and VE
Identifier on all ANs of topology.

Dependencies

This building block depends on

• SBB Install Service Component onto a node (from CS3)

• SBB Install Service Component onto management station (to be discussed)

• SBB Boot EMS

• SBB Boot Node

• SBB Create VE

Sequence Diagram

Done at NMS:

Deliverable Title Page 15 of 23

Copyright 2000-2003 FAIN Consortium May 2003

1. (See step 7 of the last sequence diagram) with the information about which nodes are involved the
QoS PDP forwards the policy to the QoSPEP that will translate it into the corresponding QoS EL
policy

Done at EMS:

2. Send this policy into the EMS of the established nodes.

3. The QoS Policy received by the ANSP Proxy bases on the user information and is demultiplexed
to the policy adequate to the MI, in this case the ANSPs MI.

4. Inside the MI, the PDP Manager receives the policy, stores it in the DB, and requests the access
rights check for that policy and user. In case of positive answer, the PDP Manager demultiplexed
the policy to the QoS PDP.

5. The QoS PDP retrieves the policy from the DB, detects that the policy should be enforced
immediately, and for that reason forwards the decision about it to the PEP component which is
running inside the ANSPs VE (the privileged VE) of the active node.

6. The QoS PEP enforces the decision, creation of a VE, allocating resources required. To do that it
use the API offered by the ANN (Use of SBB Create VE). The enforcement result is sent back
through involved components to the NMS.

7. Here the SBB Active VAN starts.

Implementation Status

Done.

There is still one open issue to be discussed it’s about interaction between ASP and the management
system, how is management system going to contact with ASP in order to download new service. A
service which can be only a jar package with the code needed for interpret new policies, or a new
domain PDP, PEP. May be a first solution could be, only to download this code into the management
station in a well known directory, and one of the components used by the Domain Manager will be in
charge of, using the Class Loader, loads the class and creates a new instance. This component also will
be in charge of lifecycle of this code, I mean, release, delete, uninstall, and withdraw an instance.

Subcomponents

• At NMS:

o QoS PEP at NL

• At EMS:

o ANSP Proxy

o PDP Manager

o QoS PDP

• At ANN:

o QoS PEP

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

QoS PEP at NL Translate QoS NL
Policies into QoS EL
Policies.

 D5

ANSP Proxy See comments above See comments above D5

Deliverable Title Page 16 of 24

Copyright 2000-2003 FAIN Consortium May 2003

PDP Manager See comments above See comments above D5

QoS PDP Evaluate and Make
Decision

Subscribe specific events
on monitoring system,
scheduler

Process incoming event
from monitoring system,
scheduler

QoS PEP Enforce Decision using

SBB Create VE

Identify correct
parameters to create the
resource profile (What
RCF can do?)

Add code in order to
support signaling request

D5

SBB Activate VAN
This building block describes how the ANSP activates all appropriate new VE instances, which have
just been created. At the time of activation, the ANSP will also assign enough access rights for the SP
in the VE created to him. That is, ANSP will delimit the management functionality offered by the
Active Network Node to the SP VE in order to guarantee isolation of the management functionality
offered to that Service Provider. Therefore, the SP will not be able to manage other SP’s functionality,
and that others SP’s will not be able to manage the functionality owned by this particular SP.

Pre-conditions

All of appropriate VE are created and the ANSP holds a reference of them.

PEP Service is registered on the ASP (Delegation Instance)

PDP Service is registered on the ASP (Delegation PDP)

The Policy Forwarder Controller at NMS knows the status about the creation of VE Network, and it
has been successful.

Post-conditions

A VE Network has been activated and from now on the SP is allowed to use it.

A report with the result of VE activation is forwarded back to the NMS station through the involved
components.

Dependencies

This building block depends on

• SBB Install Service Component unto a node (from CS3)

• SBB Install Service Component unto management station

• SBB Create VAN

• SBB Activate VE

Deliverable Title Page 17 of 25

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

This scenario starts after the enforcement result of the QoS NL Policy arrives to the PDP Manager.

1. Since the enforcement of the QoS Policies has been positive in all nodes, the PDP Manager starts
the processing of the delegation policies requesting the check of the access rights for that policy
and user. After the positive reply the policy is forwarded to the Delegation PDP to be evaluated.

2. After Delegation PDP retrieves it from the DB and there are no conditions or actions to be
processed at the network level, forwards it to the PEP. Before, it contacts with the Resource
Manager in order to know which nodes are involved.

3. The Delegation PEP will translate the Network level into two element level delegation policies:
one for the assignation of access rights to the VE and activate it (VE activation). And the second
for the instantiation of the MI inside the EMS so that the SP can manage its resources. (Create
MI).
A policy set is created with them and submitted to the respective EMSs.

4. The Delegation policy group is received, again by the ANSP Proxy, which forwards it to the
PDPManager of the ANSP MI

5. The PDPManager receives the policy group, stores it in the DB, and starts the processing of the
policies that conform to that group. It detects that the policies should be enforced in order and that
the next delegation policy should only be processed if the processing of the first delegation policy
is correct. The first delegation policy in the one that causes the assignation of access rights for the
SP in the VE created to him, and at the same time, the activation of this VE.

After this policy is checked in the Access Rights Check component is dispatched to the Delegation
PDP to be evaluated.

6. The Delegation PDP detects it should be enforced immediately and forwards it to the Delegation
PEP running inside the privileged VE in the ANN

7. The Delegation PEP enforces the policy activating the VE using the API offered by ANN.: (uses
SBB Activate VE to activate the VE).

The result of the VE activation is forwarded back to the PDP Manager through the involved
components.

8. Here SBB Create MI starts.

Deliverable Title Page 18 of 26

Copyright 2000-2003 FAIN Consortium May 2003

Implementation Status

Done.

Subcomponents

• At NMS

o QoS PEP at NL

• At EMS

o ANSP Proxy

o PDP Manager

o Delegation PDP

• At AN

o Delegation PEP

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

Delegation PDP at
NMS

Evaluate and make
decision

 D5

Delegation PEP Translate Delegation NL
Policies into Delegation
EL Policies.

 D5

ANSP Proxy See comments above See comments above D5

PDP Manager See comments above See comments above D5

Delegation PDP Evaluate and Make
Decision

Subscribe specific events
on monitoring system,
scheduler

Process incoming event
from monitoring system,
scheduler

D5

QoS PEP at ANN Enforce Decision using

SBB Activate VE

Identify parameters to set
up correctly security
framework.

D5

SBB Create MI
This building block describes how the ANSP configures all of element management stations
responsible of the involved nodes, those on which the ANSP has already activated a VE for a SP,
allowing to the SP to manage its resources.

Pre-conditions

VE Network has already been created and NMS knows that.

QoS PEP component which is located on the EMS is running.

Deliverable Title Page 19 of 27

Copyright 2000-2003 FAIN Consortium May 2003

Post-conditions

A new “management instance” for this SP is created, where part of the functionality of the ANSP, i.e.
the PDP Manager is instantiated there as well as access to the monitoring system services. The
PDPMgr will allow the SP to dynamically extend its functionality on runtime in an automatic manner.
A report about the enforcement result is forwarded back to the NMS.

Dependencies

This building block depends on

• SBB Activate VAN

• SBB Install Service Component onto management station

Sequence Diagram

1. Since the enforcement of the first delegation policy has been positive, the PDP Manager starts the
processing of the second delegation policy that is, the policy is checked in the Access Rights
Check component and forwarded to the Delegation PDP.

2. Again, Delegation PDP detects it should be enforced immediately, thus it is forwarded to the
correct PEP. This PEP is running inside the management station since the configuration actions
should be realized here.

3. The enforcement of the policy causes the creation of a new Management instance, where part of
the functionality of the ANSP, i.e. the PDP Manager is instantiated there as well as access to the
monitoring services. The PDP Manager will allow the SP to dynamically extend its functionality
on runtime in an automatic manner.

The enforcement result is forwarded back to the NMS.

Deliverable Title Page 20 of 28

Copyright 2000-2003 FAIN Consortium May 2003

Implementation

Done.

Subcomponents

• At NMS

o QoS PEP at NL

• At EMS

o ANSP Proxy

o PDP Manager

o Dlg PDP

o ARC

o Dlg PEP

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

PDP Manager See comments above See comments above D5

Delegation PDP Evaluate and Make
Decision

Subscribe specific events
on monitoring system,
scheduler

Process incoming event
from monitoring system,
scheduler

D5

QoS PEP at EMS Enforces decision setting
up EMS. (ARC-Domain
Manager) It creates a
management instance for
SP.

 D5

SBB Boot Node
This building block describes how an active node is booted. Bootstrapping the privileged VN (owned
by the active network service provider, ANSP) is a special process. Because the VE management
infrastructure isn’t available at this point one has to rely on operating system support. For example,
scripts for starting the privileged VE can be included in the operating system’s boot procedure.

Boot Node

Deliverable Title Page 21 of 29

Copyright 2000-2003 FAIN Consortium May 2003

Pre-conditions

The software needed for the VE management has to be installed

• JAVA virtual machine

• VE management distribution

The appropriate start script has to be linked to the boot procedure.

Post-conditions

The privileged VE is running and the reference to its initial port (iComponentInitial) can be obtained
from a well known TCP port. This building block is parameterized with the node to contact.

Dependencies

None.

Sequence Diagram

boot procedure

pVE
1: start

2: initialise

1. The boot procedure starts the privileged VE (pVE) via a script.

2. The pVE initializes itself by loading the basic services (VE/EE management, security,
demultiplexing, traffic control, etc.). Finally the reference to the pVE’s initial port
(iComponentInitial) is made available at a well known TCP port.

Implementation Status

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

start script for
privileged VE

Starting the privileged VE
via script works fine.

Start script doesn’t
automatically run at boot-
time.

OS Manual

SBB Contact Node
This building block describes how an active node is contacted by a client. This involves getting the
reference to the privileged VE’s initial port.

This building block is parameterized with the node’s name.

Deliverable Title Page 22 of 30

Copyright 2000-2003 FAIN Consortium May 2003

Contact Node

node name

iComponentInitial of
priviledged VE

Exception
[failure]

[OK]

Pre-conditions

The privileged VE is running.

Post-conditions

The client holds a reference to the initial port of the node’s privileged VE.

Dependencies

None.

Sequence Diagram

client pVE

1: connect to TCP port

3: send IOR

2: read IOR

1. The client connects to a well known TCP port of the privileged VE (pVE).

2. The client reads the reference to the pVE’s initial port from the TCP connection.

3. The pVE sends the reference.

Implementation Status

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

privileged VE A client can obtain the
reference to the initial port
of the privileged VE from
a well known TCP port.

None. None.

Deliverable Title Page 23 of 31

Copyright 2000-2003 FAIN Consortium May 2003

SBB Access Port
This building block describes how a port of a component is accessed by a client. This involves the
authentication of the client.

This building block is parameterized with the component in question and the requested port.

Access Port

iComponentInitial

reference to port

name of port

Exception
[failure]

[OK]

Pre-conditions

The client holds a reference to the component’s initial port.

The client uses a valid port name.

Post-conditions

The client holds a reference to the requested port.

Dependencies

None.

Sequence Diagram

client
-component - :

iComponentInitial

1: accessPort (name, who)

-component- :
-port-

2: setup -port- for client

3: return refernce to -port-

1. The client requests access to a specific port at the component’s initial port by specifying the port’s

name and the client’s identity.

2. After checking the access rights of the client with the security context (not shown here) the
component sets up the requested port for the client.

3. The component returns a reference to the requested port to the client.

Implementation Status

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

iComponentInitial
implementation in Basic
Component

A client can request
access to a port by
specifying the port name
and the client’s identity.

The check for admittance
is performed but not yet
linked to the security
component. The security

D4

Deliverable Title Page 24 of 32

Copyright 2000-2003 FAIN Consortium May 2003

and the client’s identity.
After checking for
admittance the component
framework will create a
new client-specific
reference to the requested
port. When a particula r
reference will later be
addressed it will be
mapped to the original
client. Note that if a client
passes a reference to a
third party there is no way
to distinguish it from the
original client. A client
can explicitly stop using a
port so that the component
framework will invalidate
the reference. Otherwise
the reference stays valid
until the component
terminates. If a client
requests access to the
same port multiple times
it will always receive the
same reference.

component. The security
component will have to
maintain security policies
in order to accept or deny
requests for port access.

SBB Lookup Manager
This building block describes how a manager for a particular service (i.e. resource) is looked up by a
client. The client has to provide a description of the service’s template. The result will be a list of
identifiers of matching managers. The client can then use an identifier to request a particular
manager’s initial port.

This building block is parameterized with the environment in question (VE/EE) and the template
description.

Lookup Manager

iTemplateManager

iComponentInitial

template description

Exception
[failure]

[OK]

Pre-conditions

The client holds a reference to the iTemplateManager port of the appropriate VE or EE, usually the
privileged VE.

The client has set up a valid template description.

Deliverable Title Page 25 of 33

Copyright 2000-2003 FAIN Consortium May 2003

Post-conditions

The client holds a reference to the initial port of a matching manager.

Dependencies

None.

Sequence Diagram

client
-environment- :

iTemplateManager

4: return list of ids

2: findByDescription (description)

1: setup description
of -service-

6: getManagerInitial (id)

8: return iComponentInitial
of manager for -service-

3: lookup matching
managers

5: select id

7: lookup manager

1. The client sets up a description of the desired services. The description includes the service name,

version, and other fields. Fields other than the service name can be left empty if not of interest.

2. The client requests to lookup managers for services matching the specified description.

3. In the case of a virtual environment the VE searches its attached EEs, in the case of an execution
environment the EE checks its internal tables and additionally looks for a possibly running VE
manager to search its VE instances, too. With this recursive approach it is possible to search an
entire tree of VEs and EEs starting at the privileged VE which is the tree’s root.

4. The environment returns a list of identifiers of matching service managers.

5. The client selects one identifier.

6. The client requests the initial port of a manager specifying its identifier.

7. The environment looks up the appropriate manager. This is again done recursively whereas
caching of identifiers and references to managers during step 3 can be used to speed up the
process.

Implementation Status

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

iTemplateManager
implementation in
Virtual Environment
and (JAVA)Execution
Environment

The process of searching
through a hierarchy of
VEs and EEs works in
general.

In the case of a failure for
a particular VE or EE in
the hierarchy the whole
process might get spoiled.
This has to be made more
robust.

D4

Deliverable Title Page 26 of 34

Copyright 2000-2003 FAIN Consortium May 2003

SBB Create Instance
This building block describes how a client can create a component instance of a particular service. For
the creation the client can specify a resource profile which will be examined by the manager to check
the availability of resources.

This building block is parameterized with the manager which is used to create a new instance and the
corresponding profile.

Create

iComponentManager

ID of new instance

profile

Exception
[failure]

[OK]

Pre-conditions

The client holds a reference to the manager’s iComponentManager port.

Post-conditions

The client holds the identifier of the new instance.

Dependencies

None.

Sequence Diagram

client
-manager - :

iComponentManager

1: create (profile)

3: return id

2: examine profile
and create
referenced resources

1. The client requests the creation of a new component instance and passes a resource profile as

parameter. The content of the profile is specific to the kind of manager.

2. The manager examines the profile and tries to create (pre-allocate) all requested resources.

3. The manager returns the new instance’s identifier to the client.

Implementation Status

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

iComponentManager
implementation in
Component Manager
and various sub-classes,
i.e. Channel Manager,

Though the component
framework provides the
management of instances
and keeps track of their
profiles and their states

Other managers. D4

Deliverable Title Page 27 of 35

Copyright 2000-2003 FAIN Consortium May 2003

Security Manager,
Traffic Manager,
Virtual Environment
Manager, (JAVA)
Execution Environment
Manager

(created, activated) it is
the responsibility of the
specific manager to
implement the
examination of the profile,
the resource admission
control, and the
instantiation and deletion
of actual objects. This is
done for the basic
services: VE manager, EE
manager, demultiplexing,
and traffic control.

SBB Activate Instance
This building block describes how a client can activate a component instance of a particular service.
For the activation the client can specify an initial setup for the component instance. After the
activation the client can obtain a reference to the instance’s initial port.

This building block is parameterized with the manager which is used to activate the instance, its
identifier, and the initial setup.

Activate

iComponentManager

iComponentInitial

component ID

setup

Exception
[failure]

[OK]

Pre-conditions

The client holds a reference to the manager’s iComponentManager port.

The client knows the instance’s identifier.

The client uses valid setup parameters.

Post-conditions

The instance is activated.

The client holds a reference to the instance’s iComponentInitial port.

Dependencies

None.

Deliverable Title Page 28 of 36

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

client
-manager - :

iComponentManager

1: activate (id, setup)

3: return

2: examine setup
and activate
referenced resources

4: getInitial (id)

5: return iComponentInitial

1. The client requests to activate the new instance and passes an initial setup as parameter.

2. The manager examines the initial setup and activates the previously created resources. The
separation of creation and activation allows for a client first to create a number of placeholder
instances and only in the case of a full success to activate them.

3. The activation is done.

4. The client requests a reference to the initial port of the new instance.

5. The manager returns the reference to the initial port.

Implementation Status

See implementation comments for “SBB Create”.

SBB Configure Instance
This building block describes how a client can configure a component instance. Configuration is done
by setting properties of the component where a property is a pair of a name and a value.

This building block is parameterized with the component in question and the property.

Configure

iConfiguration

property

Exception
[failure]

[OK]

Pre-conditions

The client holds a reference to the initial port of a component.

The component supports the iConfiguration port.

The client uses a property valid in the context of the component.

Post-conditions

The component is configured.

Dependencies

None.

Deliverable Title Page 29 of 37

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

client -component-:
iConfiguration

1: addOrChangeProperty (property)

3: return

2: update
internal state

1. The client requests to add a new or change an existing property.

2. The component updates its internal state accordingly.

3. The configuration is done.

Implementation Status

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

iConfiguration
implementation in
Configurable
Component

The component
framework provides
support for “active”
properties – i.e. properties
that fire an event when
they change – through the
generic configurable
component. Subclasses
can override property
related methods to
implement specific
behavior.

None. D4

Deliverable Title Page 30 of 38

Copyright 2000-2003 FAIN Consortium May 2003

SBB Lookup VE Manager
This building block describes how a client is able to lookup the VE manager on a node. It is composed
by several other SBBs.

This building block is parameterized with the node’s name.

Lookup VE Manager

iComponentInitial of VEM

node

Exception
[failure]

[OK]

Pre-conditions

None.

Post-conditions

The iComponentManager port of the VE manager is returned.

Dependencies

This building block depends on

SBB Contact Node

SBB Access Port

SBB Lookup Manager

Deliverable Title Page 31 of 39

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

Contact Node

iComponentInitialof priviledged VE

node

Access Port

iTemplateManager of priviledged VE

Lookup Manager

iComponentInitialof VEM

Access Port

iComponentManager of VEM

"iTemplateManager"

*

{"VE Manager", ...}

*

*

"iComponentManager"

Exception

[failure]

[OK]

[failure]

[OK]

[failure]

[OK]

[failure]

[OK]

Implementation Status

See implementation comments for SBB Contact Node, SBB Access Port, and SBB Lookup Manager.

SBB Create VE
This building block describes how a VE is created on a node. It is composed by several other SBBs.

This building block is parameterized with the node’s name and a resource profile for the new VE.

Deliverable Title Page 32 of 40

Copyright 2000-2003 FAIN Consortium May 2003

Create VE

ID of new VE

node

profile

Exception
[failure]

[OK]

Pre-conditions

None.

Post-Conditions

The VE is created.

Dependencies

This building block depends on

SBB Lookup VE Manager,

SBB Create.

Sequence Diagram

Lookup VE Manager

iComponentManager of VEM

nodeprofile

Create

*

ID of new VE

Exception

[failure]

[OK]

[failure]

[OK]

Implementation Status

See implementation comments for SBB Lookup VE Manager and SBB Create.

SBB Activate VE
This building block describes how a VE is activated on a node. It is composed by several other SBBs.

Deliverable Title Page 33 of 41

Copyright 2000-2003 FAIN Consortium May 2003

This building block is parameterized with the node’s name, the ID of the VE (as returned by SBB
Create VE – not to be confused with the VN ID), and the initial setup for the new VE.

Activate VE

iComponentInitialof new VE

node

setup
ID of VE

Exception[failure]

[OK]

Pre-conditions

The VE was created before.

Post-conditions

The VE is activated.

Dependencies

This building block depends on

SBB Lookup VE Manager

SBB Activate

Implementation Status

See implementation comments for SBB Lookup VE Manager and SBB Activate.

Deliverable Title Page 34 of 42

Copyright 2000-2003 FAIN Consortium May 2003

4.1.2 CS 2: Flow and Data Path Creation for Service and User
Communication

This section introduces the first ideas on the interactions required in order to achieve the data path
creation scenario. It is focused on the interactions occurring at the network level mainly involving the
management system and the ASP, although eventually lead to node and node OS interactions. The
scenario building block approach has been used in order to simplify the descriptions, and reuse the
defined blocks in different core scenarios. The interactions have been categorized as pertaining to the
configuration, the data path creation or data flow creation phase.

Configuration

A data path establishment requires a previous definition of the restrictions that apply to the resources
involved in its creation. Such definition is usually performed as part of a service level agreement
carried out between a SP and an ANSP. The translation of these requirements into actual network
configuration is a mandatory step that must be fulfilled before any request is accepted.

The configuration process affecting the resources used along a data path involves several nodes and
should be therefore supervised and controlled at the network level management system. This process
is part of the initial VE configuration and has effect as long as the virtual network exists (unless we
consider a dynamic reconfiguration is possible).

Note that although this process does not actually create any data path, is a prerequisite to its creation.
The restrictions that apply to any data path should be specified in terms of the bandwidth assigned to
each available link and the existent topology paths (that is, the restrictions that apply to connections
with other nodes of the network)

Data Path Creation

An analysis of the situations that imply the creation of a data path make us come to the conclusion that
either the elements in charge of the service creation and the services themselves may request its
establishment.

In both cases, knowledge of the whole network status is required in order to select the path that better
meets the network management requirements. The network management system is in the best position
to provide this “network wide knowledge” and therefore, any request should be delivered to it. It also
makes sense to make the best of the delegation framework in order to provide the required scalability
in this approach.

The network level PDPs (in the best located management instance), cooperating with the RM and the
network level ASP, would perform the decision on the paths connecting the active nodes. They would
send the configuration policies to the network level PEPs, which in turn would be in charge to
translate them into data flow creation policies.

Data Flow Creation

The “instantiation” of a data path is supported by the creation of appropriate data flows between
adjacent nodes. This is an element level operation that is an element level responsibility. The existence
of privileged EE ports allowing the entrance of configuration information is a major requirement.

Although the PDPs at the element level make the decision on the final data flow parameters based on
information retrieved from the node, it is the element level PEP who actually performs the method call
to the EE (no request to the privileged VE is required since the resources were already assigned in the
previous phase).

It is the responsibility of the EE management component to perform the required configuration of
internal node components, such as the multiplexer, through the available interfaces.

Deliverable Title Page 35 of 43

Copyright 2000-2003 FAIN Consortium May 2003

SBB Data Path Creation
This SBB describes the creation of a data path. A data path is defined as the path followed by
information data within the network in order to be processed as part of a requested service. It
comprises the service points, where the data is actually processed, and the connections between those
points. The data path definition is closely related to the data flow concept, which is described as an
unidirectional stream of packets that have some common attribute(s) (such as source, destination, or
protocol [1]). In an active network, the IP packets will also receive a specific service depending on the
data flow they belong to. Thus, additional attributes specifically related to the active network may also
characterize the data flow.

In order to simplify the description of the SBB, the scenario has been decomposed into the sub-SBBs
that are shown in Figure 4-3.

 Figure 4-3: Data Path Creation SBB decomposition.

The diagram shows the SBB is initiated by a customer service request, and leads to the establishment
of a customized data path in the active network that provides the communication and processing
capabilities expected by the user. The contribution of the proposed decomposition is the separation
between the service deployment and service customization blocks. Such distinction results in an easier
approach to describing service configuration based on different user profiles1.

Under a TINA perspective, this SBB can be considered as part of the service access phase, preparing
the infrastructures required to render the service during the following service usage part.

Pre-conditions

• The Virtual Network associated to the SP is already created and configured.

• Service is realized, i.e. service descriptors and service components are ready to be retrieved
from service registry, and service repository, respectively. However, there is no need to
actually deploy the service before a user requests it.

• The service entry point is configured and already running. The configuration information
includes the location where service requests should be forwarded. In case the service provider
possesses his own management instance, such instance would become the recipient of service
requests.

1 In practice we are approaching the problem of rendering the service to several customers, using the same
service components with different quality and resource requirements.

Service Deployment SBB Customer Requirements
Translation SBB

Service Customisation SBB

Based on service
requirements
specified by the SP

Based on runtime
requirements
specified by the
Customer

Service request

Deliverable Title Page 36 of 44

Copyright 2000-2003 FAIN Consortium May 2003

• In case the SP manages his own virtual network, appropriate delegation policies have been
already deployed.

• A data path establishment requires a previous definition of the restrictions that apply to the
resources involved in its creation. Such definition is usually performed as part of a service
level agreement carried out between a customer and a service provider. The translation of
these requirements into actual network configuration is a mandatory step that must be fulfilled
before any request is accepted.

Post-conditions

• Service components have been instantiated on appropriate locations along the active network
and have been bound appropriately.

• Appropriate data flows have been set up.

• During the data path lifetime, the information coming on a data flow is identified and assigned
to a specific data path, so that it receives de local service and is sent to the new target
component.

• The mechanisms to survey the assigned resources have been set up. This surveillance is
realized based on the QoS policies previously established. The management system should
take over the responsibility of this mission, which might be delegated to the appropriate
management instance due to scalability reasons.

Dependency

The data path creation SBB relies mainly in three SBBs that are performed sequentially, namely:

• The service deployment SBB, which is only accessed in case the service, has not been
deployed yet. This SBB is skipped when the service already exists in the network, for instance
due to a previous service request. The service deployment is performed based on the
requirements specified by the service provider in the service descriptor. Its purpose is ensuring
the presence of every service related component in the network.

• The customer requirement translation SBB that includes the description of dynamically
obtaining the concrete data path QoS requirements from the customer service level
expectations.

• The service customization SBB, that comprises the service component deployment SBB and
data flow creation SBB, which are nested SBBs, and may also include additional
configuration operations.

Required Functionality of Involved Subcomponents

• The PDPs and PEPs should provide a transactional deployment of policies.

• The SCE should be able to provide new graphs dynamically, based on changing requirements.

• The portal should turn into a complete service access point. Further cooperation with the
management system is required in order to control service request admission.

Activity Diagram

This section presents a diagram that depicts the dependencies and coordination between the different
scenarios building blocks involved in the data path creation. It should be noted that this diagram
approaches the out-band data path configuration mechanism.

Deliverable Title Page 37 of 45

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

Whenever a service request arrives to a service entry point, it is adapted and forwarded to the specified
service provider management instance (1). The QoS PDP2 at the network level is requested to make a
decision on the request admission. It is the PDP responsibility to ensure the existence of an appropriate
data path before admitting the request.

As an initial step, the PDP checks for conflicts with the existing QoS policies3 deployed by the service
provider (2). If a conflict is found, the request is rejected (3a). Otherwise, the PDP retrieves all the
translation rules available for the specified service (4) and submits them together with the policy to its
subordinated PEPs (4), which in turn perform the requirement translation process assisted by the
resource manager and network ASP. As a result, the requirements for each of the data path elements
are obtained. At this time, such requirements are hold in a data path descriptor.

The data path descriptor is delivered to the service customization SBB as part of its input information
(5). According to it, this SBB will locate and enable appropriate resources, being also responsible for
initiating the node-level data path creation SBB.

2 Unless explicitly said, we will use just the term PDP when referring to the QoS PDP.
3 Originated from the SLA.

Deliverable Title Page 38 of 46

Copyright 2000-2003 FAIN Consortium May 2003

Implementation Status of Involved Subcomponents

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

- Network Level PDP Conflict Checking for
request admission.

- Policy Database Retrieval of policies. Query-based searching
capabilities.

- Management System Appropriate QoS policies
for the transcoder service
have to be defined.

Define the scope of the
SLA for the transcoder
service.

SBB Requirement Translation
The purpose of this SBB is to obtain the requirements associated to the data path elements (either
service points or connections between them), from the service needs specified by the customer. These
requirements will be included in a data path descriptor.

The data path descriptor represents a complex structure that provides all the required information to
instantiate and configure the data path elements. Part of the information contained in the structure can
be generated from static sources such as the service descriptor, which defines the required service
components, the order in which these components should be traversed, and the customer service
needs. The rest of the description can only be obtained at runtime, based on the resource availability,
and is therefore out of the scope of this SBB4.

4 The process of obtaining the runtime information is further described in the Service Customisation SBB.

Deliverable Title Page 39 of 47

Copyright 2000-2003 FAIN Consortium May 2003

Therefore, the data path definition is performed in two steps: initially, static information is obtained
from the service quality requirements. Then, this information is compared against runtime restrictions
to obtain the actual data path definition. This SBB is centered in the first phase, being in charge to
adapt or translate the high level service requirements into low-level, component oriented requirements.

The static information that can be directly obtained from the service descriptor includes:

• Data path Graph type.

• List of component types that form the data path.

• In the case of a sequential data path graph, the order in which each type of component should
be traversed. For example, each service point would specify the following one.

• In the case of an arbitrary data path, for each service point a set of possible following service
points should be specified.

Additionally, we would need to obtain the particular QoS parameters that are applicable to the links
between components and the components themselves. These parameters would be translated from the
overall QoS expected by the customer, following a list of rules defined for each type of element. The
QoS policies defined by the SP are checked to ensure the acceptability of the service request.

The requirement translation is be performed in two phases: in the first phase, the initial requirements
are distributed between the different resources according to the service specification. The result is a
list of resources which are associated to the considered parameter. Each of the resources is assigned a
relevant parameter value5. In the second phase, each parameter is translated into actual configuration
values. For example, the considered bandwidth may imply different buffer lengths or queue priorities
in the node.

The resulting QoS policies are specified at different levels of abstraction, ranging from the element
level policies to the parameter-value configuration list sent to the devices.

As it is explained in the sequence diagram section, the generation of QoS policies is a required step to
ensure the correctness of the data path descriptor and is closely interlaced with its production.

Pre-conditions

• The policies generated from the customer-service provider SLA have been deployed into the
management system.

• Appropriate requirement translation rules have been defined for the relevant parameters on the
service elements.

• The requested service level fits to the SLA. The service provider management instance
performs this initial process by checking for conflicts with the currently deployed QoS
policies. Note that this might be not enough to make a final decision on the admission process.
Such process is successful only when an appropriate data path has been actually found.

Post conditions

• The QoS and service configuration policies have been generated from the service
requirements by the management system.

• The dynamic part of the data path descriptor, containing the resource requirements has been
fulfilled.

5 For example, a thread priority may be influenced by bandwidth demanded by the client.

Deliverable Title Page 40 of 48

Copyright 2000-2003 FAIN Consortium May 2003

Required Functionality of Involved Subcomponents

• The Network Level PEPs should provide a translation engine able to use translation rules on a
per-service base.

• A concrete protocol for MS-ASP interaction should be designed.

• The ASP should be able to request topological information to the management system,
whereas the management system should offer an interface to retrieve this information.

Sequence Diagram

During the requirement translation process, the network level QoS PEP receives the translation rules
available for an specified service (1) and uses its translation engine to create the element level QoS
policies and the dynamic part of the data path descriptor that refers to the service requirements, based
on the requested QoS level (2).

The network level QoS PEP is also in charge of distributing the element level policies to the
appropriate locations. In order to find such locations, the network level PEP makes use of the static
part of the data path descriptor, which is obtained from the ASP under demand (3). In this process, the
PEP includes the previously obtained requirement information into the data path descriptor and returns
it to the network level ASP (4), which should be able to fulfill the information regarding the
component location within the network6 (5). Note that this information is not valid yet, since the ASP
can not be sure that the currently deployed service components and the links between them can
actually offer the requested service level.

The validation of this data path descriptor by the management system is essential before
acknowledging the correctness of the data path graph. The status flag related to each service element
listed in the data path descriptor should be marked as “in progress”.

6 The way the ASP obtains the location information is out of the scope of the data path creation SBB. It should
be described as part of the service deployment SBB.

Deliverable Title Page 41 of 49

Copyright 2000-2003 FAIN Consortium May 2003

Implementation Status of Involved Subcomponents

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

Network level PEP policy translation Dynamic policy
translation at the network
level.

Network level ASP Storage of updated
service topology.

Protocol to request
topological information to
the management system.

Topology description
format.

MS-ASP Concrete structure of the
data path descriptor.

interface to exchange data
with the MS.

SBB Service Customization
The purpose of this SBB is to locate and enable appropriate resources according to the data path
descriptor. Figure 4-4 shows the SBBs that will be considered as part of this block. The adaptation of
the service to the customer needs, received in the form of data path requirements may involve the
deployment of service components in new locations of the network and always results in the
assignment of resources to the customer.

Deliverable Title Page 42 of 50

Copyright 2000-2003 FAIN Consortium May 2003

Figure 4-4: Service Customization SBB.

Additionally, the SBB should also define the runtime parameters of the data path descriptor. This
process will be performed in different ways depending on the data path graph type. The general case is
that in which each service point and the order they are traversed is known in advance and remains
fixed during the service lifetime. A particular case occurs when the next service point is decided
depending on the result of the data processing. In this situation, a set of available service points might
be defined for each of the service points themselves.

The service customization is a progressive process. We can assume that the restrictions (in the form of
static information included in the data path descriptor) will guide the process of locating the best
service components and routes available. The produced data would be included in the descriptor as
runtime fields (for example, the data flow descriptors).

When it was not possible to locate a component that fulfills the QoS requirements, the deployment of
specific service components on new locations may be ordered7. As part of the deployment decisions,
an assessment of the interconnection resources is required, implying knowledge of the network status8.

As a result of the translation process and the subsequent customization process, a set of QoS policies
guaranteeing the acceptable quality levels are also deployed in the management system.

Pre-conditions

• The service is already deployed in the active network.

• The low level requirements for each service element have been defined, based on user needs.

Post-conditions

• There exists a data path that fulfils the customer expected service level.

• Per-customer service-related QoS policies have been deployed into the management system.

Dependencies

• Deployment and instantiation of service components.

• Node-level data path creation SBB

Sequence Diagram

7 If supported by the ASP, the reconfiguration of the service may be also requested.
8 The ASP and NMS would collaborate in order to solve this situation, which is part of the service component
deployment SBB.

Service Customization SBB
Based on runtime
requirements
specified by the
Customer Service Component

Deployment SBB

Node-level Data path
Creation SBB

Deliverable Title Page 43 of 51

Copyright 2000-2003 FAIN Consortium May 2003

Based on the information provided by the network level ASP, the QoS PEP at the network level
selects the location of the element level PDPs to whom it should deliver the obtained QoS policies.
The policies are then delivered to these locations, where the service components are running (7), in a
transactional deployment mode.

The transactional deployment of policies is a two-phase mechanism for ensuring policy consistency
across a set of remote locations in a distributed environment. In the first phase, the policies are sent to
the locations where they should be enforced. In the second phase the policies are activated, but only
when there is a commitment that they can be actually enforced in every location. Otherwise, a rollback
procedure is performed, and the policy deployment fails.

The PDP at the element level makes the necessary translations and delivers the low-level configuration
rules to the element level PEP (8), which in turn tries to enforce the policies(9). Based on the
acknowledgements (or positive reports) received by the element level PDPs, the network level PEP
fills the status field of acknowledged components in the data path descriptor with an “able” flag.

Whenever a policy cannot be enforced due to a lack of resources, a policy deployment error report is
sent by the element level PEP to the element level PDP (10), which reports the error to the network
level (11). The report includes enough information to identify the offending component within the
network. This information is reflected in the data path descriptor by setting the status flag to “unable”.

Deliverable Title Page 44 of 52

Copyright 2000-2003 FAIN Consortium May 2003

The network level PEP engages a dialogue with the ASP, requesting the deployment of a new
component, of the same type that the offending component and in a location fitting the requirements
available in the current service descriptor9 (12). Remember that at this time, the data path descriptor
holds information about the components whose locations are suitable, so the ASP knows the available
components and can process a new graph for the service. The ASP is responsible for deploying the
component, filling the data path descriptor with the new location information and returning it to the
management system (13).

The management system then sends the corresponding policies to the new locations in a transactional
deployment mode. Normally, at this time the deployment should succeed, but in the case a new error
appears, the process would be repeated (14).

Once a positive acknowledgement has been received from every element level entity, the data path
descriptor can be considered completed (15). At this point, the element level PEP initiates the node-
level data path creation SBB, using the received configuration information to customize the
component in every location and actually bind the data flows to the data path.

9 The service descriptor should include at this time the information regarding which service elements (either
components and links) are able to deliver the requested service level.

Deliverable Title Page 45 of 53

Copyright 2000-2003 FAIN Consortium May 2003

Implementation Status of Involved Sub-components

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

Network level ASP Dynamic deployment of
new components based
on requirements.

Network level PEP Forwarding deployment
mode.

Transactional policy
deployment.

SBB Data Flow Creation
The purpose of this SBB is to set up the data flows required to send data across an active network,
while at the same time the data is allowed to be processed at specific points within such network.

The creation of a data flow requires the establishment of appropriate routes in each network node
included in the data path. In practice, this means the insertion of routes in the routing table and
additional EE demultiplexing information.

For this purpose, the data path descriptor will be interpreted as a low level policy which is enforced in
the active node by appropriate PEPs. The enforcement implies the modification of the routing tables10,
the configuration of the demultiplexer or the assignment of ports in the EEs.

The descriptor information regarding the service component order may be used to decide the following
point to send this low level policy, providing a decentralized means to create the data flows.

Using simple management elements inside the active node we get a flexible way of creating the data
path hop by hop.

10 Based on the data flow descriptors.

Deliverable Title Page 46 of 54

Copyright 2000-2003 FAIN Consortium May 2003

SBB Data Path Creation in PromethOS
This SBB describes the download, installation, and instantiation of service components onto a specific
active node in the PromethOS/Linux kernel space.

This SBB starts when the VE Manager request the creation of a VE, EE, together with the instantiation
of service components from PromethOS.

The code modules are subsequently installed and instantiated.

This SBB stops when all the code modules are instantiated.

Pre-conditions

• VE is operational

• VE is connected to appropriate wrappers

• Kernel is ready for PromethOS, i.e. the running has the required hooks available.

• Service Components are available as code modules on the node.

Dependencies

• VE management SBB

Post-conditions

• VE is created in kernel space

• EEs are instantiated in kernel space

• Service components are loaded, instantiated and inter-connected

• Service-part in PromethOS is operational

Deliverable Title Page 47 of 55

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

createVE

attachSequence

createSequence

loadComponent

createEEfailure

failure

failure

failure

failure

not
finished

not
finished

not
finished

not
finished

not
finished

finished

finished

finished

finished

running

finished

activateSequence
failure

finished

Implementation Status of Involved Subcomponents

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

PromethOS Instantiation of 1 EE Instantiation of N EEs

Identification of VE

Instantiation of N VEs

D4

PromethOS wrappers Adaptation to VE
Management

Deliverable Title Page 48 of 56

Copyright 2000-2003 FAIN Consortium May 2003

4.1.3 CS 3: Deployment and Instantiation of Services and Service
Components.

 SBB Service Deployment
This SBB starts when the Node ASP manager is requested to deploy a service. Service descriptors are
fetched from the service registry and dependencies resolved based on the node capabilities. Code
modules are fetched from the service repository.

The code modules are subsequently installed and instantiated.

This SBB stops when all the code modules are instantiated.

Pre-conditions

• VE is created.

• Service is released, i.e. service descriptors and service components are ready to be retrieved
from service registry, and service repository, respectively.

• Network level mapping of service is determined, i.e. nodes running service components are
identified.

Dependencies

• Service release SBB

• VE creation SBB

• Network level service deployment SBB

Post-conditions

• Service components (simple implementations) are installed and instantiated on a specific
node.

• An IOR is returned that allows accessing and configuring the service components.

• Binding information for service components is known by the service creation engine.

Sequence Diagram

Get service
descriptors

Parse service
descriptors

Dependencies
?

Fetch service
component

implementations

Install service
components

Return IOR

yes
no

Choose service
components

Implementation Status of Involved Subcomponents

Deliverable Title Page 49 of 57

Copyright 2000-2003 FAIN Consortium May 2003

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

Node ASP manager Receives service
deployment request from
network ASP manager

 [4]

Service Creation Engine Determines required
service components

Extracts EE types of
service components

Determine
interconnection of service
components

Interface with node Mgmt
framework?

Code Manager

Service Registry

Service Repository

SBB Retrieve Information related to Service Deployment
This SBB describes the retrieving of service information.

Pre-conditions

• Service is released in the network

Dependencies

None

Post-conditions

• SP’s part for service deployment is completed

Required Functionality of Involved Subcomponents

Activity Diagram

Specify Service Descriptor +
additional Service Requirements

Retrieve Network-wide Service Descriptor
from the Network Service Registry

.

Deliverable Title Page 50 of 58

Copyright 2000-2003 FAIN Consortium May 2003

SBB Processing of Information Related to Service Deployment
This SBB describes the preprocessing of service information.

Pre-conditions

• Network-wide Service Descriptor and additional Service Requirements (optional) are
specified.

Dependencies

Retrieve information related to service deployment SBB

Post-conditions

• Resource Requirements of each Service Component are identified.

Required Functionality of Involved Subcomponents

Activity Diagram

Parse Network-wide Service Descriptor (Split into topological
and node-wide criteria for each service component)

Parse additional Service Requirements (Split into topological and
node-wide criteria for each service component)

Check for
Incosistency

Back to SBB Information
RetrievingFailed

Prepare a set of topological and
node-wide requirements respectively

Successful

SBB Mapping
This SBB describes the mapping process of service requirements to available resources.

Pre-conditions

• Resource Requirements of each Service Component are identified.

Dependencies

None

Post-conditions

• Two lists of best candidates are produced:

• Fulfilling topological types of requirements, and

• Fulfilling node-wide types of requirements.

Required Functionality of Involved Subcomponents

Deliverable Title Page 51 of 59

Copyright 2000-2003 FAIN Consortium May 2003

Activity Diagram

Compare desired Set
with a resource set

Put the better matching set on
top of a "best candicate" list

More resource sets to
be compared left?

Yes

No

SBB Evaluation
This SBB describes the evaluation of the results of the mapping process.

Pre-conditions

• The mapping process is finished.

Dependencies

Post -conditions

• An assignment of each Service Component of a service to a node, on which it is to deploy, is
determined. In certain cases, service components cannot be mapped onto the available
resources.

Deliverable Title Page 52 of 60

Copyright 2000-2003 FAIN Consortium May 2003

Activity Diagram

Merge topological and
node-wide candidate lists

Generate a list of service components "bound" to
specific nodes needed for service deployment

SBB Component Installation
This SBB describes the download, installation, and instantiation of service components onto a specific
active node.

This SBB starts when the Node ASP manager is requested to deploy a service. Service descriptors are
fetched from the service registry and dependencies resolved based on the node capabilities. Code
modules are fetched from the service repository.

The code modules are subsequently installed and instantiated.

This SBB terminates when all the code modules are instantiated and installed.

Pre-conditions

• VE is created.

• Service is released, i.e. service descriptors and service components are ready to be retrieved
from service registry, and service repository, respectively.

• Network level mapping of service is determined è nodes running service components are
identified.

Dependencies

• Service release SBB

• VE creation SBB

• Network level service deployment SBB

Post-conditions

• Service components (simple implementations) are installed and instantiated on a specific
node.

• An IOR is returned that allows accessing and configuring the service components.

• Binding information for service components is known by the service creation engine.

Implementation Status of Involved Subcomponents

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

Node ASP manager Receives service
deployment request from
network ASP manager

Deliverable Title Page 53 of 61

Copyright 2000-2003 FAIN Consortium May 2003

Service Creation Engine Determines required
service components

Extracts EE types of
service components

Determine
interconnection of service
components

Interface with node mgmt
framework?

Current state
described in [1]

Code Manager Coordinates installation of
multiple instances

Triggers installation of
Components

Service Registry

Service Repository

SBB Instantiate a Service Component
This SBB describes instantiation of a service component in a given VE/EE running on an active node.

The functionality of the SBB can be seen one step in the service deployment process but can be also
used to manage the life cycle of the deployed service components.

Pre-conditions

Service component has been installed in the given EE.

Dependencies

Release Service SBB

Install Component SBB

Post-conditions

An instance of a given service component is created in the given VE/EE and a reference to the
corresponding runtime instance of

Required Functionality of Involved Subcomponents

Network and Node ASP components

Deliverable Title Page 54 of 62

Copyright 2000-2003 FAIN Consortium May 2003

Implementation Status of Involved Subcomponents

Subcomponent Name Relevant Current
Functionality

Required Implementation
/ Open Issues

Related
Documentation

Network ASP manager Receives service
deployment request from
network ASP manager

Mapping algorithm under
discussion

Deliverable 5

Service Creation Engine Determines the initial
configuration in terms of
required service
component instances on
the given node.

Determine
interconnection of service
components

[4]

Code Manager Coordinates instantiation
of multiple instances

Triggers instantiation of
Components

 [4]

Component Manager
(Node Management
Framework)

Performs instantiation [4]

4.1.4 Security Aspects of FAIN
As already mentioned at the beginning of this chapter, security has been identified as an overall
requirement of all core scenarios. This is the reason, why a separate section is attributed to security. In
the following section, the security aspects of FAIN are listed shortly. As done in the core scenarios
SBBs are deduced from the security aspects.

Security Area Interfaces

Security area interfaces are parts of the general blocks identified in the design phase of the security
architecture. Her are listed only interfaces that are available as public interfaces to other node
subsystems. At the moment this set is limited to few interfaces that are important for operation of the
node and security subsystem. Interfaces, that are available through Security Manager, are:

1. addPrincipal,
2. setPolicy,
3. authorize,
4. sendCheck,
5. receiveCheck.

Interface addPrincipal

This interface is exported so the principal can be registered on the node. It should be used during
create phase in the process of registering a VE, see section. The code behind the interface will be also
used in the SBB of authentication in the case of active packets, see section.

The input to the interface is a digital certificate that will be defined by JSIS.

The principal related secure store or possibility to define principal alias as defined in section are
neglected at the moment.

Deliverable Title Page 55 of 63

Copyright 2000-2003 FAIN Consortium May 2003

Interface setPolicy

The set policy interface is provided so the VE/service/component/port policies can be defined by a
management entity. The interface is called by SID (component identifier), policy and name. tSysName
relates to the naming issues on the node.

Interface authorize

Authorize interface is available to other system components and it is called by node enforcement
engines like RCF manager. It accepts two SIDs, of the subject (calling component) and the object
(accessed component) and environment of the call. At the moment environment of the call is the
trickiest part which is not yet defined in the document and will be fostered during the integration and
development process. Here environment relates to the older Thomas interface with component, port,
operation, tPropertyList.

Call returns a Boolean value.

Interface sendCheck

Interface sendCheck is unchanged from the last milestone release (I hope). Per scenario as defined in
section there is a need to define at least the dynamic way of passing the information about the next hop
node address from the DeMux to security. Other issue is iAnep Packet interface and treating of the
packet as a component to realize scenario in section.

Interface receiveCheck

Interface receiveCheck is unchanged from the previous milestone. There is an issue that was not able
to supply VE and ServiceId (EEID) values which is also a matter of ANEP packet definition. This is
done in the security area if not in, so the interface will change accordingly. Another issue is treating
the packet as a component and build from ANEP options its security context.

Authentication Engine SBB
The authentication engine SBB verifies the authenticity of active packets. It depends on

authentication data contained within an active packet and on crypto engine to do the necessary
cryptographic operations. This SBB consists of the subSBBs Active Packet and Creation Option
Building and Authentication in case of Active Packets.

Authentication engine provides both data origin authentication and session’s authentication. Active
packets are authenticated for their data origin and management connections sessions are authenticated
for the time of the session setup.

Active packets are authenticated per packet; such packets can pass many nodes so the proposed way of
the authentication is based on the use of the digital signatures. In this way only parts of the active
packet that don't change in the network can be authenticated. Proposed authentication doesn't provide
transaction property for the protected data.

Management connections to the ANNs are sessions, usually CORBA connections to the node. For this
type of the connection we propose use of the CORBA over SSL. User is authenticated once per
session (authentication of the client to the server, but should be possible also vice versa) and the
security context of the session is build in the same way as in the case of the active packets. To be able
to attach the established security context somewhere, some kind of session proxy (component) is
needed for each session. This proxy ``speaks for'' the entity in the connection and all security related
decisions are made based on this component security context.

To be able to establish the security context the identifiers of the principal (VE identifier and principal
attributes) should be available while setting up the connection (this means that the digital certificate
must contain both identifiers). In the active packet case the service identifier should be explicit in the
packet and also stated in the credentials.

Authentication on the node is explicit in the context of active packets or uses protocol like SSL to
provide proper authentication of principal and data.

Deliverable Title Page 56 of 64

Copyright 2000-2003 FAIN Consortium May 2003

 Active Packet Signing and Credential Option Building SBB
The goal of this SBB is to sign an active packet and build the credential option. For the signing one of
the principal private keys, stored in the principal secure store, is used. Digital signature covers the
active packet payload and the credential option itself.

To be able to validate so generated signature the credential option is build that points to a
corresponding public key of the key pair, to which belongs the private key used to compute the
signature.

We have planned three possibilities to point to a public key in D4 [6]: X.509 certificates, X.509
attribute certificates and Keynote credentials. To this we are adding another option that is easy to
implement and is very straight forward; the public key is identified by its cryptographic hash of the
length of 128 bits. Solution is similar to that planned for use in the case of Keynote credential; in this
case we have in the credential instead the name of the principal directly public key. Also in this case
this public key will be replaced with a hash of a key as a unified name of a principal. For getting a
public key from it’s ``name'' same approach will be designed for both cases.

Active packet is signed at the originating node or intermediate node like a gateway. Signing is
triggered because the active service (principal) is sending the packet (originating) on the principal
node or it is signed by the node because the node responds with a replay; replay can be also an error
message if any. These messages are both service specific; it remains open question if they are signed
by the node or principal. First case is tricky because the node can be fooled to sign the message that it
doesn't understand. This requires further study and service experience.

For signing to take place we have two options: first, that the signing is triggered by (De)Mux itself and
second that the signing is triggered by an active service alone. As designed in D2 [5] the
authentication is mandatory for active packets, so all packets must be digitally signed and their data
origin is authenticated on the basis of the digital signature. To ease the development, the signature will
be added by the Security subsystem during the sendCheck function call made by.

We are working on solutions that can ease the D2 requirement, for example like treating separately
control and transport plain regarding the authentication.

Signing an active packet has to be treated in the same way on the client and network node. Important
question here is where to gather needed data for active packet header including the building of
credential option(s). It would be the right thing in this context to treat the active packet as a
component. During the creation of the packet we could set the security context of the created packet
included with the pointer (principalId) to the principal credentials. Technically iAnepPacket interface
should treat only ANEP header options as defined in FAIN; payload and variable option should be
transparent (byte streams) at this level of abstraction. It remains open who is responsible to add an
serviceId to the packet payload if we agree that the serviceId can be stored there. Information from the
security context can be used to build the following ANEP options transparently: VE, ServiceId and the
credential option(s). Still needed information for hop-by-hop protection is then next hop node address
or list of addresses. The interface between (De)Mux and security changes then slightly in the way that
it invokes the interface with a reference to the component (packet) and the next hop destination.

Pre-conditions

Principal (or system entity) has to be defined on the node. A principal or a node has to have at least
one valid key pair which has to be stored in the principal Secure Store. Service that originates active
packets has to be started and its security context has to be defined.

Post-conditions

Build credential option with the digital signature.

Dependencies

SBB depends on:

Deliverable Title Page 57 of 65

Copyright 2000-2003 FAIN Consortium May 2003

• Building of the Security Context SBB.
• Get principal credentials related information SBB.
• Get principal related secure store SBB.
• Interface definition between and SEC.
• Availability of iAnepPacket interface.

Sequence Diagram

Deliverable Title Page 58 of 66

Copyright 2000-2003 FAIN Consortium May 2003

Authentication in the case of Active Packets SBB
Authentication of data origin is done with digital signature mechanism. The SBB follows the
description and sequence diagram of authentication in D2 [5]. If there are many authenticators in the
packet (credential options) the procedure has to be repeated for every authenticator.

authenticate, fetchCredential, verifyCredential, validateSignature and resolve are Security subsystem
local functions and are as such marked with a *. authenticate is entry level function for authentication
engine. fetchCredential fetches the referenced credentials in the credential option from remote server.
verifyCredential assumes verifying credential (including possible certification path), validateSignature
validate digital signature of the active packet in the credential option, see [5] and [6], and resolve
resolves information in the credential (principal identity and attributes). verifyCredential includes also
signature validation, not shown in the above diagram of the signatures in the certificates of the
possible certification path. From the verified credential (possible after verifying certification path)
principal related public key is obtained. With this key we validate the signature in the credential
option.

Procedure is repeated for every credential option in the packet.

Pre-conditions

A signed active packet (with a credential option) as described in the previous SBB. Demultiplexing
subsystem is initialized and running.

Post-conditions

Authenticated active packet on the node.

Dependencies

Possible dependencies on external services like certification authority, network services for obtaining
principal public key certificates (DNSSEC, LDAP) etc.

SBB is dependent on common interface between Security area and Demultiplexing.

Deliverable Title Page 59 of 67

Copyright 2000-2003 FAIN Consortium May 2003

Dependency regarding other SBBs:

1. sign active packet SBB,
2. Resolve SBB.

Sequence Diagram

Authentication of Sessions SBB
Sessions are defined as communication between usually a client and a server which last for short
period of time. Sessions are connection-oriented end-to-end on going communication between two
entities.

At the beginning of the session peer entities are authenticated (client to a server and/or server to a
client) what is called peer entity authentication. After authentication, entities can exchange a session
key and use symmetric cryptography with keyed hash to provide data confidentiality and integrity
service for exchanged data thereafter for the time of a session. Most used protocols for protecting
sessions are SSL or TLS. SSL is also preferred protocol for protecting CORBA based communication
services.

SBB plans to use CORBA over SSL for authentication.

Pre-conditions

CORBA implementation with SSL support.

Post-conditions

Authenticated entity for time being of the session connection to the node.

Dependencies

Depends on granularity of CORBA over SSL. Each entity that wants to manage the node should be
connected to the node over separate session even in the case that more than one entity is connecting to
the node from a single management station.

Deliverable Title Page 60 of 68

Copyright 2000-2003 FAIN Consortium May 2003

Depends on the following SBBs:

1. Resolve SBB.
Sequence Diagram

Security Manager SBB
Accepts request from enforcement engines, collect request related credential information, accessed
object policy information and ask authorization engine for authorization decision. This decision is
passed back to enforcement engines. It provides NodeOS interfaces for managing AN users related
credentials and security policies.

Security manager is the core of the node security services. It exports the majority of the security area
interfaces related to credential database, policy database and authorization engine and manages
communication with those two databases and authorization engine. Besides is responsible for labeling
decisions and building the security context of the components in the system.

The basic design decisions for security manager were: separation of the application and policy,
separation of authorization decision and authorization decision enforcement, possibility of having
multiple authorization engines (for example basic one and keynote with more expressive policy),
general authorization decision mechanism.

The security manager should provide: ability to clearly separate users and services on the node,
additional fine grain policies for access to certain node resources like file, memory region or
interfaces, default policies if there is no specific one available, list of past decisions, caching of
authorization decisions.

Security Context

All decisions that the Security Manager make are based on the security contexts of the subject
accessing the object, possible cached authorization decisions and environment of the access. These
decisions represent a part of state information of the system.

Security context represents all basic information about the component that is needed to perform
various security related operations.

Security context of a component is setup during the service start up. Security context is defined
currently with the following parameters: principalId, VEId, ServiceId, component capabilities,
component policies and audit vector. The security context of the component is attached to the
component with a SID; SID is a component secure identifier which is opaque to the rest of the system.
Security context is hold exclusively in the Security Manager and it is interpreted in it only. Security
context, service start up and VE start up are presented in the figure below.

Deliverable Title Page 61 of 69

Copyright 2000-2003 FAIN Consortium May 2003

Structures:
SID points to a component security context
principalId points to principal data
VEId Virtual Environment Identifier
ParentVEId parent VE Identifier
ServiceId service Identifier
PolicyId points to component related policy
Capability Component capabilities
Audit Audit vector

Security context structures in detail

SID
Opaque pointer to security context

Security Context

PrincipalId

Points to principal related data which is stored in the credential manager,

VEId

Points to Virtual Environment security related data, mainly VE identifier,

ParentVEId

Parent VE Identifier, which is assigned at VE start up from the security context of the
starting component,

ServiceId

Identifier of the service on the node. Points to service related data structure, which
contains service name, service code modules data and their related security information.
Needs to be aligned with ASP,

Deliverable Title Page 62 of 70

Copyright 2000-2003 FAIN Consortium May 2003

PolicyId

Policy identifier, which points to policy data. Data type defines policy authorization
engine to be used in the process of providing an authorization decision. In policy data is
also a list of required capabilities to access the component. These capabilities are
evaluated in the capability engine. Polices has to be defined in advance and can be
supplied via the management system or dynamic through a packet,

Capability

List of component capabilities, supplied together with a service code modules or service
descriptor.

Audit vector

Audit vector defines which decisions (denied or allowed) are audited to which audit
channel.

Creating a SID SBB
This SBB describes the process of creating a SID. For our purposes the SID is a 32 bit random
number. Other design issues are neglected at the moment.

Pre-conditions

Security manager is started. All other components get a SID from the security manager.

Post-conditions

Unique SID is generated for every component.

Dependencies

Depends on unique meaning.

Needs to be random and fast.

Activity Diagram

Deliverable Title Page 63 of 71

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

Labeling SBB
This SBB describes the labeling process. The components that implements a service are labeled during
the service start up with the label of particular VE and ServiceId. getServiceId() in the sequence
diagram creates the ServiceId if the ServiceId is not defined already.

Pre-conditions

Security Manager is started. Component (or service) that starts a new service should be labeled and
started.

Post-conditions

Label component in the context of certain services.

Dependencies

Many unresolved issues, especially with the starting points of the system. Problems between service
and component at start up. Problem is that we know when the component is initialized but not when
the service is.

Sequence Diagram

Deliverable Title Page 64 of 72

Copyright 2000-2003 FAIN Consortium May 2003

Transition SBB
Transition SBB is used only in the case of VE start up (activation). Current VE creation SBB assumes
two steps in VE creation: create, which is aimed at resource reservation and principal definition and
activate which actually starts iComponentInital in the name of the principal. Transition is related to the
activate phase, when the component (parent) is starting a component with different VEId than it is its
own. At that moment, as can be seen in figure below, if the authorization decision permits the
component security context is relabeled and also principal data is set to the VE owner data.
Association with the principal is related to the create phase; at that stage the principal has to be
associated with the VE that he will own. create and activate are run by the parent principal (pVE).
After that every component created through the VEs iComponentInital is automatically labeled with
the VEId of the parent component except when the newly created component is transitioned.

Pre-conditions

Basic pVE services should be started. A component that can start a new VE has to be started and has
to hold a capability to start a new VE. Principal that will hold a VE has to be defined on the node
(assuming a create VE call, through profile, which defines also a principal VE resource box).

Post-conditions

iComponentInital which is labeled with the right VEId and ServiceId.

Dependencies

There should exists a mapping between a principal and VEId on the node.

SBB depends on the following SBBs:

• low level engine SBB,
• Capability engine SBB.

Transition SBB

Deliverable Title Page 65 of 73

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

Building of a Security Context SBB
Building of the security context is a crucial SBB because on the basis of this process the authorization
decisions are made. In general we can distinguish between four cases when to build a context: for
active packets, sessions to the node, for started components and transitioned components. All these
subSBBs should lead to the same data structure that is then used in access control decisions.

In the case of started and transitioned components the basic parts were already covered in the previous
SBBs. Such components can have also a policies attached which govern access to the component or
component ports. Audit ``policy'' can be also attached though is not at high priority at the moment.

Other two cases will be covered separately.

Deliverable Title Page 66 of 74

Copyright 2000-2003 FAIN Consortium May 2003

Pre-conditions

Security subsystem is running. pVE icomponentInitial is transitioned to default values. If there exists
component security policies (policy, capability) they are set during the security context setup. If the
component needs certain capability to access system services this capability is defined.

Post-conditions

Security context of a component is built.

Dependencies

Labeling of services depend on definition of services. Will try to define security components as a
service? The problem is that we want to separate with ServiceId basic services offered by the pVE or
any VE. Problem of small ASP component acting as resolver of the service descriptor and the
definition of the service start up.

• SBB add principal,
• SBB label,
• SBB transition,
• SBB set policy,
• SBB set capability policy,
• SBB set capability

Building of a security context of the active packet or a session is similar to the activity presented in
figures above. Security context should be build for every active packet or a session to a node. Both
cases are also similar so we will present in this SBB only the active packet case.

The information that we can build a active packet security context from has to be available in the
packet. At first there should be information that we can match the packet to the VE/service on the
node. VE and ServiceId should be explicitly stated in the active packet and also cryptographically
protected with integrity service provided by digital signature mechanisms as described in D2 and
D4 [6]. To get around initial problem, which sets these values, we require that these matching values
are also clearly stated in the principal credentials (these are signed by system entity you trust).

So the labeling in the activity diagram on figures above corresponds to setting up the VEId and
ServiceId values in the packet and verifying them is verifying their statement regarding the
information (attributes) in the principal credential.

Capabilities are matter of the internal system and should not appear outside the system (node). Finer
granularity of the access to the interfaces of some component that has certain capabilities or is
otherwise protected is achieved with the component/port policy. These policies are in general internal
matter of the principal (VE owner). The only requirement is that the policy type which defines the
authorization engine is registered together with proper engine on the node. This fact has to be checked
at the service start up, during policy setup, see SBB, section. Also for example the problem of active
code that needs certain capabilities (let’s say access to the routing table) has to be solved through its
programming environment (can be proxy component) that posses needed capabilities. This component
can be additionally protected with component/port policy.

Deliverable Title Page 67 of 75

Copyright 2000-2003 FAIN Consortium May 2003

PrincipalId is not explicitly mentioned in the building of the security context SBB. The association of
the principal in the presence of the VE identifier can suggest that the notion of the principal in the
context is irrelevant. This can be true for some components; in this case, for example in the service
start up the value of PrincipalId is only attached to the component security context. In the case of other
components, like those build in the case of sessions or active packets, the PrincipalId doesn't match the
VE owner and this principal information is used in authorization decision process and not that of the
VE owner. The distinction is also crucial in the case when a component can generate active packets;
the credentials, related to the principal, who will be attached to the packet through credential option,
are automatically got from the component security context. In this case the VEId can be related to one
principal and the PrincipalId can point to other set of credentials. To be able to handle all cases
transparently, we are using the same data structure in all cases.

Get Security Context by SID SBB
Getting a component security context by SID is a short SBB to complete the Security Manager SBBs.
Security Manager is responsible to extract from component security context authorization engine
relevant information and pass the information to the authorization engine. Based on this information
authorization engine makes an authorization decision. EngineId is just internal mapping between parts
of the security context and related authorization engine. Assumed to be predefined.

Pre-conditions Component is running and its security context was build. Component participates
either as subject or as an object in the process of providing an authorization decision.

Post-conditions

Part of component security context is available to security manager.

Dependencies

The SBB depends on SBB building a security context.

Activity Diagram

Deliverable Title Page 68 of 76

Copyright 2000-2003 FAIN Consortium May 2003

General Authorization Decision SBB
As discussed in the section there are three levels of authorization decisions. Primary there is one
related to the services and VEs and provide separation between them on the node, second related to the
capabilities and third related to the component/port policies.

Low level policy can be overwritten by capability engine decision. Finer granularity regarding access
from outside can be specified with component/port policy. Note that component/port policy cannot
overwrite low level policy.

Pre-conditions

Services are set up and running labeled or transitioned on the node. Needed capabilities and
component/port policies of the components implementing the service are set. Component or
component on behalf of the user (an active packet or a session) is accessing another component.

Post-conditions

Authorization decision about the access is provided and returned to the enforcement engine.

Dependencies

Depends on the following SBBs:

• building of the security context SBB,
• low level policies engine SBB,
• capabilities engine SBB,
• Component/port engine SBB.

Activity Diagram

Deliverable Title Page 69 of 77

Copyright 2000-2003 FAIN Consortium May 2003

Activity Diagram

Deliverable Title Page 70 of 78

Copyright 2000-2003 FAIN Consortium May 2003

Credential manager

Credential manager, when asked by security manager, searches credential DB and returns all
credentials that are relevant for a particular request, which is currently subject to authorization. It also
provides facilities for editing credential database, either manually by an authorized user, or
automatically, i.e. searches and downloads credentials from an external credential repository.

Some of the credential manager interfaces are exported via security manager like NodeOS interfaces.

Principal owns a VE. Security Manager is responsible for keeping the relation between the VEs and
principalIds.

Interfaces
createCredDB create new credential database
deleteCredDB delete credential database
storeCredDB store credential database
addPrincipal adds new principal to credentials database
removePrincipal remove principal from the credentials database
modifyCredentials modify existing users credentials
listPrincipals list registered principals on the node
searchPrincipal search principal by defined attribute
getCredentials get the principal related credentials
resolve resolve the principal related credentials

Exceptions
noSuchPrincipal addressed principal doesn't exist
principalExists principal already define on the node
resolveFailed process of resolving credentials has failed

Structures
Principal principal identity and attributes

Interfaces in detail

createCredDB

the interface is added among exported interfaces for the following reason; principal can have its
own credential database for its own definitions of a principal if allowed or negotiated.
Otherwise the functionality of the call is used implicitly when the privilege VE is instantiated.
So added principals are used only in the context of the VE and in the access control decisions
based on the service/component policy or decisions made in principal supplied software.
Credential databases of the principal are distinguished from node database on the basis of the
security context of a database.

deleteCredDB

this call deletes VEs credentials database.

storeCredDB

store credential database to a persistent storage.

addPrincipal

Interface adds principal to the principal database together with principal attributes. General
principal attributes can be access identity, group, role, clearance, audit identity, charging id etc.

Deliverable Title Page 71 of 79

Copyright 2000-2003 FAIN Consortium May 2003

It should be able to add the user to the credentials database in two ways: from the supplied
credentials (digital certificate) or with a call with certain parameters. Note that in the latter case
digital certificates and corresponding key pair can be needed for certain principal operation. In
the first case the digital certificate (for example X.509 or X.509 attribute certificate) has to have
defined principal attributes.

removePrincipal

Remove the principal

modifyCredentials

Modify principal attributes

listPrincipals

Return list of current principals

searchPrincipal

Search for a principal

getCredentials

Gets credentials from the remote location or local database for the named principal. This
interface is considered public because of the possible pull model (in contrast to push model as
assumed in addPrincipal interface). After this call the entity creating principal can call
addPrincipal. Interface should accept method of getting the credentials as an input.

resolve

Resolves principal related credentials got with getCredentials to identity, attributes and generate
credentials list.

Structures in detail

Current implementation will implement only few principal related attributes.

Principal

identity

Cryptographic hash of the user public key,

alias

User alias or human readable string,

attributes

Principal related attributes,

credentials list

List of the principal related credentials (digital certificates),

secure store

Points to the principal secure store.

While identity, attributes and credentials list can be result of the resolving process, the alias and secure
store are mainly intended for end host usage (though at least one principal on the each node will have
defined secure store).

Deliverable Title Page 72 of 80

Copyright 2000-2003 FAIN Consortium May 2003

Add Principal to Credentials Database SBB
This SBB adds the principal to a credentials database. Registered principals are stored and
authenticated and resolved principals are not if the settings on the node are set as such.

Pre-conditions

Credentia l database is already created on the node. PVE related software is already installed on the
node and operational.

Post-conditions

User is inserted together with extended attributes into the credential database on the node.

Dependencies

Credential database has to be presented on the node.

SBB depends on the following SBBs:

Resolve SBB,
General authorization decision SBB

Activity Diagram

Sequence Diagram

Deliverable Title Page 73 of 81

Copyright 2000-2003 FAIN Consortium May 2003

Figure 19: Inserting a principal into principal database

Removing Principal from the Credentials Database
This SBB removes the principal from the credentials database. As is shown on the figure we have
assumed that the removing of the VE is guided by the management on the node and that includes the
SBB of removing the principal.

Pre-conditions

All principal related components including VE (if principal owns a VE) should be terminated or
removed (persistent storage). Principal owned service descriptors and code modules should be
removed by ASP. RFC related principal policies should be removed.

Post-conditions

Principal is removed from the credential database.

Dependencies

ASP: removal of principal related service descriptor and his own code modules.

RFC: removal of the principal related resource policies.

Management: guide the process of removing of the VE. Termination of the running components and
returning of the resources to the node pool?

: removing principal related channels.

Deliverable Title Page 74 of 82

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

SBB Fetch Principals Credentials
SBB covers the process of fetching or getting principal related credentials from the remote store or
local node cache.

SBB Get Principal Attributes
The SBB covers the case when the already resolved credentials and attributes are required, like in the
case of general authorization decision, SBB.

SBB Get Credential Information
SBB covers the case when we need to get from principal credential (digital certificate) information
which will be used in the SBB of signing an active packet.

SBB Resolve Principal Related Credentials
SBB covers the cases when resolved credential information is available as in cases of authentication
for packets and sessions and registering the principal on the node by management entity. This
information is inserted into credentials database.

SBB Get Principal Secure Store
SBB covers the need to keep and get from somewhere the information about principal secure store
where principal keying material is kept. This information is highly sensitive so only selected
components will have access to this information. Used in the SBB of signing an active packet. If there
is more then one credential to build the credential option this information can be related to the
credential list.

Policy manager

Policy manager, when asked by the security manager, searches policy DB and returns all security
policies that are relevant for a particular request, which is currently subject to authorization. It also
provides facilities for editing entries in policy DB, either manually by an authorized user, or
automatically, i.e. download policies from a centralized policy server.

Deliverable Title Page 75 of 83

Copyright 2000-2003 FAIN Consortium May 2003

There are number of policies that can be evaluated in the process of providing authorization decision
and enforced on the node. In general policy type defines authorization engine. Policy types can be
MLS, DT or more flexible like KeyNote policies (flexible in a way that you can define multiple
different models with same policy language and single authorization engine). The policy should be
detached from application, so it should not be hard coded in the application.

There exist at least two levels of policies in the system. First are low level system policies that define
the default system behavior. The second level is policies that can be set by the principals that can start
the active services.

Low level policies enable us to separate principals and their services on the node. Low level policies
are set up during the labeling decision process that labels the service components (running processes
or threads) with principal, service and other identifiers. In the same manner all other system resources
which are needed for a service are labeled, like files etc.

Authorization decision on the basis of labeling is made in authorization engine and is defined as
separate engine from second level authorization engines. There should be a possibility for multiple
low level authorization engines.

Next level policies are defined as policies that can be set by principal starting the service. If these
policies are not defined default node policies should be applied. These policies are meant mainly for
``external'' service ports and service resources like file or memory region.

When starting a service the principal should define a policy who can access the service and who can
manage the service. While there can be many possible policy types and implementations the policy
type must have corresponding authorization engine available on the node which can provide
authorization decision.

Default policy for accessing the service ports is based on ACLs. Single ACL consists of various
groups and their privileges. Privileges are simple and defined as follows:

• r read

• w write

• x execute

• a append

Groups depend on principal in question and how the principal has organized his services. Needed
security services must be available on the node at advance; for example to do authentication and to get
validated entity attributes.

For example the service can be setup by principal which plans for this service two set of users: users
and managers. These two correspond to two groups with different privileges. Ports can be accessed for
example via CORBA over SSL; for this session the node has to be authenticated to the client and the
client to the node. Client credentials should have included suitable user’s attributes and clearly defined
principal name. On the other hand the suitable credentials can be included or referenced in ANEP
packet and packet data origin is authenticated for every packet and users attributes validated on every
node passed.

Till now we have defined two sets of policies: low level related to the VEs and services and general
policies which govern access to the components and/or ports. First separate services and VEs in
between and second provide fine grain principal access to the components or interfaces that those
components offer. While this can be sufficient for an ordinary system for an network element which is
shared among a lot of principals and act as an multi-user and multi task system this is not enough.

Deliverable Title Page 76 of 84

Copyright 2000-2003 FAIN Consortium May 2003

We can easily imagine single user on the active node performing multiple tasks; privilege VE is clear
example of such an user. We don't want that the all user components have all the user privileges and it
is true that these privileges can be decided and thus the burden of decision shifted to the fine grain
policies. But mistakes of the administrators are common and there is with only two level policies
always a danger that the ability of the components is misused. Therefore we propose that the ability of
the components is separated between the components that really need them. Modularity achieved by
component model is a great help to this problem; we can assign the component unique system abilities
that support the principle of a least privilege, so that the software that needs certain abilities gets them
to that extent which is needed to perform the designed and required tasks.

On the other hand separation principle that is introduced by low level policies is quite often too hard;
we would like that in some controlled cases this low level policies can be overruled; obvious cases are
during the VE start up and service shutdown or termination. During those two processes for example
the processes are transitioned to new principal authority (and different VE and ServiceId) or services
and/or VEs can be terminated; in this context we don't want that all VE components have default
ability to do these two operations.

For this reason we have defined component/principal capabilities that define their ability regarding
some special NodeOS operations. We can state some possible examples from NodeOS subcomponent
point of view:

• management: boot_node, start_ve, start_service, terminate_service, terminate_ve,
create_routing_table, create_template_repository...

• system: set_nodename, routing_table, neighbor_table, log, start_log
• rfc: reserve_resources, limit_resources...
• : set_filter_rule, send_raw, send_filter...
• security: create_cred_database, create_policy_database, create_auth_engine,

security_service, low_policy, policy_database, audit, create_audit_channel...
• ASP

The list is not exclusive or mandatory in the moment; it tries to better understand the ability of
NodeOS components regarding performing their ordinary work. Nice examples can be the ability to
receive raw packets and Security area capability to process them. Another example is secure store
ability to store principal keying material and Crypto Engine capability to read it.

For the reasons stated the capability policies are separated in two parts: component ability to do
something which are expressed through required capabilities in the security context and component
capability to access something that has ability to do the task.

This ``policies'' are mainly related to the operation of the node system and are not visible outside the
node. Such policies help in general way to improve the node safety.

There is an issue how to set up default policies on the fly. Default policies should be restrictive but
still usable.

There should be a very clear statement about who can set VE/service/component/port policies on the
node. The principal capabilities are related to the VE: at the moment the principal can delegate those
capabilities further to its sub VEs. So the capabilities are related to the relation between the parent VE
and VE. Low level policies are always defined by the system; the only exception is when a component
is transitioned under new VE or when the service is started under a VE. The default service policies
are set by the owner of the VE; those policies can be overwritten by the owner by the meta policies set
by owner, e.g. by definition of policies that are set by setPolicy interface of the component/service.

We have three levels of policies as described above. The low level polices are defined at the node start
up (but should be able to change them if desired). Changing per VE should be possible but includes
other parts of the system (labeling). Capabilities for the principal must be known at the time of the
principal creation. Each new component that is started up must be checked that the component
capabilities are equal or smaller than the principal capabilities. When the VE delegates the capabilities
further to a new VE the same procedure must be followed.

Deliverable Title Page 77 of 85

Copyright 2000-2003 FAIN Consortium May 2003

The interfaces defined in the following table are related to class of dynamic policies; the exceptions
are interfaces related to the principal capabilities.

Interfaces
setPolicy adds policy to the policy database
removePolicy remove policy from the policy database
changePolicy change the policy for a component
listPolicy list the specified policy
searchPolicy search policy by defined attribute
setCapability set the principal or component capabilities
listCapability list the principal or component capabilities
removeCapability remove the capability from the principal or component list
searchCapability search for a certain principal or component capability

Exceptions
noPolicy policy does not exist
policyExists policy already defined
capabilityDoesNotExist no such capability
capabilityError could not set the capability

Structures
tPolicy policy
tCapability capability

Interfaces in detail

setPolicy

setPolicy sets policy for accessing the certain component port. The inputs for the interface are
policy type, policy and port. The relation of the policy and the component is implicit but has to
be known. The port parameter can be a port type (if such exists, like monitor, manager etc.) so
the same policy is applied to the all component ports.

Among policies we count also a capability list, e.g. list of capabilities that the component which
wants to access this component has to posses.

The policy can be implicitly implied to a service as a whole including with port type note.

The call returns the policyId, a pointer to a policy. If the same policy is applied to many ports
with port type as parameter the policyId return is same for all ports.

removePolicy

Remove the specified policy. Removing the policy causes that the default policies are enforced.
The call takes as input policyId.

changePolicy

Change policy is dependent on policy type. In worst case use removePolicy and setPolicy.

listPolicy

List a port policy and return its human readable representation.

searchPolicy

Deliverable Title Page 78 of 86

Copyright 2000-2003 FAIN Consortium May 2003

search for a specific policy in the policy database. Search parameters should be various, like
policyID, port, port type or various policy attributes.

Depends on type of policies defined...

Returns a list of policies together with ports and components...

setCapability

set the capability of the component. The capabilities are meaningful only to a processes or
threads. Either takes a list of capabilities or a single capability.

If we adopt centralized approach the call returns a capabilityId.

Call also sets a capability list of a principal.

listCapability

List a capability list of a component

removeCapability

Remove certain component capability

searchCapability

Search for a specific capability in component, service or on the node

Structures in detail

tPolicy

tPolicyType

policy type identifies the type of a policy (which selects the authorization engine),

tPolicyString

string that represents a policy

tCapability

Capability is represented as string.

tCapabilityList

List of capabilities of one component.

SBB Setting Principals Capability
This SBB assigns a capability list to a principal. matchParentCapability checks that the assigned
capabilities to a principal are possessed by its parent.

Pre-conditions

Principal is already created on the node and basic pVE software is already installed. List of available
node capabilities exists and it is well understood in the current node context.

Post-conditions

Principal holds certain number of capabilities in his capability list.

Deliverable Title Page 79 of 87

Copyright 2000-2003 FAIN Consortium May 2003

Dependencies

SBB depends on the following SBBs:

• add principal to credentials DB SBB,
• start pVE,

Sequence Diagram

SBB Set Component Capabilities
This SBB assigns a capability list to a component. matchPrincipalCapability matches available
principal capabilities.

Pre-conditions

Principal is already created on the node and basic pVE software is already installed. List of available
node capabilities exists. Principal holds a certain capability list.

Post-conditions

Component is running with certain capabilities.

Dependencies

Many.

Sequence Diagram

Deliverable Title Page 80 of 88

Copyright 2000-2003 FAIN Consortium May 2003

SBB Removing Component Capability
This SBB removes a capability from the component capability list.

Pre-conditions

Principal is already created on the node and basic pVE software is already installed. List of available
node capabilities exists. Principal holds a certain capability list. Principal component holds a list of
certain capabilities.

Post-conditions

Component capability list is reduced.

Dependencies

SBB depends on following SBBs:

• setting a principal capability SBB,
• setting a component capability SBB.

Sequence Diagram

SBB Removing Principal Capability
This SBB removes a capability form the principal capability list.

Deliverable Title Page 81 of 89

Copyright 2000-2003 FAIN Consortium May 2003

Pre-conditions

Principal is already created on the node and basic pVE software is already installed. List of available
node capabilities exists. Principal holds a certain capability list. Principal components hold a list of
certain capabilities.

Post-conditions

Principal capability list is reduced.

Dependencies

SBB depends on the following SBBs:

• setting a principal capabilities SBB,
• removing component capability SBB,
• general authorization decision SBB,

Sequence Diagram

SBB Add Component Policy
This SBB adds a component policy to a policy database.

Pre-conditions

Component should be already initialized. Component Id and the ports Ids should be known
(management ports, control ports and in/output ports). Interconnection with other components should
be defined.

Post-conditions

One of the component policies is defined.

Dependencies

SBB depends on exact definition and marking of the component ports and identification of the
components on the node.

Deliverable Title Page 82 of 90

Copyright 2000-2003 FAIN Consortium May 2003

Sequence Diagram

Figure 25: Adding a policy to a component

SBB Removing Component Policy
This SBB removes a component policy from a policy database.

Pre-conditions

Component should exist and the policy must be defined.

Post-conditions

One of the component policies is removed.

Dependencies

SBB depends on exact definition and marking of the component ports and identification of the
components on the node.

Sequence Diagram

Naming Issues

Naming issues: internal and external. For example naming issues are essential to be able to define a
policy for example for a port etc. Internal and external naming can be mixed? Mapping between both?
For example how the management will define policies for the service that we will map internally?

Internal names

• names of components,
• names of ports,
• components interfaces (define NodeOS interfaces) to be able to correlate with capabilities

Deliverable Title Page 83 of 91

Copyright 2000-2003 FAIN Consortium May 2003

External names

• names of nodes,
• names of principals,
• names of services,

Authorization Engine

``is responsible for making a decision whether a given user request to execute specific action or to
access/manipulate particular object within an active node is authorized or not. Authorization engine
provides this Service" to all enforcement engines in an active node.''

There are there general types of policies as defined in Policy Manager section. As we planned in D4 [],
there can be several authorization engines on the node. In general case there are at least three engines
which corresponds to described three types of policies.

Low level policies are default restrictive policies. Capabilities granted to the components are
permissive policies. Service or components policies are principal defined policies which are
permissive in the context of default restrictive policies (VE, service). In the context of authorization
engines these three engines are stacked on the top of each other. This process is further explained in
the security manager section.

On the other hand for service or components policies the policies are described by policy type which
defines which authorization engine will be used.

SBB Low Level Engine
Authorization engine in this context decides whether the component accessing other component
belongs to the same VE and service.

Pre-conditions

Basic components of the node are setup and run in the context of the pVE. If a component belongs to a
certain VE its principal has to be defined. Components are already created and properly labeled or
transitioned.

Post-conditions

Low level authorization engine provides low level engine decision.

Dependencies

Depends on the following SBB:

• get security context by SID SBB,
• create security context SBB,
• Labeling decision SBB.

Deliverable Title Page 84 of 92

Copyright 2000-2003 FAIN Consortium May 2003

Activity Diagram

Sequence Diagram

SBB Capabilities
Authorization engine in this case decides if the certain component has the capability needed to access
component or component port (interface).

Pre-conditions

Basic components of the node are setup and run in the context of the pVE. If a component belongs to a
certain VE the principal capabilities has to be known. Principal has to determine which capabilities the
component has. Components capabilities are set during the component start up.

Post-conditions

Access to certain component or component port is granted.

Dependencies

SBB depends on the following SBBs:

• get security context by SID SBB,
• create security context SBB,
• set component capabilities,

Deliverable Title Page 85 of 93

Copyright 2000-2003 FAIN Consortium May 2003

Capability Engine SBB

Sequence Diagram

Figure 29: A process of providing a capability engine decision

SBB Policy
Authorization engine in this case decides the certain component has access to a component or a
component port (interface) regarding to the policy set (bind) to a component or component port.
Though we said in D4 [6] that the Security Manager collects relevant policies to the call, these policies
are usually defined at the service start up. Call check policy only evaluates if the policy exists for the
context of the call (component or port policy) and then invokes authorization engine.

Pre-conditions

Basic components of the node are setup and run in the context of the pVE. If the component belongs to
a VE, the VE has to be started and the principal has to be known on the node. The principal is
responsible for setting the policies for the components or component ports. Such policies are used to
fain grain control the access to the component ports. If there is no policy the access to the component
port is decided based on the low level policy (VE and ServiceId)

Post-conditions

Access to certain component or component port based on the defined policy is granted or denied.

Deliverable Title Page 86 of 94

Copyright 2000-2003 FAIN Consortium May 2003

Dependencies

None.

Activity Diagram

Sequence Diagram

Connection Manager

Connection Manager is used to manage secure associations with neighbor active nodes. Associations
can be configured manually or their configuration can be supported by automatic management and by
triggering a key exchange protocol with neighboring active node.

There are two set of interfaces: first, that can be set by a management means to establish SA between
two nodes and second that can trigger automatic key exchange protocol between two nodes.

Interfaces
initSA initialize SA data
storeSA store SA data in persistent storage on the node
deleteSA delete SA data on the node
stopSA stop active SA
startSA activate SA
listActiveSA list the current active SAs

Deliverable Title Page 87 of 95

Copyright 2000-2003 FAIN Consortium May 2003

listStoppedSA list stopped SAs
updateSeq update sequences on peer nodes
changeSA change the active SA for peer connection
exchangeSA dynamically exchange and setup SA data

Exceptions
updateSeqError error in updating sequences
changeSAError error in refreshing keys
exchangeSAError exchange protocol failed

Structures
tSAData sending or receiving side SA data

Interface in detail

initSA

Initialize Security Associacion data object from tSAData. SA data is separated for receiving side
and sending side. The reason for this is, that it is not necessary that the links between two peer
nodes are always bidirectional (over same path) or that are indeed bidirectional. If the tSAData
is transferred over the network the integrity and confidentiality of the data has to be provided.
The data can access only Connection Manager or authenticated and authorized user.

storeSA

Store tSAdata to persistent storage on the node. Persistent storage should be a file or a database.

deleteSA

Delete tSAdata from the persistent storage.

stopSA

Stop the active SA. Data in the SA cannot be anymore used to validate the integrity property of
the active packets received over peer connection.

startSA

Activates the initialized SA.

listActiveSA

Lists current active SAs.

listStoppedSA

List stopped SAs.

updateSeq

Updates sequence to the specified sequence value. Used in the cases when peer nodes have
crashed and latest sequence number cannot be restored from the persistent storage. Interface
function has two possible arguments, one that actually update the sequence in SA and the other
that triggers a sequence update protocol with a peer node. Integrity of the exchanged data and
data origin authentication must be addressed for the update.

refreshKey

Deliverable Title Page 88 of 96

Copyright 2000-2003 FAIN Consortium May 2003

Refreshes the symmetric key of the SA. Refreshing the key can be triggered because of the
various reasons: policy can be set on validity of the key, because of the amount of traffic already
transferred over the SA or any other reason. Interface function has two possible arguments, one
that actually refresh the key with given value and one that triggers the refreshKey protocol with
a peer node. Integrity of the data, data origin authentication and confidentiality of the key has to
be addressed during the key refresh.

exchangeSA

Triggers key exchange protocol with the peer node...

Structures in detail

Secure Association data is defined with following parameters:

tSAData

send/receive identifier

Identifies that the SA is sending or receiving SA,

node identifier

Node identifier that uniquely identifies the peer node,

SA identifier

Identifier of the SA with the peer node, is unique identifier of the SA on the node,
disregard node identifier,

symmetric key

Symmetric key used for building keyed hash,

algorithm

Algorithm used for keyed hash,

last sequence number

Highest sequence numbers of the packet received or send,

key start valid time

The time when the key becomes valid,

key end valid time

The time when the key is not valid any more,

status

Status of the SA that are active or that stopped.

Send/receive identifier reduces the number of exported interfaces. Node identifier uniquely identifies
peer node. Planned identifier is cryptographic hash of the length 128 bits of the node private key. This
identifier is used in protocols that update sequence, refresh key or trigger key exchange. It enables that
multiple SAs are defined between peer nodes but only one of the SA can be active at the time. The
length of the symmetric key depends on algorithm used; planned supported algorithms are either
HMAC [7] or SHA-1 [8].

Deliverable Title Page 89 of 97

Copyright 2000-2003 FAIN Consortium May 2003

Protocols description

The idea here is as follows: define simple sequence diagram for the protocol and the messages
exchange. Define the logic of the protocol implementation in LTL and convert it to code which
defines protocol state machine. Implement the protocol as the set of protocol logic and protocol
objects. define simple LTL rules for the set of concurrently running protocols and combine them in
simple protocol group logic which controls all the protocols that are part of the protocol group.

The protocol group used to manage SA(s) data is defined as group of protocols working on common
data set or task in this case on keeping the hop-by-hop integrity working in any situation. Planned
protocols are:

Updating sequences

In some situations the node can lost the last sequence number for receiving the hop-by-hop protected
packets for example in the case of node crash. In this case the node can request from the peer node(s)
the last highest sequence number. To be able to do that the information about previous active SA(s)
has to be available on the node or provided in other means. The updating sequence has two steps, a
request and response:

A and B are nodes identifiers, SA is SA identifier, C is challenger cookie and Seq is corresponding
highest sequence for particular SA of the node B. The communication is integrity protected by keyed
hash Hk, where k is current active SA key. In exchange there is also protocol dependent identifier
included in the exchange but not shown in the steps of the exchange.

SA change

SA change enables two nodes to change the current active SA. SA has to be initiated before and set to
stopped state.

Key exchange

Key exchange is based on Diffie -Hellman key exchange. The protocol is similar to Station to Station
protocol [] as it uses public key cryptography for entity authentication and provides mutual explicit
key authentication. Protocol is defined in three steps:

A and B are nodes identifiers of the nodes exchanging keys, SA is a signature of data send by node A,

Hk(αx,αy) is keyed hash of concatenation of αx and αy and k is shared secret key k = (αy)xmodp. y
and x are random secrets selected by A and B and p and α are published in advance. The protocol has
some overhead regarding original protocol but it reuses the general protection mechanisms as defined
in FAIN framework (authentication with digital signatures). Hk(αx,αy) provides key confirmation
property. In real protocol some additional data is also signed like protocol dependent identifier.

Key exchange corresponds to exchangeSA. For now only the key is negotiated and other tSAData
values have to be predefined in the node policy like the validity of the Key.

Deliverable Title Page 90 of 98

Copyright 2000-2003 FAIN Consortium May 2003

SBB Management Based Exchange
The SBB can be done as is presented on the sequence diagram. In this way tSAData is brought to the
node, initialized and SA started. For the usable SBB actually two structures have to be initialized and
started on each node (send and receive). Procedure has to be repeated for every pair of direct peers that
communicate. For the data that is exchanged between nodes and the management station user
triggering the action has to be authenticated on the node (actually his connection if done over SSL)
and integrity and confidentiality of the data send is also issue.

Pre-conditions

The pVE has to be started including with loaded basic services.

Post-conditions

The needed SA data is initialized and available to Integrity Engine which can start to accept or send
active packets.

Dependencies

None.

Sequence Diagram

SBB Management Triggers Exchange
Management station triggers echangeSA protocol between the managed node and its peer. Procedure
should be repeated for every managed node peer node. Management entity has to be authenticated on
the node and its actions authorized.

Pre-conditions

The pVE has to be started including with loaded basic services. This includes nodes valid key pair and
existence of the public key certificate.

Post-conditions

The needed SA data is initialized and available to Integrity Engine which can start to accept or send
active packets.

Dependencies

None.

Sequence Diagram

Deliverable Title Page 91 of 99

Copyright 2000-2003 FAIN Consortium May 2003

SBB Automatic Discovery and Exchange
SBB is triggered during the boot procedure of the node (or at the start up of the pVE) as is shown in
sequence diagram. The node starts peer neighbor search protocol and triggers with discovered
neighbors exchangeSA protocol.

Pre-conditions

The pVE has to be started including with loaded basic services. This includes nodes valid key pair and
existence of the public key certificate.

Post-conditions

The needed SA data is initialized and available to Integrity Engine which can start to accept or send
active packets. Post-condition is valid for all found directly connected peer neighbors.

Dependencies

None.

Sequence Diagram

SBB Tearing Down SA
The last SBB for the Connection Manager is related to the ANN operation and plans the tear down of
the active SA. SBB should show that the tear down of the SA will prevent the flow of active packets
between two peer nodes. Bonus should be if it can show that the SA can be listed and activated again.

Pre-conditions

Active node should be fully operational and the ANEP packet flow should flow through the node.

Post-conditions

All active packets coming from peer node to the managed node should be dropped. If SBB is
extended, SA can be activated and active packets should be enabled to flow through the node.

Deliverable Title Page 92 of 100

Copyright 2000-2003 FAIN Consortium May 2003

Dependencies

None.

Sequence Diagram

Deliverable Title Page 93 of 101

Copyright 2000-2003 FAIN Consortium May 2003

5 GENERIC APPLICATION SCENARIOS
The generic application scenarios are composed of sequentially interconnected SBBs. The intention of
using generic application scenarios is to have the functional concepts of FAIN reflected in an intuitive
and enfolding manner. The generic application scenarios are therefore situated in cases that are in their
requirements and demands close to reality. They are nevertheless not making any assumptions on
ascertained entities as it premises.

The generic application scenarios defined in FAIN are:

• DiffServ Scenario

• WebTV Scenario

• Web Service Distribution Scenario

• Video on Demand Scenario

• Mobile FAIN Demonstrator Scenario

• Managed Access Scenario

• Security Scenario

5.1 DiffServ Scenario

In the DiffServ application scenario, a service provider (SP-1) tries to make a priority transmission
network by renting network resources from an operator (ANSP). The SP-1 makes a contract to rent
three levels for the priority transmission with the ANSP. If one assumes that those three levels are
DSCP-1 (Differentiated Service Code Point-1), DSCP-32 and DSCP-224. The SP-1 connects a branch
office-A and a head office through HANN-1 (Hybrid Active Network Node) and HANN-2 as shown
in the Figure 5-1. In addition, it connects a branch office-B and the head office through the HANN-2.
Then SP-1 assigns the DSCP-1 and the DSCP-224 transmission qualities between the branch office, A
and the head office. In addition, it assigns the DSCP-32 transmission quality between the branch
office-B and the head office. Initially, the user, A in the branch office, sends video data to a user, C in
the head office, through the network with a DSCP-1 transmission quality. Then user B, in the branch
office, sends “jamming” traffic to another user C with a transmission quality of DSCP-32. The priority
of the DSCP-32 is higher than that of the DSCP-1. If the amount of video data and jam traffic is above
the output bandwidth of the network node (HANN-2), the video data transmission will be impaired,
since the priority of the video is less than that of the jam traffic. Then user A changes the priority of
the video data from the DSCP-1 to DSCP-224 by an active packet (a SNAP program). The active
packet is sent from user C to the user A. The authenticity and authority of the active packet is checked
at each HANN. After changing the priority of the video data, it will no longer be impaired.

Linux

Active

Router

Active Proxy

H A N N -2

GR2000

Active Proxy

H A N N - 1

GR2000

Video

Server
AP

V

AP

V

: Act ive Packet

: Video Packet

Video

Cl ient

Jam Traf f ic

Sender

V V

AP

 : Jam Packe t

(1)Video Send

(2)Jam Traf f ic Send

(3)AP Send

Branch Off ice -A (U s e r -A)

Branch Off ice -B (U s e r -B)

H e a d O f f i c e (U s e r -C)

Jam Traf f ic

Reciver

Jam Traf f ic

Reciver

AP

Figure 5-1: DiffServ Demonstration Scenario

Deliverable Title Page 94 of 102

Copyright 2000-2003 FAIN Consortium May 2003

Step-by-step Description

The DiffServ demonstration with GR2000 will be shown as follows:

1. The privileged VE instantiates the basic service components. (VE function)

2. The privileged VE creates a new VE creation with an allocation of resources. (VE function)

3. The RCF allocates some bandwidth and the DSCP codes to the new VE. (RCF function)

4. A jam traffic sender starts to send traffic and checks the allocated bandwidth.

5. The jam traffic sender stops sending jam traffic.

6. A video sender starts sending video data.

7. The jam traffic sender starts to send jam traffic again which intentionally creates network
congestion.

8. The monitoring components detect packet discards at an active network node. (Monitor function)

9. The SNAP-EE injects an active packet; this is then signed, sealed and encapsulated as an ANEP
packet. (SNAP/SEC function)

10. The component intercepts the ANEP packet and retransmits it to a Security component. (function)

11. The Security component checks the integrity of the ANEP packet, authenticates the data origin
and sending principal, builds a security context of the packet and returns a verdict. (SEC function)

12. The accepts or discards the ANEP packet depending on the verdict. (function)

13. The retransmits the ANEP packet to the SNAP-EE. (function)

14. The SNAP-EE gets the GR2000 router’s configuration and makes a request to the DiffServ
Controller. (SNAP function)

15. Request is authorized by the SEC (SEC function).

16. The DiffServ Controller configures the GR2000 by setting a DSCP code. (RCF function)

17. The video and jam data pass through the GR2000 with their assigned DSCP codes.

18. The SNAP-EE sends a new SNAP-ANEP packet to the component. (SNAP function)

19. The sends the SNAP-ANEP packet to the Security component. (function)

20. The Security component inserts the necessary security information to the ANEP header of the
SNAP and returns it to. (SEC function)

21. The component sends the SNAP-ANEP packet to the next active node. (function)

At the next active node, the procedures from 10 to 21 are repeated.

The DiffServ demonstration with Linux-based router will be shown as follows:

22. A jam traffic sender starts to send jam traffics at the Linux based router and congestion is
occurred.

23. Steps 8 to 13 same as above.

24. The SNAP-EE request to VE Manager the creation of a Traffic Class, which will create a DSCP to
bandwidth mapping. (SNAP function)

25. The VE Manager requests the creation to the Traffic Manager. (VEM function)

26. The Traffic Manager creates the Traffic Class. (RCF function)

27. The Traffic Class configures the Linux TC (Traffic Controller) in order to create the mapping.
(RCF function)

Deliverable Title Page 95 of 103

Copyright 2000-2003 FAIN Consortium May 2003

5.2 WebTV

An SP wants to offer its customers (end-users) a WebTV service (cf. Figure 5-2). We call this SP,
WebTV-SP and it broadcasts a video program in the Internet that end-users are able to watch,
irrespective of their terminal capabilities. The WebTV-SP requests from the ANSP to set up an Active
Virtual Private Network (AVPN) wherein he can deploy services that may be customized to meet
customer requirements. Customers then subscribe to this WebTV service by directly contacting the
WebTV-SP server. In this context, one of its customers uses a terminal that is not capable of
displaying correctly the video stream of the WebTV content. For instance, this particular customer
may use a handheld device with low processing power and a low access bandwidth. In this case, the
WebTV-SP can individually select and process the video stream destined to his customer by deploying
an audio/video transcoder in the network so that the video stream received by the handheld device is
of the same format. As a result of an SLA agreed between the ANSP and the SP, policies are sent to
the ANSP MI. Consequently, the ANSP PBNM receives a QoS policy and enforces it on both the
NMS and in all appropriated EMS. This results in invoking the active node management framework to
create a new Virtual Environment (VE) for the WebTV-SP. If the VE creation is done successfully,
then the ANSP PBNM enforces a delegation policy through the NMS and in all appropriated EMS.
This enforcement consequently requests the active node management system to activate the newly
created VE. The ANSP then creates a Management Instance (MI) in all the appropriate EMS stations
for this WebTV-SP and assigns the access rights to the active nodes interfaces. The WebTV-SP is now
ready to configure his AVPN by sending policies that are customer specific. The SP also installs the
transcoder and duplicator service components. In addition, the SP deploys service-specific policies in
the WebTV-SP PDP of its MI. In this way the SP can define its own service-specific policies that will
be enforced in the active node. Finally, the monitoring system is used for the reconfiguration of the
transcoder at runtime, when for instance the access bandwidth changes dramatically and the end-user
needs a different transcoding format on the video stream.

P r -VE

M I
(W e b T V -S P)

M I
(ANSP)

VE
(W e b T V -S P)

AVPN
Policy

EMS

Service Repository

Act ive NodeService

A V P N (W e b T V -S P)

W e b T V -SP

W e b T V Client

V E
(ANSP)

Video S t r eam

Transcoder

Transcoder
Policies

Figure 5-2: Web TV Scenario

Step-by-step description

1. WebTV-SP makes transcoder and duplicator available in the network. And also PDP/PEP.
Which has been implemented using the same methodology followed to implement the ANSP
management system?

2. WebTV-SP broadcasts a concert (Celtic music)
3. End-user connects to the concert portal (web page)
4. A SIP negotiation occurs between end-user and portal
5. The portal triggers the deployment of the Transcoder and the duplicator by contacting the

ANSP-MS and giving it the parameters of the end-user (e.g. which video format it expects)
6. ANSP-MS receives a QoS policy enforced on both the NMS and the EMS
7. a VAN is created for the WebTV-SP and for this particular service.

Deliverable Title Page 96 of 104

Copyright 2000-2003 FAIN Consortium May 2003

8. ANSP creates a Management Instance (MI) in the management station the demo topology
9. After VAN is already activated ANSP-MS contacts Net ASP for deployment of the transcoder

and the duplicator services.
10. Policies of WebTV-SP are sent and enforced in the appropriated EMS(the one who manage

the active node where the Transcoder has been deployed): this results in the deployment of
WebTV-SP PDP/PEP and afterwards the configuration of the service components

11. At this point it is possible to see the transcoded video at end-user sites

Extension:

A second Customer wants to be subscribed (C2)

12. SP contacts with ANSP-MS to trigger the deployment of a second Transcoder, but using the
same VAN, if it is possible (if not the current VAN will be extended).

13. ANSP-MS contacts with Net-ASP to retrieve the topology requirements associated to this new
service.

14. ANSP-MS generates appropriated policies (QoS and Delegation) and it enforces them into the
NMS.

15. RM detects that VAN needs to be extended adding a new branch.
16. NMS send the appropriated QoS and Delegation policies to the appropriated EMS to modify

current VE resource profiles and create/activate the VE required.
17. After VAN have been extended ANSP-MS contacts Net ASP for deployment of the second

Transcoder Service.
18. Policies of WebTV-SP are sent and enforced in the appropriated EMS: This result in the

deployment of the WebTV-SP PDP/PEP, monitoring probe if it is required and the
configuration of the service component.

19. At this point it is possible to see the transcoded video at second end-user site.

Architecture/Setup

Topology:

 The transcoder and the controller components are deployed via the ASP mechanism when requested
in the SP’s VE. In the final demonstrator, it will be triggered by the SIP proxy when the SIP request
from the client (wishing to watch the WebTV) will be processed by the SIP proxy (see doc on GS1 for
more details).

As a consequence of creating a VAN for this particular SP, a management instance is created and
configured; there is one MI at network level and also one at element level. At the beginning only the
PDP Manager will be instantiated inside each MI, after an incoming request is forwarded to this MI,
the PDP Manager should decide to trigger the deployment of the specialized functional domain
contacting with the ASP to deploy SP PDP into the EMS, and SP PEP into the SP-VE.

At bootstrap of this SP PDP a set of alarms/event should configured by means of policies, which will
configure the monitoring system to receive those events/alarms from transcoder controller. These
policies should have the next form:

mpeg

mpeg
h263

SP

Transcoder

Duplicator

Customer 1

Customer 2

mpeg

Deliverable Title Page 97 of 105

Copyright 2000-2003 FAIN Consortium May 2003

Policy #1

IF

Packet Loss

LOWER THAN

 20%

THEN

 REMOVE VIDEO

Policy #2

IF

Packet Loss

 LOWER THAN

 10%

 AND

 CLIENT WITH_REMOVED_VIDEO == TRUE

THEN

 RE-ADD VIDEO

The incoming request to the MI can be sent when the deployment of the transcoder is requested: the
PDP/PEP and Transcoder/Controller are very close so we can imagine to deploy both at the same time.

The deployment request is sent by the SP (SIP Proxy) to the ASP-NMS Coordinator.

The latter can trigger the deployment of the SP’s PDP/PEP at the same time.

Re-configuration of the transcoder

Up to now, one instance of the controller monitors the RTCP sessions (one for the Audio stream, one
for the Video Stream) for one client.

Therefore there are as many controller instances as clients. A controller instance is created when a new
client is added to the transcoder.

Upon instantiation the controller takes a list of thresholds as parameters. These thresholds represent
the percentage of packets lost for the session. It is then possible to define several levels of QoS. In our
example, there are only 2 levels, corresponding to the 2 actions: remove Video or re-add Video.

Up to now, the only re-configuration that is possible for one client is:

• To stop sending the video stream when the quality of the link is bad (for instance if the access
networks is overloaded).

• To re-start sending the Video stream when the quality of the link is good again.

How the controller works

First, the transcoder is deployed and instantiated in an active node. When started, the transcoder opens
2 RTP sessions (one for Audio, one for Video) with the WebTV Emitter and does no transcoding
(because there is no client yet).

Deliverable Title Page 98 of 106

Copyright 2000-2003 FAIN Consortium May 2003

Then the transcoder is configured to transcode the WebTV Emitter formats to the client format for this
given client (Audio format, Video format, IP Address, IP Port, Size of the video).

When the client is added, an instance of the Controller is created. This instance is in charge of
monitoring the RTP sessions between this client and the transcoder.

All monitoring information is carried within the RTCP (Real-Time Control Protocol) protocol that is
associated with the RTP Protocol (RTP for the data themselves, RTCP for the control).

The RTCP ports are calculated automatically like this (add 1 to the RTP ports):

 Video RTCP Port = Video RTP Port + 1

 Audio RTCP Port = Audio RTP Port + 1

When this controller instance is created, it will receive the monitoring information sent by the client
by listening on the RTCP ports.

To monitor the link, the number of packets lost is taken into account.

Based on the total number of packets received and the number of packets lost, a percentage of packets
lost is calculated.

As seen in the previous section, when the instance has been created, parameters have been passed as
arguments. These parameters help to determine at which level of QoS is associated the percentage of
packets lost.

Interface controller – probe

After gathering the service configuration policies, the PDP accesses the monitoring system hosted in
the ANSP management instance in order to register its interest in receiving the appropriate RTP events
(delegation of functionality). The monitoring system uses the information contained in the associated
filters to configure the data acquisition layer. As a consequence, the monitoring system will request
the deployment of a probe in the target EE. The ASP is responsible for installing and connecting the
probe with the transcoder controller. Appropriate access rights should have been set up (delegation of
access rights).

Additionally, the monitoring system adjusts the threshold level for the packet-loss variable through the
monitoring facet exposed by the controller. Such behavior makes it feasible a fine-grain control of the
quality levels offered to the customers.

Finally, when the percentage of packets lost reach a threshold, then an event will be sent to the SP
PDP:

The interface may look like:

module Events {

 // Exception definitions

 exception EventNotSupported {

 };

 // Low-level event definitions

valuetype Event {

};

valuetype RTPEvent: Event {

 public controller::ClientParameters parameters;

 public unsigned short level;

};

// Interface definitions

Deliverable Title Page 99 of 107

Copyright 2000-2003 FAIN Consortium May 2003

interface i_Probe {

 void notifyEvent(in Event event) raises EventNotSupported;

};

};

Here level represents the level of packet loss. A level of 0 means that no packets are lost and a level of
1 means that the percentage of packets lost is greater than the threshold defined in the policy.

Such information will be packed in a CORBA structured event and subsequently delivered to the
notification channel so that it can be distributed among the interested entities.

The resulting interface is generic enough for being used in different monitoring scenarios while at the
same time it provides the necessary flexibility to define a wide variety of event structures to be sent to
the probe.

Interface SP PDP - SP PEP

When PDP makes a decision about a policy it should pass this decision to the PEP. This one will be in
charge of process the request.

That’s the interface offered by the PEP:

module org{

 module ist_fain {

 module apbm {

 struct t_Parameter {

 string name;

 any value;

 };

 typedef sequence <t_Parameter> t_ParameterList;

 struct t_request {

 string command;

 t_ParameterList parameterList;

 };

 module pep {

interface i_pep {

 oneway void decision (in t_request request);

 };

};//pep

};//apbm

};//ist_fain

};//org

Deliverable Title Page 100 of 108

Copyright 2000-2003 FAIN Consortium May 2003

When the PEP receives a request, it checks the action and executes it. The PEP should maintain a table
with all controller//client references. How does the PEP should update this table? Does the Transcoder
should update this table adding a new row when a new client is added? Or, does the PEP should check
each Controller instance to know which Client is monitoring by looking up Client Property associated
to each Controller instance.

The transcoder already maintains a table of clients (a transcoder instance manages its list of clients
added but it doesn’t know the clients of other transcoder instances) and it already checks if the video
stream was off before re-adding it or was on before removing it.

Interface SP PEP – controller

When receiving a command from the PDP, the PEP must enforce this policy. It will result to an
invocation to the controller interface.

The interface may be:

module org{

 module ist_fain {

 module services {

 module controller {

 struct ClientParameters {

 string IpAddress;

 boolean video;

 string videoFormat;

 short videoPort;
 string videoSize;

 boolean audio;
 string audioFormat;

 short audioPort;

 }

boolean removeVideo (ClientParameters thisClient)

 // return true if OK

boolean addVideo (ClientParameters thisClient)

 // return true if OK

void setPacketLossPercentage(ClientParameters thisClient, short percentage)

 // sets the threshold above which the packet lost percentage is considered too high

 }

 } // services

 } // ist-fain

} // org

Deliverable Title Page 101 of 109

Copyright 2000-2003 FAIN Consortium May 2003

When the controller instance receives an action to process from the SP PEP, it will reconfigure the
transcoder for this given client (remove or re-add Video), i.e. the client given as a parameter.

5.3 Web Service Distribution Scenario

For the full and extensive documentation of the Web Service Distribution Scenario please refer to [9].

In the Web Service Distribution Scenario, Web (HTTP) traffic is distributed within the network
among several distributed servers in order to provide reliability, performance and scalability for web
services.11

Motivation

Web technology has been the single most important technology responsible for the explosive growth
of the Internet. It is not only the uniform technology that accommodates Internet surfing by end users,
but it is as well mission critical for business applications both between and within enterprises. In this
context, a number of requirements need to be addressed:

• To accommodate increasing numbers of customers,

• To provide scalable, reliable and efficient web services,

• To be able to quickly add new services and modify existing services,

• To reduce end-to-end traffic and server load.
To meet this diversity of requirements coming from customers and service providers we propose to
design and implement an environment for web services based on Active Networks. In order to present
our ideas, we first revisit the state of the art in web technology. Web technology (e.g., HTTP, HTML)
has been developed originally as a pure client-/server architecture, where End Users are connected
with the Web Service Provider site via an application-unaware IP network. Usually, such an IP
network is composed of an access network for both the End User and the Web Service Provider site
and an IP core network (Figure 5-3).

AR

End User

End User

End User

End User

IP Core Network
End User
IP Access Network

End User

Mobile
 Network

CATV
 Network

Telephone
 Network

Service
 Site

Service
 Site

Service Provider
IP Access Network

WebService Provider

Service
 Site

Figure 5-3: Physical Network Architecture of Web Services.

11 The term „Web Service“ is often also used to refer to approaches for describing, finding and invoking objects
and their services with web-based languages and protocols, e.g. Microsoft’s.NET. We use the term “Web
Service” to refer to an application service which is offered to an end-user, as it has been invented in [10].

Deliverable Title Page 102 of 110

Copyright 2000-2003 FAIN Consortium May 2003

This simple approach, where the „intelligence“mainly is located in the Client and the Server, was one
of the main reasons for the enormous success of the internet. However, it is also well-known that over
the public internet, this pure client-/server model on top of a “dumb” IP network has shown to lack
important characteristics, which are required for today’s and future Internet applications. These
include reliability, performance and scalability as well as the possibility to take network internal
conditions (e.g. the available bandwidth for a particular end-user) into account.

In order to overcome these deficiencies, the network infrastructures have already been extended in
various ways. Some solutions which have been proposed and deployed in response to the growing
demands of existing and new applications are: (see also Figure 5-4)

• Web caching [11], where static content is stored within caches within the network to reduce
the response time for subsequent requests.

• load balancing/layer 7 switching [12], where requests are distributed to several servers in a
server farm. To clients, this server farm appears as one “virtual web server”, which is
reachable by one IP address, which in reality is served by multiple servers.

• content distribution networks [13], [14], where large volume content such as images or videos
is pushed onto dedicated content distribution servers, which are distributed world-wide. These
servers all have an own IP address and DNS name, and the traffic is redirected based on
features included in the HTTP protocol.

AR

End User

End User

End User

End User

End User

Mobile
Network

CATV
Network

Telephone
Network

Cache

Service
Site

Content
Distri.
Server

Load
Distr.

Service
Site

Cache

Content
Distri.
Server

IP Core Network
End User
IP Access Network

Service Provider
IP Access Network

Content Distribution Networks

Figure 5-4: Web caches, content distribution servers and load distribution servers

However, these can only be considered as ad-hoc solutions to specific problems. For instance, caches
only deal with static content. Important features of today’s web services, such as e.g. the observation
of page hits of a particular page by the service provider or a third party, can still only be implemented
by relying on centralized servers. We therefore believe that also today’s web services already can
benefit from an architectural framework that can support an easy, rapid, and uniform way of
deployment of new solutions that need “intelligence” within the network.

Deliverable Title Page 103 of 111

Copyright 2000-2003 FAIN Consortium May 2003

In addition, more network services are requested by customers and designed by service creators which
clearly show that there is a demand for extensibility and flexibility on the ISPs and operator’s
infrastructure. [15] gives some examples of web-services which would clearly benefit from such a
mechanism. A good example is a personalized stock quote service. Stock quotes are frequently
changing data which can hardly be cached. If in addition a service for distributing stock quotes should
be personalized (e.g. with respect to the portfolio of a certain user), it becomes inevitable that with
current approaches a high network- and computing load is generated on a centralized server. A
distributed architecture would permit personalization and information distribution within the network,
being clearly more scalable.

Architecture

The basic idea of our active web service infrastructure is to exploit the capabilities of activeness in the
following two ways:

• On the one hand, so called “service nodes” within the network is implemented using AN
technology. These service nodes are “Active Web Servers”, which can be programmed by the
web service provider. They provide for instance persistent storage in order to allow the service
provider to store content locally and an environment to execute web service logic (e.g.
JavaBeans). The service provider downloads content and service logic onto them and by this
way can implement features such as content distribution and personalization, aggregation of
user replies or fast response times.

• On the other hand, so called “redirection nodes” are also implemented using AN technology.
They provide features which allow filtering out HTTP traffic, to build service sessions (i.e. to
deal with per-user state) and to forward the traffic of a particular session to a service node.
Onto this nodes, code is downloaded which observes the network load, observes the load and
availability of servers and based on this information determines a strategy for redirecting the
traffic to the service node which is most suitable for a given web service/user.

Of course, both kinds of functionality may be combined within one physical node, and there may also
be nodes which provide a functionality which is a mixture of both. However, we usually expect them
to be separate, both physically and logically. On the one hand, programming a network (e.g. load
balancing algorithms, routing algorithms) requires different skills than programming web services and
hence will be carried out by different actors. Second, both kinds of nodes will usually be implemented
with different design objectives: While redirection nodes will be some kinds of routers with an
emphasis on network throughput, service nodes will require at least some part of functionality of web
servers (i.e. huge computing power, persistent storage).

Also note that both kinds of activeness are complementary and can be implemented independently:
The redirection of traffic by redirections can also be beneficial if a distributed set of web servers is
implemented and operated completely independent of AN technology. Vice versa, a distributed, AN-
based implementation of a web service infrastructure can also be used with conventional techniques
for load balancing. In the sequel, we call any web service which is implemented using some kind of
activeness an “Active Web Service”.

Deliverable Title Page 104 of 112

Copyright 2000-2003 FAIN Consortium May 2003

AR

End User

End User

End User

End User

End User

Mobile
 Network

CATV
 Network

Telephone
 Network

Redirect
Node

Service
 Site

Service
Node

Service
Node

Service
Node

Redirect
Node

Redirect
Node

Service
Node

IP Core Network
End User
IP Access Network

Service Provider
IP Access Network

Figure 5-5: Service nodes and redirect servers implement active web services

The overall scenario is depicted in [9]. Both redirection nodes and service nodes will be usually
physically located within the access network of the end user, the access network of the web service
provider, or connected via a separated access network. For this reason, we may also call both of them
“Active Web Gateways”. Note that we assume that the core network is non-active and only provides
basic IP connectivity.

One design goal is that the overall setting is fully transparent to the end user, i.e., the end user uses the
web service via an ordinary web browser, using standard protocols such as IP or HTTP. This
assumption takes into account that updating several hundreds of millions of web clients is not only
infeasible, but also unnecessary.

To sum up, the proposed application can be viewed as a continual evolution of existing web
infrastructure:

• Traditionally, the web has been based on a “dumb” IP network, offering only pure best-effort
IP routing and forwarding capabilities.

• Recently, the web has been enhanced by installing caches, switches and content distribution
networks. However, the “intelligence” (i.e. the service logic) still resides on centralized
servers operated by the web service providers.

• In the future, the web might by a fully distributed computing infrastructure, with service
intelligence distributed on the IP and/or on the application layer.

Justification of the Use of Active Network Concepts

We expect that with Active Network technology web traffic can be handled flexibly within the
network. Potential benefits include among others:

• Network aware web services: Contrary to existing web services, they can operate based on
information such as available bandwidth on access and network links, network topology, and
load of servers. Because the information is not available at the client- or server side, it should
be implemented with AN technology within the network.

Deliverable Title Page 105 of 113

Copyright 2000-2003 FAIN Consortium May 2003

• Ease of service programming and management: Active networks eliminate the need for
cumbersome ad-hoc solutions to specific problems which require separate management; active
networks provide common ground for deployment of new services and mechanism inside the
network and unify the management of these mechanism and services.

• Distribution of service logic: Service logic is executed at several locations, including specific
points inside the active network, which is potentially advantageous for large volume services,
fine (per user) granularity of services, new service features. With existing solutions such as
caches or content distribution networks, only content, but not service logic can be located
within the network.

• Dynamic, autonomous adaptation: The task of operators on service site (service provider,
network provider) is getting bigger as the number of network customers/consumers is
growing. So the task of provisioning should be dynamic. Besides active nodes may cooperate
with each other.

Overview

In order to minimize the necessary changes for the web servers and web clients, we make minimal
assumptions about web servers and clients for our demo scenario:

• It should be possible that web servers work isolated; i.e. no additional mechanisms should be
required which are implemented by the web servers. In particular, web servers can use a local
date base, e.g. to store data used to process sessions.

• The service provider can use a standard web server (e. g. apache).

• Clients can use standard browsers to access the web server.
This implies that the used protocols must not be changed in any way and the mechanism is fully
transparent both to web servers and web clients. To be more precise, the implemented mechanism can
roughly be described as follows:

The customer issues an ordinary HTTP request to the system, containing the static IP address which it
has looked up by the DNS service.

The system forwards the request through a number of routers. The routers exchange routing
information for that purpose, as well as they provide basic IP connectivity via that interface.

Eventually, the request reaches an active node which contains redirect logic. The active node filters
the HTTP request and forwards it to an execution environment operated by the NSP.

The execution environment continuously collects information about the availability and load of service
nodes. Depending on some strategy, the incoming HTTP traffic is distributed among the available
service nodes.

The HTTP request is executed at a service node. The execution may involve access to stored content
and computations of the service logic.

A central concept in web services is that of a session, i.e. of an association of state between client and
server. While the HTTP protocol is stateless, sessions are implemented by various techniques, such as
encoding state in URLs or cookies. The concept of “session” has the following implications on our
implementation:

• Requests which are not part of a session: each of these requests may be redirected
independently.

• Requests which are part of a session: all requests which are part of a session must be
redirected to the same web server due to the fact that we do not want to transfer state between
web servers.

Deliverable Title Page 106 of 114

Copyright 2000-2003 FAIN Consortium May 2003

Objectives

In this section, we describe the relationship of our demo scenario to the FAIN evaluation framework.
It is intended to map our demo scenario onto the FAIN architecture and the FAIN evaluation
framework [16], [17].

Demonstrated Architectural Concepts

The following concepts are demonstrated by this demo:

• Creating Virtual Environments as Part of the Virtual Networks Creation

o This demo does not use Virtual Environments. Creating Virtual Environments is part
of another demo described in [18].

• Resource Control for hard Resource Partitioning

o Resource Control is not part of this demo.

• Deployment of different Types and Instances of EEs

o Manipulation of PromethOS modules using an extended version of Iptables provided
by PromethOS. This provides an intermediate step towards a full integration of
PromethOS plugins into FAIN execution environments. A next step will be described
in [18].

• Creating and Operating Component-based EEs

o This demo will use only one EE on one node.

• Interoperable Infrastructure

o Not used.

• Creation of a new VN Management Domain as Part of the VN Creation

o Not used.

• Use of new VN Management Domain to manage Services and Resources

o Not used.

• ASP Specification and Deployment

o Not used.

• Tuning the Active Network for maximizing Performance

o Using PromethOS kernel modules for processing HTTP traffic will be a step towards
maximizing the performance for processing web traffic.

• Using Active Networks for Policy Distribution

o Not used.

• Simple fault management functionality

o There is an automatic reconfiguration capability which will remove shut down web
servers automatically from the list of allowed targets. When the server becomes
available again, it will be reactivated automatically after some time. As long a there is
at least one working web server, the end user will see a usable network (with maybe
degraded performance of course).

o The interactive configurability of PromethOS plugins enables a service provider to
react promptly to changing requirements (e. g., web servers which must be shut down,
increasing load, etc.).

• Network-level deployment mapping

Deliverable Title Page 107 of 115

Copyright 2000-2003 FAIN Consortium May 2003

o Not used.

• Active Network Upgrades

o PromethOS allows the dynamic loading and unloading of plugins. This is a first step
towards a dynamic upgrade of an active node.

o There are currently no provisions for a seamless upgrade without interrupting a
running service. There will be at least a short break when the old plugin is unloaded
until the new plugin is loaded and configured.

Contribution to the Evaluation

• Flexibility Property

o dynamic loading and unloading of PromethOS plugins

o interactive configurability of PromethOS plugins

• Security Property

o currently relies on the fact, that PromethOS plugins can only be loaded by root. For a
better integration into the FAIN security model see [18].

• Portability Property

o PromethOS plugins can be deployed only on active nodes running PromethOS

o PromethOS itself is based on Linux

• Reliability Property

o AN Concepts are used to in this scenario to implement reliable Web Services

• Performance

o throughput of web traffic to be measured

• Interoperability Property

o ---

• Timeliness Property

o end-to-end delay: no hard requirements, should be sufficient for interactive use.

o hard to measure anyways, as it depends on many factors (delay imposed by the web
servers, delay on active nodes, delay on non active nodes passed by packets, etc.).

• Openness Property

o Standard web protocols are used and therefore the approach is “open” to any web user
or web service provider

5.4 Video on Demand Scenario

In active network nodes, PromethOS is going to play a role as a Linux kernel-space NodeOS. As such
it is of major importance that PromethOS is able to be managed easily from Execution Environments
(EE) in user space.

In FAIN, the Virtual Environment Manager (VEM) has been developed. VEM, an EE in user space, is
concerned with most of the node's management issues like service deployment and the like. An
integration of VEM and PromethOS is thus required to show interoperability between different types
of EEs

Deliverable Title Page 108 of 116

Copyright 2000-2003 FAIN Consortium May 2003

In FAIN an Active Network Node (ANN) has been designed to support multiple VEs, EEs and EE-
instances. VEs may include several EEs, in user as well as in kernel space. VEs are the major
component involved for customer differentiation, i.e. a customer is identified by its VE. A VE serves
as a resource container. Supporting multiple VEs, multiple customers can be run on a single node
without interfering each other.

PromethOS has been extended to handle several VEs to differentiate among customers; several EE-
instances in kernel space; communication among them; and communication among the EEs involved
used in FAIN. The VEM has been enhanced to control PromethOS according to the management
interface offered by the PromethOS user space library.

This generic application scenario shows the integration of the VEM and PromethOS in order to proof
the proper interaction between different EEs. The VEM will be able to control PromethOS. Several
VEs will be instantiated, resources assigned for operational control (however, no resource limit-
enforcement will be carried out in this scenario). In a VE, at least one EE will be instantiated in kernel
space in which the Wave Video plugin as demonstrated at the Barcelona Review Meeting will be run.
Thus, the demo will present the Wave Video scaling functionality as explained in D4 according to
customer’s different requirements.

Architecture/Setup

An active node and a source for a video stream are located at one site (e.g. a service provider). At a
different location, the video receiver is installed. Between the source and the active node, a high-
bandwidth link provides sufficient bandwidth. This link models a high-bandwidth backbone. Between
the active network node and the video receiver two different links are emulated. These links provides
different capacities according to the bandwidth allocated by the service level agreements among the
network provider and the customers. The active network node is supposed to adapt the high-bandwidth
requiring input stream according to the pre-set output capacities of the output streams.

At boot time, the ANN is running the VEM and the management components of PromethOS. A
customer request arrives at the ANN signalizing the VEM to deploy a VE, assign resources to this
customer, instantiate an EE, and deploy a Wave Video scaling plugin into this component.

The request to initiate the service deployment is implemented by the FAIN-WP4 service specification.
The service specification is parsed and resolved by the service creation engine provided by WP4. The
required Wave Video plugin code will be fetched from the WP4 code server and deployed on the
FAIN ANN.

A second request submitted by a different customer arrives at the ANN to create second instances of
this configuration with different resources assigned to the VE created. Node additional code fetching
is required since the code is still available in the local cache of the node.

The creation process is implemented and controlled by the VEM fully. As soon as this process
completes, the video source is signaled to start transmission of the video flows. A small helper
application simulating a Video on Demand source receives the request and serves the video out of the
huge database of different videos.

Objectives

By this scenario, a video transmission over the Internet has been implemented. Customers are
connected to the backbone of the Internet (the ETH ANN) by links with different capacities. The
management process of the data path based video scaling in the Wave Video plugin is handled fully by
the control plane of the FAIN active network: A service specification of FAIN's WP4 arrives at the
FAIN ANN; this specification is processed by the service creation engine; the VEM is responsible for
service deployment on the node and service configuration. PromethOS provides the in-kernel EE and
the ability to support different customers.

Deliverable Title Page 109 of 117

Copyright 2000-2003 FAIN Consortium May 2003

5.5 Managed Access Scenario

This part of the demonstration makes use of active packet technology to manage packet filters across
networks that have different owners.

Assigning Access Network Services: source host policy

In this scenario, a host joining a network is assigned a set of network services according to some
arrangement specific to the host. Here for example, all the road warriors get access to a DNS and a
web cache, but only road warriors 2 and 3 get access to a local SMTP server and may access remote
POP servers. Only road warrior 3 is allowed to use the IPSec protocols to establish tunnels.

Services
Road Warrior DNS Webcache SMTP POP IPSec

1 1 1
2 1 1 1 1
3 1 1 1 1 1

Separated Provisioning: Access and Service

As a use-case this is a simple two-stage, two-party scenario

Customer Access Provider
Negotiation

Provision

Figure 5-6: Use-case: customer and access provider

This is the way most networks are managed. The access network provider can only manage his own
equipment and assumes that the customer has his own arrangements with the rest of the network, the
service providers.

Deliverable Title Page 110 of 118

Copyright 2000-2003 FAIN Consortium May 2003

Customer Negotiation

Service Provider

Provision

Figure 5-7: Use-case: customer and service provider

The negotiation activity is a sign-up procedure. The technology needed to implement the provision
activity is given in Figure 5-8: Deployment: Access Network.

SNMP
Trap Generator

Injector

SNMP
Trap CollectorDHCP

server

Router

AccessHost

Network
controller

Road Warrior 1

Access Point

Access
Private IP
Network

Road Warrior 2
Road Warrior 3

Packet Filter
Traffic Conditioning

Figure 5-8: Deployment: Access Network

There are three road warrior laptops. Each wants a different type of network access from the other.
The road warriors access the private IP network using a WaveLAN access point. These access points
generate SNMP traps when a new host has been assigned an IP address. The IP address for a host is
allocated by a DHCP server.

Deliverable Title Page 111 of 119

Copyright 2000-2003 FAIN Consortium May 2003

The DHCP server operates on a network controller host. This host also supports an SNMP trap
collector and an injector. The injector is a process that can be used to inject active packets into the
network.

The remainder of the network is shown in Figure 5-9: Deployment: Backbone and DMZ. The router of
the access network performs packet filtering and conditioning. It has an interface to the backbone
network which has two routers for egress and ingress. The former performs network address
translation of packets with private IP source addresses to the address of the public interface of the
egress router. The ingress router performs NAT for packets from elsewhere to services hosted in the
private network.

Router

Access

Backbone
Private IP
Network

DMZ
Router

Egress

Router

Ingress

Network Address Translation
Packet Filter

Packet Filter
Traffic Conditioning

Network Address Translation
Packet Filter
Listeners

Network Address Translation
Packet Filter

Router

InterNet

Figure 5-9: Deployment: Backbone and DMZ

The active packet is injected and reconfigures all the routers to accept packets for different services
from the road warriors on the access network. The active packet could reconfigure all of the routers if
need be.

The value added by using active packets for this scenario is that the network elements can be
controlled on demand. Normally, network administrators would put a static configuration in place.

Integrated Provisioning: Access and Services

In this scenario, the access provider, the service provider and the customer jointly negotiate the
services to be provided. This then becomes a tri-partite activity.

Deliverable Title Page 112 of 120

Copyright 2000-2003 FAIN Consortium May 2003

Negotiation

Access Provider

Customer

Provision

Service Provider

Figure 5-10: Use-case: access and service provisioning

This scenario would need an active router for the access network. Every time the customer sends a
packet to a service he has not previously accessed an active packet is dispatched that attempts to
configure the local network and the remote network to provide the service. The network would be the
same as that given in Figure 5-8: Deployment: Access Network, but the router of the access network
would be able to intercept packets and dispatch active packets. It is unlikely that this scenario can be
implemented in the lifetime of the project, so it is best ignored for now.

System Design

 : Host dhcp : Daemon snmpTrapper :
Daemon

accessPoint :
NetworkElemen

injector :
Daemon

accessRouter :
NetworkElement

Figure 5-11: Access Network Operations

Deliverable Title Page 113 of 121

Copyright 2000-2003 FAIN Consortium May 2003

The host notifies the access point that it wants an IP address. The access point passes this to the DHCP
daemon running on the network controller and, on success, raises an SNMP trap. This is collected by a
daemon which injects a packet which is passed to the router.

snap : Daemon snmp :
Daemon

anode :
Daemon

packetFilter :
NetworkElemen

diffServer :
NetworkElemen

activeRouter :
NetworkElemen

 : Packet

Figure 5-12: Network Element Control

A packet arrives is trapped by the active router which passes it to the active node daemon. Its
component detects it as a SNAP packet and passes it to the SNAP daemon, which decodes and
executes the instructions. These are sent as SNMP commands to the SNMP daemon. The daemon then
executes the policy implementation to program the packet filter and the DiffServ routers.

5.6 Mobile FAIN Demonstrator

This generic application scenario introduces a “Wireless LAN” show case, which is implemented
within FAIN. It shows how mobile networks benefit from FAIN concepts. A more detailed description
can be found at [19]. It describes the idea “FAIN Dino Park”.

Deliverable Title Page 114 of 122

Copyright 2000-2003 FAIN Consortium May 2003

The show case “FAIN Dino Park” was made up, because it shows an interesting and promising use of
mobile wireless network technology within the edutainment domain. Especially for mobile wireless
networks where the bandwidth isn’t abundant, the FAIN concepts show their advantages. The use
cases of the “FAIN Dino Park” demonstrate how in a challenging wireless environment load-
balancing and load reduction approaches succeed in avoiding bottlenecks and could improve
edutainment concepts.
The focus of the demonstration is on load-balancing and load distribution in mobile networks. The
show case is motivated by already installed famous amusement parks, but additionally it is equipped
with a WLAN infrastructure based on products commonplace in the market. To realize load balancing
and load reduction concepts, some additional software components are implemented and installed on
the servers.

Architecture/Setup
In total, there are 3 different use cases, which demonstrate load balancing and load reduction. Each use
case is illustrated by demos. The use cases and the related demos are listed in the following.

Use Case 1: shows a redirection of a connection. The connection to heavily loaded access point is
terminated and a new one is built up between the connecting client and a less burdened access point
during peak-period demand during registration.

1. Use Case 2: This is a similar use case. It shows a simple redirection of a connection request.
The connection is built up between the requesting client and a less burdened access point. The
load at the burdened access point results by multiple request of video streaming.

2. Use Case 3: This generic application scenario shows how a personal mobile SW proxy
contributes to load balancing by mechanism of load reduction in the overall show case of the
FAIN Dino Park.

Each of the generic application scenarios relies on following components:

• A WLAN Access Controller, which is the central Control Unit. It is a software component and
is deployed on a FAIN PromethOS active node.

• At least two WLAN access points, to which the clients are linked by a wireless link. Via these
the clients receive data from a content server.

• At least one FAIN active node, which is PromethOS capable. Here, the following components
are deployed:

• A server providing content used for the demonstration of actual data transfer via the WLAN
access points. In the context of FAIN Dino Park, such a content server is dedicated to an
exponent or specifically a designated server for registration procedures at the entrance.

• At least two terminals, which are notebooks or may be PDAs, each with WLAN capabilities.
The terminals are equipped with a FAIN Terminal Daemon.

• Optionally a load generator is required creating the background traffic which is used to trigger
decisions on load balancing. Instead of using a load generator, the handover between access
points may be demonstrated by simulating the load in the WLAN access controller.

5.7 Security Scenario

Showing a pure security scenario immediately results in quite artificial settings, especially since
security is an integral part of the FAIN architecture. These are the reasons why the security scenario
has been hold very general. As such it may easily become a component of any of the above presented
generic application scenarios.

Deliverable Title Page 115 of 123

Copyright 2000-2003 FAIN Consortium May 2003

The security ‘scenario’ shows how an active packet is passed through a node and how it triggers
security concepts. The scenario is applicable to any active packet approach in transport, control or
management plain. The scenario consists of the following steps, which are repeated on every network
node that the packet traverses:

1. The intercepts the packet and invokes security receive check function with the ANEP packet,
UDP protocol information data and with the local information (service), where the packet is
headed to.

2. The ANEP packet is parsed.
3. The hop integrity option is evaluated:

a. The correct Security Association (SA) is chosen.
b. The packet hop replay information is validated.
c. The integrity token is verified.

4. If the packet contains one or more credential options:
a. The principal credentials are looked up in local cache.

b. If they are not already there, they are fetched from the previous node.

c. The credential path is validated.

d. The digital signature of the static part of the packet is verified with the trusted public
key of the principal.

e. The credential option time frame is checked.

5. If the packet contains active code and verification is required (e.g. due to a policy), the code is
verified.

6. The packet security context(s) is/are build from the principal credentials and results of the
packet code verification.

7. The security context of the packet is compared to the security context of the packet
destination. If the packet destination (service) has defined a policy the security context(s)
is/are used to authorize the access to the service.

8. If the access is authorized the packet is returned to the,
9. The passes the packet to the service.
10. The packet data (variable and payload, code or data) is evaluated in the service.
11. If the evaluation results in an action regarding the node, this action is authorized and the

policy, if one exists, is enforced.
12. The packet is returned to the and the security check function is invoked.
13. The active packet is build.
14. The next hop integrity option is built:

a. Regarding packet next hop destination the right SA is chosen.

b. Replay protection value is added.

c. An integrity token is built and the hop integrity option is added to the packet.

15. If every thing went successfully, the packet is returned to the and in order to be sent to the
next hop.

Deliverable Title Page 116 of 124

Copyright 2000-2003 FAIN Consortium May 2003

6 THE FAIN DISTRIBUTED TESTBED
This section provides an overview of the FAIN active testbed, which serves as a permanent
experimental network for active network technologies up to the end of the FAIN project and possibly
beyond. The testbed is completely operational. In the remainder of this section we will describe the
structure of the testbed, will precise where the different facilities and components are located and
briefly describe the type of nodes running at various sites.

6.1 Active Network Nodes (ANN)

The FAIN testbed comprises different types of FAIN nodes:

• FAIN Active Network Nodes

• FAIN Element Management Station (EMS)
• FAIN Network Management Station (NMS)

A FAIN Active Network Node runs active services and contains programmable management, data and
control planes. Two versions of this node exist, types A, and C and are described below in more detail.
Nodes type B were planned at the beginning but during the course of the project it was decided not to
implement them.
All node types will exhibit the similar functionality vis-à-vis services and management components,
i.e. they will all support the active service provisioning facilities (ASP). They will be different,
however, in their respective Node OS architectures and performance characteristics.

6.1.1 AN Node Type A
Nodes of Type A are completely PC-based and provide active network by the following components:
VEM, RCF, DeMux, SEC, ASNMP and PromethOS. All the components are further described in D7.

6.1.2 AN Node Type C
Nodes of Type C (Hybrid Active Router) combine a commercial router Hitachi TC100 with an active
network EE provided by a physically separate PC (attached PC). In type C nodes, the commercial
router does packet classification and demultiplexing, while active packet processing is done on the
attached PC. For this purpose, a Linux based NodeOS running java and SNAP execution environments
will be operated on the attached PC.

6.1.3 FAIN Network and Element Management Stations
FAIN developed two types of management stations, the Element Management Station (EMS) and the
Network Management Station (NMS). Both stations will be based in PCs with Linux OS. As
programming platforms both stations need OpenORB CORBA platforms over which management
components will be build.

FAIN currently allows only for one NMS per network. Therefore only one NMS will be operational
during the demonstrations; however, some partners have set up their own NMS for testing purposes in
their own realm.

One EMS may manage multiple active network nodes, which may be assigned dynamically. There are
multiple EMSs on the Testbed (many partners decided to run an EMS to be able to locally manage
their active network node while testing).

Deliverable Title Page 117 of 125

Copyright 2000-2003 FAIN Consortium May 2003

6.2 Network Topology and Interconnection

6.2.1 Testbed topology
Figure 6-1 depicts the current topology of FAIN testbed, with four sites (ETH, FHG, UCL, JSIS)
forming two core triangles and the rest of the sites connected as leaves to one of the core nodes. The
decision about which node had to be a core node and to which core node the other nodes had to refer
to was taken after measurements of the bandwidth and link quality between the different sites.
Essentially, this is a three-level hierarchical tree topology with cross connections at the second level of
the tree. The advantage of this topology in comparison with the full mesh is that the later provides
only single hop paths between active nodes, while it may be more interesting to test applications over
multi-hop paths. On the other hand, a tree with cross connections provides alternate paths between
nodes, which is not the case with a simple tree topology. Finally, contrary to full or partial mesh, a
carefully constructed tree topology accommodates for the fact that some partners have a lower
bandwidth connection to the testbed either due to technical limitations or due to corporate security
policy.

The complete network is shown in Figure 6-1.

6.2.2 Tunnel configuration
The FAIN testbed has been set up as an overlay (i.e. virtual) network on the existing network
infrastructure. The overlay network is based on IP tunneling and is realized by appropriately
configuring point-to-point tunnels between specific nodes. There are several different tunneling
technologies and the choice of tunneling technology depends on the requirements. In FAIN, we have
employed simple IP GRE tunneling, since the major requirement is to prevent interference of
experimental traffic from the production traffic. We do not consider testbed traffic to be of sensitive
nature (confidential), so there is no need to use IPSEC tunneling to protect this traffic while in transit
over public Internet.

For the two tunnel endpoints, a properly configured tunnel looks the same as a physical point-to-point
link, i.e. the nodes “think” they are directly connected, even though they use public Internet to
communicate with each other.

Deliverable Title Page 118 of 126

Copyright 2000-2003 FAIN Consortium May 2003

Figure 6-1:Testbed topology

6.2.3 Partner Network Data /Properties
Each partner site has:

• At least one node connected to the public internet acting as a tunnel endpoint
• A testbed subnet behind the tunnel endpoint with the address range of the form 10.0.p.0/24,

where p is the partner number from Consortium partner list (in order of appearance in the
FAIN Consortium partner list)

Partners can freely use the addresses from the private address range assigned to them.

6.2.4 Domain Name service
There is a DNS service running within the testbed. The primary DNS server is hosted and maintained
by FHG in Berlin and its IP address is 10.0.12.12. A secondary DNS server is hosted at ETH in Zurich
and has the IP address 10.0.11.11.

All nodes and hosts within the testbed use.fa as the top-level domain. The FQDN names for hosts
within the testbed have the following form

 hostname.FAIN-partner-code.fa

For example, the host “onizuka” located at FHG FOKUS is called onizuka.fhg.fa.

Deliverable Title Page 119 of 127

Copyright 2000-2003 FAIN Consortium May 2003

6.2.5 Sites overview
Figure 6-2 shows the actual status of the FAIN testbed. The bold lines represent the tunnels whereas
the lighter lines are the links in the private networks at the partners’ sites. EMS and NMS could be
installed on either active or passive nodes.

Figure 6-2: Nodes Overview

6.2.6 Monitoring tool
The FAIN testbed is constantly monitored using a “ping-based” tool. It checks whether the tunnel
endpoints and the most important active nodes are up, the main ports are open (e.g. the port where the
CORBA naming server is running), and monitors the average delay, loss rate and bandwidth on the
links.

Jsis.fa

Sag.fa

Tik.fa

Hel.fa

Ntua.fa Upen.fa

Fhg.fa

Ucl.fa

ACTIVE NODE NODE NODE
PASSIVE NODE

Upc.fa

Deliverable Title Page 120 of 128

Copyright 2000-2003 FAIN Consortium May 2003

7 APPLICATION SCENARIOS
The application scenarios are the same as generic application scenarios that are mapped to a specific
infrastructure. As told previously, the generic application scenarios are similar to a declaration in
programming languages, whereas the application scenarios are their respective instantiation.
Since the application scenarios are supposed to be shown as demonstrations of FAIN results they are
often referred to as demonstration scenarios. The terms are used interchangeable in the following
sections.

7.1 DiffServ Scenario

The detailed version of the DiffServ Scenario can be found at [25]. In this DiffServ demonstration
scenario, a service provider (SP-1) tries to make a priority transmission network by renting network
resources from an operator (ANSP). The SP-1 makes a contract to rent three levels for the priority
transmission with the ANSP. If one assumes that those three levels are DSCP-1 (Differentiated
Service Code Point-1), DSCP-32 and DSCP-224. The SP-1 connects a branch office-A and a head
office through HANN-1 (Hybrid Active Network Node) and HANN-2 as shown in the Figure 5-1. In
addition, it connects a branch office-B and the head office through the HANN-2. Then SP-1 assigns
the DSCP-1 and the DSCP-224 transmission qualities between the branch office, A and the head
office. In addition, it assigns the DSCP-32 transmission quality between the branch office-B and the
head office. Initially, the user, A in the branch office, sends video data to a user, C in the head office,
through the network with a DSCP-1 transmission quality. Then user B, in the branch office, sends
“jamming” traffic to another user C with a transmission quality of DSCP-32. The priority of the
DSCP-32 is higher than that of the DSCP-1. If the amount of video data and jam traffic is above the
output bandwidth of the network node (HANN-2), the video data transmission will be impaired, since
the priority of the video is less than that of the jam traffic. Then user A changes the priority of the
video data from the DSCP-1 to DSCP-224 by an active packet (a SNAP program). The active packet is
sent from user C to the user A. The authenticity and authority of the active packet is checked at each
HANN. After changing the priority of the video data, it will no longer be impaired.

Hub

Active Proxy

H A N N -2

GR2000

Active Proxy

H A N N -1

GR2000

Video

Server
AP

V

AP

V

: Act ive Packet

: Video Packet

Receiver

Cl ient

Jam Traf f ic

Sender
Jam Traf f ic

Reciver

V V

AP

 : Jam Packe t

(1)Video Send

(2)Jam Traf f ic Send

(3)AP Send

AP

B r a n c h O f f i c e-A (U s e r -A)

B r a n c h O f f i c e- B (U s e r-B)

H e a d O f f i c e (U s e r- C)

Figure 7-1: DiffServ Demonstration Scenario

7.1.1 HEL Test-bed Configuration
The Figure 7-2 shows a current network configuration of the HIT/HEL test-bed. For simplest, we used
only one HANN for checking of the DiffServ function in our test-bed. In addition, we implemented
the video receiver and the jam traffic receiver into one terminal. Besides, we used 10Mbps bandwidth
for the output of the HANN, especially G4 port of the GR2000.

Deliverable Title Page 121 of 129

Copyright 2000-2003 FAIN Consortium May 2003

G R 2 0 0 0

Act ive Proxy

10.0.8 .8/28

G 1

G 2

G 3

A1

T 0

SNAP Sender /Jam Re ce iver

JAM Rece ive r S N A P S e n d e r

J A M S e n d e r

Video Sender

(Linux/Win.) V 2

J 3

10.0 .8 .17/28

10.0.8 .9/28

10 .0 .8 .30/28

10.0 .8 .62/28

10 .0 .8 .46/28

10.0 .8 .49/28

10 .0 .8 .33/28

F A I N t e s t b e d

H E L t e s t b e d

H E L s u b n e t

GRE

T u n n e l

T o F H G
G 0

G 4

Video Rece iver

Video Rece iver

10.0 .8 .78/28

10 .0 .8 .65/28

e d g e 1

c o r e 1

H u b

S 4 R 4

10.0 .8 .66/28

H u b

D u m m y

T e r m i n a l

1 0 . 0 . 8 . 1 /28

D 0

Figure 7-2: HEL Test-bed Configuration

7.1.2 FHG Test-bed Configuration
The Figure 7-3 shows a current network configuration of the FHG test-bed. In this configuration, we
used 10Mbps bandwidth for the output of the TC-100, especially T2 port of the TC-100.

F 0

T C -100

1 0 . 0 . 1 2 . 4 0 / 2 8

T 1

T 0 T 2

F 7
1 9 5 . 3 7 . 7 6 . 3 4

1 0 . 0 . 1 2 . 1 7 / 2 8

JAM

R e c e i v e r

F H G S i d e

G R E

T u n n e l

S N A P

S e n d e r

A_Proxy

Video_S
F 3 F 2 F 1

O n i z u k a

J a m _S

R o u t e r
F 6 F 5

K r e e c h t a 1 0 . 0 . 1 2 . 1 / 2 8

1 0 . 0 . 1 2 . 2 / 2 8

1 0 . 0 . 1 2 . 2 0 / 2 8

1 0 . 0 . 1 2 . 3 3 / 2 8

1 0 . 0 . 1 2 . 7 8 / 2 8

1 0 . 0 . 1 2 . 6 5 / 2 8

1 0 . 0 . 1 2 . 4 9

1 0 . 0 . 1 2 . 6 2

T o H E L

JAM

S e n d e r

F 8

1 0 . 0 . 1 2 . 5 0

V i d e o

R e c e i v e r

F 4

1 0 . 0 . 1 2 . 0 / 2 8 1 0 . 0 . 1 2 . 1 6 / 2 8 : e t h 1 2 1 6 F a i n _ 1 2 _ 3 2 : 1 0 . 0 . 1 2 . 3 2 / 2 8 1 0 . 0 . 1 2 . 4 8 / 2 8

e t h 1 2 6 4 : 1 0 . 0 . 1 2 . 6 4 / 2 8

Figure 7-3: FHG Test-bed Configuration

Deliverable Title Page 122 of 130

Copyright 2000-2003 FAIN Consortium May 2003

7.2 Security Scenario

The security scenario will be shown in the same context as the DiffServ scenario. It will therefore run
with the same configuration and topology as shown in Figure 7-2 and Figure 7-3.

7.2.1 Demonstration Objectives
The security architecture is present on every active node in the scenario, namely on the hybrid nodes
and in video/SNAP sender. The security architecture offers two system level mechanisms to protect
active packets in the network, i.e. per hop protection and end-to-end protection. Per hop protection
requires that neighbor nodes share security associations. End-to-end protection is based on digital
signature mechanisms. It requires trusted certificates of entities on every node in order to issue users
credentials. For a service as described in this scenario, suitable credentials will be issued to the service
users. The credentials will specify the service, the corresponding VE, the time of validity and the
possible user role in the network (i.e. if it is a common user, a manager, or an observer). The
credentials are signed by trusted entities. They associate the public key of the user with her
authorization data.
For internode communication per hop protection provides authentication of the neighbor node. This
suffices the requirements of protocols that need e.g. to fetch user related credentials from the previous
node.

There are two types of objects (i.e. targets) that can be protected in this scenario with the mechanisms
designed and implemented in FAIN, namely input/output channels and the traps that the SNAP code
raises in the DiffServ trap receiver. For these targets the security policy has to be set in the target
security context.

For the target of the channels, the VE and service (EEId) have to match explicitly. It is possible to set
a policy for a channel that only a certain user group can access.
For the second target, the DiffServ trap receiver context has to fit into the security policy, which
governs user access to the environment API. Every access from the SNAP daemon to the environment
is authorized according to the security policy and user supplied authorization data carried in the active
packet.

On system level, the security architecture is integrated within the component framework of the node
management system. Credentials and security policies are provided for pVE and VEs hosted at the
node. The decisions on who is allowed to manage, to monitor or to observe components or their ports
on the node, are taken by referring to policies.

Special attention has been devoted to protect SNAP packet in the network. With SNAP, as in-band
approach, the packet content can be legally changed in the network. Due to this fact, the requirements
of end-to-end protection are not fulfilled by only applying a digital signature from the originator of the
packet. In order to protect security relevant data in the SNAP packet the verification framework is
used therefore.
When the user originates a SNAP packet the packet is encapsulated in ANEP and fingerprinted for
security relevant commands, which are stored in the ANEP packet payload. The SNAP packet is
stored in the variable ANEP option. The ANEP payload is covered by the digital signature. While
passing the nodes in the network, the SNAP packet is fingerprinted again and the fingerprint is
compared to the payload. This verification allows to detect modifications on the payload, like
reordering or multiplications of the security relevant commands.

Deliverable Title Page 123 of 131

Copyright 2000-2003 FAIN Consortium May 2003

7.2.2 Setup and Demonstration
The security scenario will be shown complementary to the DiffServ Scenario. The security scenario
will show operations on the security architecture. In particular how, the nodes and node resources can
be protected from malicious or unauthorized usage, how active packets can be protected in the
network from unauthorized modification, spoofing or replay attacks.
As complementary part of the DiffServ scenario, those operations of the security architecture will be
shown as the output to local terminal. The external representation of the packet will be shown together
with the processes of building and parsing it. Furthermore the processes concerned with credentials,
the access control checks, operations on credentials cache, the verification of the SNAP code and other
general operation of the security architecture will be shown in the context of the FAIN component
model.

7.3 WebTV Scenario

An SP, called WebTV-SP, offers a WebTV service to its customers by broadcasting the video program
in the Internet. In the scenario, one customer uses a terminal that is not capable of displaying correctly
the video stream, e.g. it uses a handheld device with low processing power and a low access
bandwidth. The WebTV-SP pre-processes the video stream for this customer by transcoding into the
format understood by the handheld.

As a result of an SLA agreed between the ANSP and the SP, policies are sent to the ANSP MI. These
policies are edited using the GUI of the Policy Editor. Consequently, the ANSP PBNM receives a QoS
policy and enforces it on both the NMS and the EMS. This results in invoking the active node
management framework to create a new Virtual Environment (VE) for the WebTV-SP. If the VE
creation is done successfully, then the ANSP PBNM enforces a delegation policy through the NMS
and the EMS. This enforcement consequently requests the active node management system to activate
the newly created VE. The ANSP then creates a Management Instance (MI) in all the appropriate
EMS stations for this WebTV-SP and assigns the access rights to the active nodes interfaces.

The WebTV-SP is now ready to configure his AVPN by sending policies that are customer specific.
The SP also installs service components into the active nodes (a transcoder component in our
scenario). The service components are deployed by the ASP system based on the service descriptors.

In addition, the SP deploys service-specific policies in the QoS PDP of his MI after the deployment of
the transcoder service component in the active node. In this way the SP can define its own service-
specific policies that will be enforced in the active node.

Finally, the monitoring system is used for the reconfiguration of the transcoder at runtime, when for
instance the access bandwidth changes dramatically and the end-user needs a different transcoding
format on the video stream.

Network Setup
Figure 7-4 shows how the WebTV scenario is mapped to the FAIN testbed.

Deliverable Title Page 124 of 132

Copyright 2000-2003 FAIN Consortium May 2003

Figure 7-4: WEB TV mapped to Testbed

The components involved in the scenario are:

1. Windows/Jmstudio – emitter (windows laptop at UCL)
2. Windows/SIP Video Client – receiver 1 (windows laptop provided by FT)
3. Windows/SIP Video Client – receiver 2 (windows laptop provided by FOKUS)
4. Active node D – duplicator (jorg.uc.fa)
5. Active node T1 – transcoder 1 (komsys-pc-zurich)
6. Active node T2 – transcoder 2 (onizuka.fhg.fa)
7. Network Management Station (kubrick.upc.fa)
8. Element Management Station D (a debian machine at UCL)
9. Element Management Station T1 (komsys-pc-bern)
10. Element Management Station T2 (kreechta.fhg.fa)
11. Naming Service (fhg.fhg.fa)
12. Service Registry (fhg.fhg.fa)
13. Service Repository (www.ucl.fa)
14. Network ASP (fhg.fhg.fa)
15. Extended SIP proxy (tik.tik.fa)
16. SIP Server and SIP Components, namely registrar, location, and feature servers (tik.tik.fa)

7.4 Web Service Distribution Scenario

For the full and extensive documentation of the Web Service Distribution Scenario please refer to [9].

EMS D

Active
Node T2 EMS T2

NMS

Active
Node D

Active
Node T1

EMS T1

komsys-pc-zurich.tik.fa

kreechta.fhg.fa

onizuka.fhg.fa

kubrick.upc.fa

jorg.ucl.fa

jorg.ucl.fa Windows
Laptop@ucl.fa

WebTV Emitter

Receiver 1

Windows
Laptop@fhg.fa

Receiver 2

Windows
Laptop@fhg.fa

Deliverable Title Page 125 of 133

Copyright 2000-2003 FAIN Consortium May 2003

In the Web Service Distribution Scenario, Web (HTTP) traffic is distributed and redirected within the
network among several distributed servers in order to provide reliability, performance and scalability
for web services.12

The overall scenario is depicted in Figure 5-5. Both redirection nodes and service nodes will be
usually physically located within the access network of the end user, the access network of the web
service provider, or connected via a separated access network. For this reason, we may also call both
of them “Active Web Gateways”. Note that we assume that the core network is non-active and only
provides basic IP connectivity.
The overall setting is fully transparent to the end user, i.e., the end user uses the web service via an
ordinary web browser, using standard protocols such as IP or HTTP. The application scenario is
subdivided in following demos:

• Demo 1: shows a simple redirection of TCP data. All packets, which are sent by a specified
client and are addressed to a specified server, are re-routed to another computer..

• Demo2: Additionally to the functionality of Demo1 the throughput is monitored and plotted.
There is however no possibility to change the configuration of the module using this user
interface.

• Demo3: This demo is an extension of Demo2 using several client-server pairs. Additionally a
simple graphical configuration option is offered.

• Demo4: This demo is a simple load distribution example. Packets, addressed to a specified
server are re-routed to different computers dependent on the current utilization condition of
these computers.

• Demo5: Adds a HTTP Parser to Demo4. The parser examines all headers and collects the
necessary data for sessions. The results of the parser are not used in this demo.

• Demo6: This demo adds support for sessions using the parser introduced in Demo5.

7.4.1 Network Setup
In this section, we describe the network configuration, both in terms of a general set-up which can be
used by anyone who intends to run the demo in his own network, and in a mapping of the general set-
up to the FAIN testbed, which is only relevant for those which want to run the demo on the FAIN
testbed (and therefore have access to the testbed).

Set-up of a standalone demo
The generic network topology of our demo is shown in Figure 7-5.

WSD
redirector

Client
 (Web browser)

Web
Server

User
Interface

Client
 (Web browser)

Client
 (Web browser)

Web
Server

Web
Server

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

PromethOS node (Active Node) Server node (Non Active Node)Client node (Non Active Node)

Figure 7-5: Network topology used by the demos

12 The term „Web Service“is often also used to refer to approaches for describing, finding and invoking objects
and their services with web-based languages and protocols, e.g. Microsoft’s.NET. We use the term “Web
Service” to refer to an application service which is offered to an end-user, as it has been invented in [10].

Deliverable Title Page 126 of 134

Copyright 2000-2003 FAIN Consortium May 2003

Active Node(s)

• PromethOS Nodes: For the demos there is only one node of this type. The node is responsible
for the redirection of web traffic to different web servers. Additionally it runs the user
interface for configuring and monitoring the PromethOS modules.

Each of the demos uses the following parts on an active node:

• PromethOS: A framework for the manipulation of Linux Kernel modules (PromethOS
modules) and for redirecting network traffic to such a PromethOS module.

• Netfilter: A framework for the manipulation of network packets. Netfilter is used by
PromethOS.

• Iptables: This is the user space part of Netfilter. It is used to load and configure Netfilter
modules and to redirect network traffic to such a module. PromethOS uses an extended
version of Iptables which is able to load and configure PromethOS modules.

• A PromethOS module: A PromethOS module is used for the actual manipulation of the
network traffic.

• User interface: It is used to configure and monitor the PromethOS module.
This is shown in Figure 7-6.

Client 1

User Space

Kernel Space

PromethOS

Netfilter

Linux Kernel

PromethOS
Module

Iptables

reconfigure
and monitorload and

configure

User
Interface

Client 2

Client n

...

Web Server n

Web Server 1

Web Server 2

...

Configuration Table

1

1: Linux is used as operating
system for an active node

2: Netfilter is used by Prometh-
OS to filter out traffic inten-
ded to be processed by Pro-
methOS modules

3: PromethOS is used to mani-
pulate PromethOS mo dules
and to forward traffic to these
modules

2

3

4

5

76

8

9

4: A PromethOS module is used
to process network traffic

5: A PromethOS module con-
tains configuration tables
which influence the operation

6: Iptables is used to load Pro-
methOS modules and to in-
struct netfilter to forward
traffic to the module

7: A user interface can be used
to configure and monitor the
PromethOS module

8: One or more web servers are
used as final receivers for the
requests.

9: One or more clients (browser
or another web traffic gene-
rator) create requests

Figure 7-6: General Structure of a PromethOS Demo

The PromethOS node is a component of a network, which in addition contains several web servers and
web clients. Web clients may be ordinary web browser, or traffic generators, which are used in this
demo for the easier creation of HTTP traffic. This is shown in Figure 7-5

Deliverable Title Page 127 of 135

Copyright 2000-2003 FAIN Consortium May 2003

Non-Active Nodes

• Client nodes: These nodes run a normal web browser or some other web traffic generator.
There is no need that these nodes are PromethOS nodes.

• Server nodes: These nodes run a normal web server. There is no need that these nodes are
PromethOS nodes.

Services

• None.

Set-up of a demo on the FAIN testbed
This application scenario is mapped as follows to the FAIN testbed:

• Web servers are installed at kreechta.fhg.fa, sagfs.sag.fa, sagan.sag.fa and ems.tik.fa.

• A FAIN Active Node is installed at ems.tik.fa.

• Client nodes must be installed at appropriate nodes depending on the location the demo is run.
Two possible mappings are shown in Figure 7-7 and Figure 7-8.

Possible set-up for demonstration taking place at FOKUS

Jsis.jsis.fa 10.0.2.1
Cvs.jsis.fa 10.0.2.91

sag.sag. fa
10.0.10.1

Tik.tik.fa 10.0.11.11
(DNS)

Hel.hel.fa 10.0.8.1

Ntua.ntua .fa 10.0.3.1

Upen.fa 10.0.15.15

Endpoint.fhg.fa 10.0.12.1

Onizuka.fhg.fa 10.0.12.2
Fhg.fhg.fa 10.0.12.12 (DNS)

Kreechta.fhg.fa 10.0.12.3

Ucl.ucl.fa 10.0.1.1

Jorg.ucl.fa 10.0.1.34

Timo.ucl.fa 10.0.1.17

George.ucl.fa 10.0.1.242
(local DNS)wilson .ucl.fa 10.0.1.50

Lars.ucl.fa 10.0.1.18

ACTIVE NODE

PASSIVE NODE

sagfs.sag.fa 10.0.10.3

sagan.sag.fa 10.0.10.2

Kubrick.upc.fa 10.0.4.4

Santana.upc.fa 10.0.4.100

maladeta.upc .fa 10.0.4.114
ems.tik.fa 10.0.11.24

Web-Server

Web-Server

Web-Server

Web-Server

Client Client

WSD redirector

Figure 7-7: Network set-up for demonstration at FHG

Possible set-up for demonstration taking place at JSIS

Deliverable Title Page 128 of 136

Copyright 2000-2003 FAIN Consortium May 2003

Jsis.jsis.fa 10.0.2.1
Cvs.jsis.fa 10.0.2.91

sag.sag.fa
10.0.10.1

Tik.tik.fa 10.0.11.11
(DNS)

Hel.hel.fa 10.0.8.1

Ntua.ntua.fa 10.0.3.1

Upen.fa 10.0.15.15

Endpoint.fhg.fa 10.0.12.1

Onizuka.fhg.fa 10.0.12.2
Fhg.fhg.fa 10.0.12.12 (DNS)

Kreechta.fhg.fa 10.0.12.3

Ucl.ucl.fa 10.0.1.1

Jorg.ucl.fa 10.0.1.34

Timo.ucl.fa 10.0.1.17

George.ucl.fa 10.0.1.242
(local DNS)wilson .ucl.fa 10.0.1.50

Lars.ucl.fa 10.0.1.18

ACTIVE NODE

PASSIVE NODE

sagfs.sag.fa 10.0.10.3

sagan.sag.fa 10.0.10.2

Kubrick.upc .fa 10.0.4.4

Santana.upc .fa 10.0.4.100

maladeta.upc .fa 10.0.4.114
ems.tik.fa 10.0.11.24

Web-Server

Web-Server

Web-Server

Web-Server

Client Client

WSD redirector

Figure 7-8: Network set-up for demonstration at JSIS

7.4.2 Description of Demos
The demos can be shown independent of each other, but it is suggested to show them in the described
order as some demos are based on earlier ones.

Demo 1
This demo shows a simple redirector for TCP data. All packets, which are sent by a specified client
and are addressed to a specified server (IP-address and port), are re-routed to another computer. This
demo is to a large extent outdated. It serves only to show the operability of the concept.

Deliverable Title Page 129 of 137

Copyright 2000-2003 FAIN Consortium May 2003

Sender-IP

1.2.3.1 1.2.3.2 1.2.3.3

Receiver-IP Receiver-Port Forward-IP Forward-Port

81 80

User Space

Kernel Space

PromethOS

Netfilter

Linux Kernel

PromethOS
Module

Iptables

load and
configure

Client 1 Web Server 1

Web Server

1

1: Iptables is used to load and configure the
PromethOS module

2: A client sends requests to „Web Server“
3: Netfilter forwards the traffic to the Prometh-

OS module

2
3

4

5

6

4: The PromethOS module redirects the traffic
to it’s final destination „Web Server 1“

5: „Web Server 1“ processes the requests and
returns the results

6: This demo has no user interface

Figure 7-9: Structure of Demo1

This demo allows to specify exactly one pair of client and server address which can be re-routed to
another computer. Iptables is used to load the module and insert the necessary configuration data. The
configured data can’t be changed at run-time. The demo uses only one client and one web server.

Note: The same result could have been achieved using only Netfilter.

Demo 2
This demo is an extension of Demo1. It adds a user interface which monitors the throughput of the
PromethOS module and shows it graphically. There is however no possibility to change the
configuration of the module using this user interface. The configuration takes place again using
Iptables. The demo uses only one client and one web server.

Demo2 consists of 2 parts. On the one hand a PromethOS module is used which is responsible for the
redirection of packets. On the other hand a user space program is used, which queries and plots the
current throughput. For monitoring the PromethOS module a file in the /proc file system is used
(/proc/promethos/net/management). The structure of Demo2 is shown in Figure 7-10.

Deliverable Title Page 130 of 138

Copyright 2000-2003 FAIN Consortium May 2003

Sender-IP

1.2.3.1 1.2.3.2 1.2.3.3

Receiver-IP Receiver-Port Forward-IP Forward-Port

81 80

User Space

Kernel Space

PromethOS

Netfilter

Linux Kernel

PromethOS
Module

Iptables

load and
configure

Client 1 Web Server 1

Web Server

1

1: Iptables is used to load and con-
figure the PromethOS module

2: A client sends requests to „Web
Server“

3: Netfilter forwards the traffic to
the PromethOS module

2
3

4

5

4: The PromethOS module redirects the traffic to it’s final
destination „Web Server 1“

5: „Web Server 1“ processes the requests and returns the
results

6: The user interface is used to monitor the PromethOS
module using the file /proc/promethos/net/management.

User
Interface

6

Figure 7-10: Structure of Demo2

Demo 3
This demo is an extension of Demo2 using several client-server pairs. Additionally a simple graphical
configuration option is offered. The user interface can be used to change the current configuration at
runtime. This demo can use more than one client and more than one web server but there is no load
balancing.

Demo3 consists of 2 parts. A kernel resident PromethOS module is responsible for the actual
forwarding of the packets. This module is loaded using Iptables as done with the two preceding
demos. A user space program is responsible for configuring the module and for monitoring the
throughput. 3 files in the /proc file system are used to change the configuration data at runtime and to
query the throughput data. /proc/promethos/net/management is used to send the configuration data to
the PromethOS module. The file /proc/promethos_demo3/tables is used to query the current
throughput data. The file /proc/slabinfo is used to query and display the current size of the contract
tables.

The PromethOS module uses a forwarding table which contains the following information:

• A triple containing client-IP, server-IP, server-port

• A pair containing final destination-IP and final destination-port
Each of the table entries must contain a unique triple client-IP, server-IP and server-port. If there are
multiple entries containing the same triple only the first entry will be used. All further entries are
ignored. Each of these triples can be assigned to one and only one final destination (see Figure 7-11
for an example).

Deliverable Title Page 131 of 139

Copyright 2000-2003 FAIN Consortium May 2003

Client-IP Server-IP Server-Port Forward-IP Forward-Port

User Space

Kernel Space

PromethOS

Netfilter

Linux Kernel

PromethOS
Module

Iptables

load and
configure

Client n Web Server 2

Web Server a

1

1: Iptables is used to load the Pro-
methOS module

2: The user interface is used to confi-
gure the PromethOS module

3: One or more clients send requests
to „Web Server a“ and „Web
Server b“.

4: Netfilter forwards the traffic to the
PromethOS module

4

5

5: The PromethOS module redirects the traffic to it’s final
destination. Requests directed towards „Web Server a“
are redirected to „Web Server 1“ and requests for „Web
Server b“ are redirected to „Web Server 2“.

6: The user interface can be used to change the configura-
tion of the PromethOS module

7: The user interface monitors the module using the files
/proc/promethos/net/management, /proc/prome thos_de-
mo3/tables and /proc/slabinfo.

User
Interface

1.2.3.1 1.2.3.2 1.2.3.381 80

1.2.3.1 1.2.3.2 1.2.3.582 80

Web Server b

Web Server 1

7

2

6

Client 1

...

3

Figure 7-11: Structure of Demo3

User Interface

The user interface contains a set of input fields which can be used to enter the necessary data. The
following information is required:

• IP address of the client (the port of the client is not considered, because is changes for each
connection).

• IP address of the original server

• destination port of the original server

• IP address of the final server
• destination port of the final server

The button Add is used to transfer the data from the input fields into the internal tables of the kernel
resident module. The button Remove is used to delete the entry from the internal tables, which
matches the contents of the input fields. The button Show shows the current contents of the internal
tables. Clear Input clears the input fields. Clear output clears the output field in the lower part of the
user interface.

The menu Table Entries contains all table entries from the internal tables. If an entry from the menu
is selected, the appropriate data are inserted into the input fields.

Demo 4
This demo is a simple load distribution example. Packets, addressed to a specified server are re-routed
to different computers dependent on the current utilization condition of these computers. The
utilization of a computer is defined by the number of open TCP connections to this computer. The
only connections considered are the connections running through the PromethOS module.

Deliverable Title Page 132 of 140

Copyright 2000-2003 FAIN Consortium May 2003

For each receiver of a request a number of alternate receivers can be specified. The load sent to one of
the receivers is distributed over all the specified alternate receivers (see Figure 7-12 and Example 1
below).

User Space

Kernel Space

PromethOS

Netfilter

Linux Kernel

PromethOS
Module

Iptables

load and
configure

Client n

Web Server 2 (1.2.3.5/80)

Web Server a (1.2.3.1/81)

1

1: Iptables is used to load the Pro-
methOS module

2: The user interface is used to confi-
gure the PromethOS module

3: One or more clients send requests
to „Web Server a“ and „Web
Server b“.

4: Netfilter forwards the traffic to the
PromethOS module

4

5

5: The PromethOS module redirects the traffic to it’s final
destination. Requests directed towards „Web Server a“
are redirected to „Web Server 1“ or „Web Server 2“ and
requests for „Web Server b“ are redirected to „Web
Server 3“.

6: The user interface can be used to change the configura-
tion of the PromethOS module

7: The user interface monitors the module using the files
/proc/promethos/net/management, /proc/prome thos_de-
mo4/tables and /proc/slabinfo.

User
Interface

Web Server b (1.2.3.2/81)

Web Server 1 (1.2.3.3/80)

7

2

6

Client 1

...

3

1.2.3.1 1.2.3.3

Receiver-IP Receiver-Port Forward-IP Forward-Port

81 80

1.2.3.1 1.2.3.581 80

1.2.3.2 1.2.3.681 80

Use-Count

0

0

0

Web Server 3 (1.2.3.6/80)

Figure 7-12: Structure of Demo4

User Interface

As shown for Demo3 a simple graphical configuration option is offered. This can be used to change
the current configuration at runtime. To do so the user interfaces contains a set of input fields which
can be used to enter the necessary data? The following information is required:

• IP address of the client (not used in this demo).

• IP address of the original server

• destination port of the original server

• IP address of the final server
• destination port of the final server

The button Add is used to transfer the data from the input fields into the internal tables of the kernel
resident module. The button Remove is used to delete the entry from the internal tables, which
matches the contents of the input fields. The button Show shows the current contents of the internal
tables. Clear Input clears the input fields. Clear output clears the output field in the lower part of the
user interface.

The menu Table Entries contains all table entries from the internal tables. If an entry from the menu
is selected, the appropriate data are inserted into the input fields.

Deliverable Title Page 133 of 141

Copyright 2000-2003 FAIN Consortium May 2003

Demo 5
Demo5 is derived from Demo4. Demo5 adds a HTTP Parser to Demo4. The parser is used internally
to examine all HTTP headers and to collect the data contained in the header. The collected information
is not used in this demo however. A goal of this demo it to determine which load such a parser
represents.

The demo works as described for Demo4.

Demo 6
This demo shows likewise a simple load distribution. Packets, addressed to a specified server are re-
routed to different computers dependent on the current utilization condition of these computers. The
utilization of a computer is defined by the number of open TCP connections to this computer. The
only connections considered are the connections running through the PromethOS module.
Additionally to the two demos Demo4 and Demo5 this demo takes sessions into consideration i.e. all
packets belonging to the same session are forwarded to the same computer independent of its current
utilization.

In order to determine the packets belonging to a session, the HTTP headers of all requests and replies
are examined. In order to guarantee that headers, which span several packets, can be processed
correctly too, the packets are redirected to a local socket in the kernel. This socket receives the data,
forwards them to the parser and, if necessary, buffers the data, if still no complete header is present
(see Figure 7-13.).

Deliverable Title Page 134 of 142

Copyright 2000-2003 FAIN Consortium May 2003

User Space

Kernel Space

PromethOS

Netfilter

Linux Kernel

PromethOS
Module

Iptables

load and
configure

Client n Web Server 2 (1.2.3.5/80)

Web Server

1

1: Iptables is used to load the
PromethOS module

2: The user interface is used to
configure the PromethOS
module

3: One or more clients send re-
quests to „Web Server“

4: Netfilter forwards the traffic
to the PromethOS module
which parses the HTTP
header

5: The PromethOS module cre-
ates a new connection entry

4

6: If a complete HTTP-header is found, the session manager
assignes a session id to the connection else the packet is
queued in the connection entry.

7: If a complete HTTP-header is found,the redirector assigns a
final receiver to the connection. All bufferd data are sent to
this receiver.

8: The user interface can be used to change the configuration of
the PromethOS module

9: The user interface monitors the module using the files
/proc/promethos/net/management, /proc/promethos_de-
mo6/redirstat, /proc/promethos_demo6/redirector, /proc/pro-
methos_demo6/ redirector_defs, /proc/promethos_de-
mo6/sessions, proc/promethos_demo6/session_defs and
/proc/slabinfo.

User
Interface

Web Server 1 (1.2.3.3/80)

9

2

8

Client 1

...

3

1.2.3.3

Forward-IP FPort

80

1.2.3.5 80

1.2.3.5 80

Use-Count

1

1

1

SessionID

17

23

37

/cgi-bin/cgi1

Url Host

Host1

/cgi-bin/cgi2 Host2

/cgi-bin/cgi1 Host2

SessionID

17

23

37

1.2.3.1

Client

1.2.3.1

1.2.3.1

CookieName

Session

Kunde

Session

CookieValue

Session1

132435

Session2

Sessions

RedirektorConnections

RequestQueue Server

1.2.3.3

--- 1.2.3.5

1.2.3.1

Client

1.2.3.1

ReplyQueue

34567

Port

34578

80

Port

80

--- 1.2.3.51.2.3.1 ---34589 80

5

6

7

Figure 7-13: Structure of Demo6

User Interface

The user interface can be used to enter the necessary configuration data and to query the current state.

This demo contains 2 sets of input fields:

• the upper line is intended for the input of information for the session manager

• the lower line is meant for the input of information for the redirector.
The session manager needs the following data:

• prefix for the URLs which are to be combined into a session
• the name of a cookies, which is to be used as session cookie

Deliverable Title Page 135 of 143

Copyright 2000-2003 FAIN Consortium May 2003

• the address of the host the client (browser) sends the messages to
• the port the client (browser) sends the messages to

Note: The host must be indicated in the form, which is used by the browser to insert the host into the
HTTP header. If e.g. both hostname and IP address are used, then both forms must be entered into the
tables. If thus a computer with the name testcomputer has the IP address 1.2.3.4, then both forms must
be inserted with URL and session cookie into the tables. The browser must use the same form for the
host name for the entire period a session is valid. The conversion of a host name to an IP-address is
not possible at present.

The button Add is used to insert the entered data into the internal tables. The button Del is used to
remove the entry matching the data in the input fields from the tables. The button Show shows the
current contents of the session table (the contents of this table are specified by the session manager
and can not be changed). The button ShowDef shows the contents of the session definition table (those
are the data entered by the user).

The redirector needs the following data:

• IP address of the original server

• destination port of the original server

• IP address of the final server

• destination port of the final server
The button Add is used to insert the entered data into the internal tables. The button Del is used to
remove the entry matching the data in the input fields from the tables. The button Show shows the
current contents of the redirector table (the contents of this table are specified by the redirector and can
not be changed). The button ShowDef shows the contents of the redirector definition table (those are
the data entered by the user).

Load Generators

For the demos described so far there are some load generators which create web traffic. The load
generators are not demos by themselves but are used for the described demos.

All load generators have the following input fields:

Destination: This field is used to specify the destination of the requests

Port: This field is used to specify the destination port

Path: This field is used to specify the file/directory or web service to be used

Count: Number of requests to send

Sleep: Number of milliseconds to wait before the next request is sent

Web Services

The described demos use two simple web services to show redirection of web traffic in the case when
sessions must be considered.

Counting Web Service

This web service maintains a simple counter for each session. The counter is incremented by 1 for
each received request.

There are two instances of this web service:

• testcgi3.cgi

• testcgi4.cgi

Deliverable Title Page 136 of 144

Copyright 2000-2003 FAIN Consortium May 2003

For each request the following result is returned to the requestor:

SessionID = ssssss

Call Count = nnnn

ssssss represents the session ID which is generated by the web service for this session. nnnn is the
number of requests received so far by the web service for this session.

Maze Generator

This web service generates different mazes for each session. For each request received from a client,
part of the maze is returned. It is the responsibility of the client to display the received parts of the
maze.

There are two instances of this web service:

• testcgi5.cgi
• testcgi6.cgi

The web server returns three different results:

• INIT <colour> <sequence number> <width> <height>
 <num cols> <num rows> <cell width> <cell height>

 This is the first command returned for a new maze.

<colour> Background colour of the maze.

<sequence number> sequence number, this number is incremented for each command
returned by the web server

<width> Width of maze in pixel

<height> Height of maze in pixel

<num cols> number of columns in maze

<num rows> number of rows in maze

<cell width> width of a maze cell

<cell height> height of a maze cell

• NEXT <colour> <sequence number> <cell xpos> <cell ypos>
 <dir> <op>

 For each element of the maze one NEXT command is returned.

<colour> Background colour of the maze. Must always have the same value as
the colour returned with the INIT command.

<sequence number> sequence number, must have a value one higher than the value
contained in the previous command.

<cell xpos> x-position of the cell the command operates on
<cell ypos> y-position of the cell the command operates on
<dir> type of the element inserted into the cell, different types of horizontal

and vertical rectangles or maze walls.
<op> operation, this can have the values

 0: draw a solid block, used to show a path through the maze
 1: draw a grey block, used to mark dead ends in the maze

Deliverable Title Page 137 of 145

Copyright 2000-2003 FAIN Consortium May 2003

 2: draw the maze walls, <dir> contains the walls

• EOF This is the last command for each maze.

Requirements for a demo using the FAIN testbed

There is a preinstalled demo using the FAIN testbed. This demo uses the following testbed nodes:

• The active node is located at ems.tik.fa (10.0.11.24).

• The following nodes are configured as server nodes running apache:
 kreechta.fhg.fa (10.0.12.3)

 sagan.sag.fa (10.0.10.2)

 sagfs.sag.fa (10.0.10.3)

 ems.tik.fa (10.0.11.24)

The required web services are already installed and can be used without further activity. The web
server uses parts of the java documentation as static content.

• The client node(s) can be placed at any convenient node in the testbed. For the installation of
the necessary load generators see chapter Installation and Configuration – Non-Active Node –
Client Node.

To show a demo using the testbed the following step has to be carried out at least once:

• Install client nodes as described below in the chapter Installation and Configuration – Non-
Active Node – Client Node. You need at least one client node. The client node should be a
different computer than the computer running the active node (e.g. do not use ems.tik.fa as a
client node).

Before you can show a demo, the following steps should be carried out:

• Login as root to the active node ems.tik.fa in a separate window and change to the directory
/home/fainwsd/promethos/demo. This window is later used to start the demo on the active
node.

Note: To login to the active node you need the root password for ems.tik.fa.

• Login to the client nodes, change to the directory <promethosroot>/demo and run some load
generators.

runload3: Run three load generators (PromethosDemoHttpLoad). The load generators do not use
sessions. They can be used for the demos DEMO1 – DEMO6

runload3s: Run three load generators (PromethosDemoSessionLoad). The load generators use
sessions. They can be used for DEMO6.

• runload3m: Run three load generators (PromethosDemoMazeLoad).

Deliverable Title Page 138 of 146

Copyright 2000-2003 FAIN Consortium May 2003

7.5 Video on Demand

PromethOS is a Linux kernel-space NodeOS for active nodes. It is managed from Execution
Environments (EE) in user space. Since the Virtual Environment Manager (VEM), which is an EE in
user space, is also concerned with node management issues, an integration of both, VEM and
PromethOS, becomes indispensable for the interoperability of different EE types. The video on
demand scenario demonstrates this integration of VEM and PromethOS. It shows how the VEM
management interface of PromethOS’ user space library has been enhanced in order to control
PromethOS.
The ANNs have been designed to support multiple VEs, EEs and EE instances. The scenario
demonstrates therefore also how PromethOS is supporting multiple VEs and how it is able to
differentiate among the customers by using those VEs. For the scenario, one EE per VE is instantiated
in kernel space. The EE runs a Wave Video plugin, which scales its functionality according to the
different requirements of the customer.

7.5.1 Architecture/Setup
The source for the video stream is located at ems.tik.fa and flows via tik.tik.fa. The video receiver is
installed at onizuka.fhg.fa. Between the source and the active node, a high-bandwidth link provides
sufficient bandwidth. The link models a high-bandwidth backbone. The first ANN is statically
configured.
The active network node and the video receiver are connected by two links with different bandwidth.
The capacities of the links reflect different Service Level Agreements. The active network node is
supposed to adapt the high bandwidth requiring input stream according to the pre-set output capacities
of the output streams.

At boot time, the ANN is running the VEM and the management components of PromethOS. As a
customer request arrives at the ANN, the VEM orders the deployment of a VE, i.e. it assigns resources
to the customer, and it orders the deployment of an EE where the Wave Video scaling plugin is
installed.

The request to initiate the service deployment is implemented by the FAIN-WP4 service specification.
The service specification is parsed and resolved by the Service Creation Engine. The code required for
the Wave Video plugin is fetched from code server and deployed on the ANN.

As a second request form a different customer arrives, the ANN creates a second instance with the
same configuration but with different resources assigned to the VE. No additional code fetching is
required anymore, since the code is available from the nodes local cache.

The creation process is fully implemented and controlled by the VEM. As the process completes, the
video source gets a signal to begin with the transmission of the video flows.

7.5.2 Network Setup
As depicted in Figure 7-14 the video source is located at ems.tik.fa. The video flow is transmitted via
tik.tik.fa to onizuka.fhg.fa and from there to the laptop. The first ANN, i.e. tik.tik.fa, is statically
configured. The main ANN, i.e. the dynamic ANN, is located at FHG’s onizuka.fhg.fa. The video sink
is a 24 bit capable Linux box. The results of the demonstration are shown by the setup process via
VEM at onizuka.fhg.fa. The video flow will constantly be repeated.

Deliverable Title Page 139 of 147

Copyright 2000-2003 FAIN Consortium May 2003

 Figure 7-14: Network Topology for Video on Demand Scenario.

7.6 FAIN Mobility Demonstrator

The “FAIN Dino Park” (i.e. the Mobility Demonstrator) shows load balancing in a mobile
environment, in particular in WLAN networks. Additionally to state-of-art concepts employed in
WLAN networks on regular basis (e.g. hand-over) FAIN specific load balancing concepts are
implemented that improve the usability of WLAN networks.

The following concepts are demonstrated by this demo:

• Use of PromethOS kernel modules for monitoring, routing and bridging in WLAN networks.

• Implementation of a load balancing mechanism for WLAN adopted from cellular networks.

• On camp-on (when connecting to the system, a client is rejected and redirected to
another AP if the tried one is overloaded.)

• Pre-emptive load distribution (is load on a specific AP is getting to high, selected
terminals are redirected to other APs which have capacity available.)

• Interaction of PromethOS modules by interaction with user space applications, this includes
data exchange, configuration and installation of modules by user space applications.

• Application dependent load balancing mechanism.

7.6.1 Architecture/Setup
The generic network topology of our demo is shown in Figure 7-15. The active node used in the
scenarios is a PromethOS Node. The node is responsible for the redirection of WLAN traffic to
different Access Points. In addition it runs the user interface for configuring and monitoring the
PromethOS modules. As Non-Active nodes the scenario distinguishes sender and receiver nodes. The
sender nodes run common web browsers or some other web traffic generator. They are mobile clients
like notebooks or PDAs. The receiver nodes run a normal web server. The scenario uses two nodes of
this type. They play the role of content servers (e.g. static web pages or Web TV).

ems.tik.fa tik.tik.fa onizuka.fhg.fa laptop (10.0.12.62)

sender ANN (static) ANN (dynamic) receiver

Deliverable Title Page 140 of 148

Copyright 2000-2003 FAIN Consortium May 2003

R o u t e r

C l i e n t
(W e b b r o w s e r)

W L A N
A c c e s s

C o n t r o l e r

C l i e n t
(W e b b r o w s e r)

C o n t e n t
S e r v e r

H T T P

H T T P H T T P

P r o m e t h O S n o d e (A c t i v e N o d e) r e c e i v e r n o d e (N o n A c t i v e N o d e)W L A N n o d e (N o n A c t i v e N o d e)

A c c e s s P o i n t

A c c e s s P o i n t

H T T P
o v e r m o b i l e i P

H T T P

o v e r m o b i l e I P

s e n d e r n o d e (N o n A c t i v e N o d e)

L o a d
G e n e r a t o rI P

Figure 7-15: Network topology used by the demos

7.6.2 Network Setup
The Web servers used in the scenario are located at Berlin (kreechta.fhg.fa) and at the ETH
(ems.tik.fa). In order use the preinstalled demo using the FAIN testbed, a FAIN Active Node must be
installed at ems.tik.fa. The demos can be shown independent of each other, but it is suggested to show
them in the described order as some demos are based on earlier ones.

Demo 1
This demo shows a load-dependent camp-on. The initial connection to an Access Point is made load
dependent. The mobile client scans for best Access points, sends a probe to the one selected, which is
unfortunately overloaded. This is transmitted to the WLAN control unit and depending on the load
information the client is rejected and redirected to another access point. By this procedure a load
balancing is affected.

The WLAN Access Controller initializes the PromethOS modules as required by the used
functionality of the Access Controller. It inserts the necessary configuration data. The configured data
can be changed at run-time. The demo uses only two clients and one FAIN active node with WLAN
Access Control Unit. The load on the Access Point 1 may be simulated by setting the load parameters
in the WLAN Access Controller directly. In this case a content server is necessary. A second more
elaborated version of the demo uses real data transport over Access Point 1 to trigger the redirection of
the connection attempt of the client. In this version, a content server is required to generate the load..

For each Access Point the current load is shown separately in a User Interface. The User Interface is
used to manipulate the internal load parameters in the WLAN controller, in order to simulate high load
in a simple fashion without having to change to actual load in the network. If a load generator is used
generating network load then the user interface does only show the current load on the different APs.
The load itself is adjusted by a user interface connected with the load generator that allows regulating
the load required.

Deliverable Title Page 141 of 149

Copyright 2000-2003 FAIN Consortium May 2003

Demo 2
This demo starts after the clients have connected to appropriate access points. It shows pre-emptive
load distribution: if load on a specific access point is getting to high, selected mobile clients are
redirected to other access points which have capacity available. The controlling of the access points’
load and the redirection is done by the WLAN Control unit. The demo uses only one client, one FAIN
active Node with WLAN Access Control Unit and one content server. The content server provides
WebTV. Requesting WebTV generates the load at one access point (use of WebTV not yet decided
on).

The structure of Demo2 is shown in Figure 7-16.

R o u t e r

C l i e n t
(W e b b r o w s e r)

W L A N
A c c e s s

C o n t r o l e r

C l i e n t
(W e b b r o w s e r)

H T T P

H T T P

P r o m e t h O S n o d e (A c t i v e N o d e)W L A N n o d e (N o n A c t i v e N o d e)

A c c e s s P o i n t 2

A c c e s s P o i n t 1

G e t t i n g o v e r l o a d e d

H T T P

o v e r m o b i l e I P

s e n d e r n o d e (N o n A c t i v e N o d e)

C o n t e n t
S e r v e r

H T T P

W e b T V S e r v i c e

L o a d
G e n e r a t o rI P

r e c e i v e r n o d e (N o n A c t i v e N o d e)

Figure 7-16: Structure of Demo2

Increase of the load on access point 1 is generated by the load generator. This is done either by an
automatic script controlling the load generator or manually by controlling the load generator via its
user interface. The user interface connected with the WLAN Access Controller is used to change
criteria used for decision making. Application specific criteria, e.g. thresholds, and priorities may be
set by the administrator of the WLAN access controller.

Deliverable Title Page 142 of 150

Copyright 2000-2003 FAIN Consortium May 2003

8 EVALUATION OF THE ARCHITECTURE AND IMPLEMENTATION

8.1 Evaluation Methodology

The overall goal of the evaluation is to give insights on the ‘level of programmability’ of FAIN. The
programmability is expressed by properties. The evaluation consists in identifying if these properties
are owned by FAIN and to what expense and extent. In order to avoid exhaustive measurements for
the evaluation and in order to get a fine-grained evaluation, the properties are broken down to sets of
features and performance metrics.

 The features and performance metrics apply to distinct operational planes and at different
level/location layers. Figure 8-1 sketches the relation between ownership and cost of a property’s
feature, depending on the level/location and operational plane where it occurs.

Figure 8-1: Evaluation Model for Features and Properties.

Figure 8-2 represents a reference model that describes the relation between the operational planes and
the level/location layers. Every feature will be evaluated against all locations of the given reference
model. For those locations we distinguish between Management, Control, and Transport planes and
between Network, Node, and Technical Layers.

Operational Plane

Level/Location

Ownership/Cost

Property: P1

Feature: f1
E.g. F/cost detail described in

Background document.

Deliverable Title Page 143 of 151

Copyright 2000-2003 FAIN Consortium May 2003

Figure 8-2: Reference Model for Operational Planes and Level/Location Layers.

Note that the evaluation is not going to compare FAIN networks with other AN networks anymore, as
has been suggested in the D2 document.

8.1.1 Templates and Representation
For the representation of the evaluation (as suggested in Figure 8-2) there is need for meaningful
representation. The objective is to have a uniform and expressive representation of the evaluation
results.

The templates, one for each property taken into consideration, provide two abstraction levels. The first
level allows getting a quick overview of the evaluation results, whereas the second is going into more
detail. The expressiveness of the first level is achieved by deploying a tagging syntax that already
includes rating information.

The tags that are available for filling in the table are:

• F: Fully Implemented (specified and fully implemented)
• PI: Partially Implemented (fully specified but partially implemented)
• S: Specified (only specified)
• N/S: Not Specified
• N/A: Not Applicable

In Figure 8-3 the template form is shown: the first level of abstraction is a table containing for each
property several features and evaluating for each of them their level of “goodness” in FAIN. For each
entry in the table exists a background document that holds the details of the rating. This background
document represents the second level of abstraction. It contains the following sections:

• Terminology/Context: clarifies the meaning of a feature.
• Evaluation Methodology: describes briefly how the evaluation has been carried out. This

may contain a short description of performed tests, measurement methods etc.
• Evaluation Results: Holds a short description of the results. It’s the most important part of

the document.

 Network: layer

Technical
layer

Node layer

Management Plane

Control Plane

Transport Plane

Operational Planes

Level/Location Layers

Deliverable Title Page 144 of 152

Copyright 2000-2003 FAIN Consortium May 2003

Figure 8-3: Two Level Evaluation Template for Property Types.

8.1.2 CLASSIFICATION OF THE FAIN COMPONENTS
In Table 8-1we propose a classification of the FAIN components according to the scheme proposed in
Figure 8-2. We will refer to this during the evaluation process.

TRANSPORT

PLANE

CONTROL

PLANE

MANAGEMENT

PLANE

TECHNICAL

LEVEL

(router, node OS)

PromethOS

GR2000

Java

PromethOS

GR2000

Java

PromethOS

Java

CORBA

XMLService Descriptors

XML Mgmt policies

NODE

LEVEL

FAIN java EE

PromethOS EE

Transcoder/Duplicator

Video scaling

FAIN java EE

PromethOS EE

RCF

Security FW

FAIN java EE

SNAP EE

EMS

Node ASP

VEM

NETWORK

LEVEL

Web TV Service

Video Scaling

Web Cache

ANEP+FAIN opt.

DiffServ Service

SIP

Web Cache

RTP

NMS

Net ASP

SNAP activator

Table 8-1:– Classification of the FAIN components

Background Document:

• Terminology:
• Evaluation Methodology

Property Type

Features Transport Control Management

Mandatory Tech Node Net Tech Node Net Tech Node Net
Comments

Feature A F PI S N/A S S N/A N/A N/A Just an
Example

Optional

Deliverable Title Page 145 of 153

Copyright 2000-2003 FAIN Consortium May 2003

8.2 EVALUATION RESULTS

8.2.1 Flexibility
Level 1 Representation

Flexibility is a quite generic property. By this we mean the ability of a system to change dynamically
its behavior, adapt to new requirements, cope with increases in information volumes and functionality,
and reuse or synthesize its existing services.

Table 8-2:- Table for Flexibility Property Type

Property: Flexibility

Transport Control Management
Features

Tech Node Net Tech Node Net Tech Node Net
Comments

Composability F F NA F F NA F F F

Extensibility F F NA F F S F F F

Scalability F NS NA F NS NA F S S

Code Loading F F NA F F NA F F S

Virtualization NS NA NA NS F NA F F F

Background Document (level 2)

Composability:

Terminology: Composability allows the system to reuse and recombine its functional
components into forming new services and functionality.
Evaluation Methodology: we propose to evaluate the “flexibility” of FAIN referring to each of
its components as grouped in Table 2. For each feature we will look in the subset of
components related to each column of the Flexibility table and see whether at least one of
them satisfies it (or was designed to). In the following section we will explain and motivate all
our statements. If we say that the component X satisfies property Y, we will write here why
and how.
Evaluation Results:

Transport plane:
• Technical level: The feature is fully implemented at this level. Our Operating System

PromethOS satisfies it via its plug-ins [33].

• Node level: The PromethOS/java EEs are composable.

• Network level: The N/A, i.e. Not Applicability, is due to the fact that in this group are
Services and Applications, and whether those services are composable or not doesn’t
help evaluating the level of composability of the FAIN architecture.

Control plane:
• Technical level: cf. Transport plane.

• Node level: The PromethOS/java EEs are composable; all components that run on a
VEM are composable.

Deliverable Title Page 146 of 154

Copyright 2000-2003 FAIN Consortium May 2003

• Network level: The N/A, i.e. Not Applicability, is due to the fact that in this group are
Services and Applications, and whether those services are composable or not doesn’t
help evaluating the level of composability of the FAIN architecture.

Management plane:
• Technical level: cf. Transport plane. Moreover CORBA and XML add to the system

a further level of composability.

• Node level: at this level Composability is satisfied by the EMS. [35]

• Network level: at this level Composability is satisfied by the NMS [36]that, like the
EMS has a composable structure.

Comments: None.
Extensibility:

Terminology: Extensibility allows the system to evolve as new requirements and services are
needed while these can be introduced and incorporated in the existing system in a seamless
way.
Evaluation Methodology: Same as for Composability.
Evaluation Results:

Transport plane:
• Technical level: The feature is fully implemented at this level. Our Operating System

PromethOS satisfies it via its plug-ins [33]

• Node level: The PromethOS/java EEs are extensible; all components that run on a
VEM are extensible [VEM]. The functions can be extended by inserting new rules.

• Network level: The not Applicability is due to the fact that in this group are Services
and Applications, and whether those services are composable or not doesn’t help
evaluating the level of composability of the FAIN architecture.

Control plane:
• Technical level: cf. Transport plane.
• Node level: The PromethOS/java EEs are extensible; all components that run on a

VEM are extensible.

• Network level: The not Applicability is due to the fact that in this group are Services
and Applications, and whether those services are composable or not doesn’t help
evaluating the level of composability of the FAIN architecture

Management plane:
• Technical level: cf. Transport plane. Moreover CORBA and XML add a further level

of extensibility to the whole system.

• Node level: extensibility is satisfied by the EMS by extending PDPs or adding new
ones and PEPs (a deeper explanation is given in [37]). Regarding the Node ASP a
deeper explanation of its extensibility is given in [38].

• Network level: the NMS is extensible; this is achieved by introducing new policies
and new functional domains (The NMS use the same extensibility mechanism as the
EMS). The ASP is also extensible (although this is mainly specified and not fully
implemented): you may extend services and how you deploy them.

Virtualization:

Terminology: Virtualization allows for the partitioning of network resources among different
user communities. This results in supporting more liberal business models and customized
usage of resources.
Evaluation Methodology: Same as for Composability.
Evaluation Results:

Deliverable Title Page 147 of 155

Copyright 2000-2003 FAIN Consortium May 2003

Transport plane:
• Technical level: Virtualization for PromethOS was not specified. Java provides it.

• Node level: At this level the feature “Virtualization” is not applicable.

• Network le vel: This feature is not applicable at this level (composed of Services and
applications).

Control plane:
• Technical level: see Transport plane.

• Node level: At this level virtualization is provided (and fully implemented) by the
RCF. Its task is in fact to virtualize the resource.

• Network level: This feature is not applicable at this level (composed of Services and
applications).

Management plane:
• Technical level: see Transport plane. Moreover CORBA and XML offer to the

system virtualization capabilities.

• Node level: EMS achieves virtualization by creating new management instances.

• Network level: the NMS achieves virtualization by creating new management
instances.

Scalability:

Terminology: Scalability refers to the network architecture design and the distribution of the
network functionality in such a way that the network can account for increasing volumes of
user requests.
Evaluation Methodology: Same as for Composability.
Evaluation Results:

Transport plane:
• Technical level: here we refer to the same scalability properties that Linux and Java

have.

• Node level: Scalability was not taken into consideration when designing this part of
the architecture.

• Network level: The N/A, i.e. Not Applicability, is due to the fact that this group
consists of Services and Applications, and that whether those services are composable
or not doesn’t help evaluating the level of composability of the FAIN architecture.

Control plane:
• Technical level: same as for Transport plane.

• Node level: As far as RCF is concerned, resources can be installed up to a certain
limit, we ignore what that limit is.

• Network level: The N/A, i.e. Not Applicability, is due to the fact that this group
consists of Services and Applications, and that whether those services are scalable or
not doesn’t help evaluating the level of composability of the FAIN architecture, e.g.
DiffServ scales not well.

Management plane:
• Technical level: here we refer to the same scalability properties that Linux, Java,

CORBA and XML have.

• Node level: scalability is satisfied by the node ASP as it was designed as fully
decentralized. The EMS satisfies scalability via its extensibility and modularity.

• Network level: the NMS is scalable [36]. The Network ASP is designed as
decentralized and is therefore, scalable.

Code Loading:

Deliverable Title Page 148 of 156

Copyright 2000-2003 FAIN Consortium May 2003

Terminology: Code Loading
Evaluation Methodology: Same as for Composability.
Evaluation Results:

Transport plane:
• Technical level: Code can be loaded on PromethOS via either the PromethOS Control

Daemon or the ASP.

• Node level: This property is fully implemented in the EEs.

• Network level: This particular property doesn’t make sense at this level: here are the
services that are usually loaded!

Control plane:
• Technical level: see Transport plane.

• Node level: This property is fully implemented in the EEs.

• Network level: This particular property doesn’t make sense at this level: here are the
services that are usually loaded!

Management plane:
• Technical level: same as for Transport plane.

• Node level: ASP is used for it, so for it this feature would be NA. In the case of EMS
anyway the possibility to download code via the ASP has been specified. As far as the
WP3 code is concerned, this feature has been fully implemented.

• Network level: In the case of NMS code loading is a little bit like extensibility.

8.2.2 Security
Level 1 Representation

Evaluation of FAIN security architecture covers issues like

• what security features are provided in FAIN ANN?

• how and where are they provided?

• What “level” of security do these features provide?

• how does FAIN security architecture compare against other existing approaches?

• how does FAIN security architecture perform (in an experimental test-bed environment)?
The evaluation is qualitative and quantitative. Comparing different security architectures directly, i.e.
in a quantitative manner, in order to say the least is difficult. The same applies even for quantitative
evaluation of a single security architecture, since it is hard to define sensible criteria for the
"measurement" of security in a system. Thus, the FAIN security architecture is mostly evaluated in a
qualitative way, although we strive to give some measurement results mainly on performance
overhead aspects.
Qualitative evaluation covers the first four questions posed. It is based on the analysis of FAIN
security architecture with regards to a set of security features/requirements restricted to high-priority
security requirements as defined in D2, ([27] on page 70). This should give an overall sense of what
"level" of security is provided within FAIN.

The table then gives the reader a comprehensive view of the level of security provided by FAIN (or
other AN) based on four sets of information for every security feature:

1. presence of the feature in the transport, control, and management planes
2. operation of the feature, i.e. whether it operates locally on the active node or it demonstrates

network wide behavior
3. which technology is the feature based on

Deliverable Title Page 149 of 157

Copyright 2000-2003 FAIN Consortium May 2003

4. nature of the feature, describing the level of security this feature provides by specifying what
it protects against and how does it implement the protections

As mentioned, it is hard if not impossible to define security evaluation criteria, which can be measured
in an experimental set-up. However, even though we can not measure the level of security, it may be
interesting to measure the sheer performance aspects of security, i.e. he performance overhead
incurred when security mechanisms are activated.

Table 8-3: - Table for Security Property Type

Property: Security

Transport Control Management
Features

Tech Node Net Tech Node Net Tech Node Net
Comments

Authentication PI F F PI F F PI F F

Authorization PI F F PI F F PI F F

Enforcement PI F F PI F F F F F

Integrity PI F F PI F F F F F

Audit S S S S S S S S S

Verification PI PI PI PI PI PI PI PI PI

Background Document (level 2)

Authentication:

Terminology: Authentication allows the system to securely verify the identity of a principal.
Evaluation Methodology: This feature has been evaluated in two respects. Firstly, we estimate
to what extent this feature has been provided within the FAIN active node (prototype). This is
depicted in Table-2. Secondly, based on the experimental measurements with the FAIN
security architecture prototype, we have tried to estimate the performance overhead imposed
by this feature. The later part can be found in the performance section on page 158.
Evaluation Results:
Transport plane, Control plane, and Management plane:

• Technical level: This feature has been partially implemented; in transport and control
plane of PromethOS and GR2000 authentication is not supported.

• Node level: Strong authentication has been provided based on digital signatures,
symmetric cryptography, and SSL protocol. Digital signatures provide end-to-end
authentication for active packets which can be authenticated on every node that the
packets traverse. Symmetric cryptography provides per hop authentication between
peer nodes exchanging packets and can be used for inter node communication. SSL
based authentication is used with CORBA to authenticate management sessions to the
node.

• Network level: Strong authentication is based on the supporting PKI infrastructure
and the protocol for credentials exchange between neighbor nodes and credentials
cache on the nodes.

Authorization:

Terminology: Authorization decides whether requested action by a principal shall be allowed
or denied.

Deliverable Title Page 150 of 158

Copyright 2000-2003 FAIN Consortium May 2003

Evaluation Methodology: We estimate to what extent this feature has been provided within the
FAIN active node (prototype).
Evaluation Results:

Transport plane, Control plane, and Management plane:
• Technical level: This feature has been partially implemented: in transport and control

plane of PromethOS and GR2000 authorization is not supported

• Node level: A dedicated, central SBB has been developed, which is responsible for
making authorization decisions for every critical operation within the FAIN node.
Authorization engine, example policy engine, set of credentials with authorization
data and related keystores with private keys and example security policies were
provided

• Network level: Authorization is based on the supporting infrastructure, such as
Attribute Authorities, which are responsible for granting credentials to users. The
management system ARC (Access Rights Check) Component has support for it. It
validates an incoming request, a policy, against a particular schema. Each principal
has associated one. Each schema contains what the principal can do. This schema is in
fact an XML Schema.

Enforcement:

Terminology: Enforcement acts upon the authorization decision, i.e. it either allows or denies
the execution of principal’s request.
Evaluation Methodology: We estimate to what extent this feature has been provided within the
FAIN active node (prototype).

Evaluation Results:

Transport plane, Control plane, and Management plane:
• Technical level: Each FAIN subsystem implements its own enforcement engine. This

feature has been partially implemented for the security subsystem: in transport and
control plane of PromethOS and GR2000 enforcement is not supported.

• Node level: Enforcement was integrated with the node management system which
implementation of components include the enforcement engines and mechanism
implemented with CORBA interceptors that pass the necessary information about
accessing subject to the object being accessed. Access to every component interface
can be controlled by accessing Security manager authorization interface. This
interface invokes authorization engine and if necessary policy engine. At EMS the
ARC component checks if the incoming request is valid and denies execution of the
unauthorized requests

• Network level: Mechanisms have been specified and partially implemented, which
control the network-wide use of resources by the user. As in the case of the EMS there
is one ARC component that checks if the principal is authorized to do what it’s
described inside his request, the policy.

Integrity:

Terminology: Integrity enables the system to detect any modifications of the information in
transit over the network by unauthorized adversaries.
Evaluation Methodology: This feature has been evaluated in two respects. Firstly, we estimate
to what extent this feature has been provided within the FAIN active node (prototype).
Secondly, based on the experimental measurements with the FAIN security architecture

Deliverable Title Page 151 of 159

Copyright 2000-2003 FAIN Consortium May 2003

prototype, we have tried to estimate the performance overhead imposed by this feature. The
later part can again be found in the performance section on page 158.
Evaluation Results:

Transport plane, Control plane, and Management plane:
• Technical level: This feature has been partially implemented: in transport and control

plane of PromethOS and GR2000 integrity is not supported.

• Node level: Hop-by-hop integrity is provided based on a keyed hash function, when
packets need to be modified at FAIN ANNs en route

• Network level: End-to-end integrity is either provided with digital signature (when
packets are not modified en route) or can be incurred from per-hop protections, when
packets are processed at ANNs.

Audit:
Terminology: Logging allows the system to keep a trail record of security relevant (and other)
events within the system and enables later analysis and assessment of security critical events.
Evaluation Methodology: We estimate to what extent this feature has been provided within the
FAIN active node (prototype).
Evaluation Results:
Transport plane, Control plane, and Management plane:

• Technical level: This feature has been specified.

• Node level: This feature has been specified.

• Network level: This feature has been specified.

Deliverable Title Page 152 of 160

Copyright 2000-2003 FAIN Consortium May 2003

Verification:

Terminology: Verification allows the system to dynamically assess the safety of the active
code before executing it.
Evaluation Methodology: We estimate to what extent this feature has been provided within the
FAIN active node (prototype). This is depicted in Table -2.
Evaluation Results:

Transport plane, Control plane, and Management plane:
• Technical level: This feature has been partially implemented:

• Node level: Code verification is based on the digital signature of the trusted third
party, which performs the code safety assessment. Verification of the in-band code
with the use of digital signature mechanism and program fingerprint for security
critical data in program has been implemented in Active SNMP system.

• Network level: Code verification is based on support infrastructure, such as trusted
code servers.

8.2.3 Interoperability
Level 1 Representation

The interoperability property is assessed (evaluated) by checking the interoperability between several
system components of a FAIN node or network infrastructure. For instance, we envision to check
interoperability between de-multiplexers, resource control software, security software and virtual
environment software.

Table 8-4:- - Table for Interoperability Property Type

Property: Interoperability

Transport Control Management
Features

Tech Node Net Tech Node Net Tech Node Net
Comments

Security
Interop NS F F F F F F F F

VE Interop NA F NA NA F PI NA F F

EE Interop NA S NA NA S NA NA S NA

Mgmt interop NA NA NA NA NA NA NA NS PI

Background Document (level 2)

EE Interop:

Terminology: Allows to evaluate the interoperability of two execution environments, basically
means for an EE to call services offered by another EE.

Evaluation Methodology: Collect means offered by an EE to call its services from another EE.

Evaluation Results: This also depends on the willingness (by design) to provides such
functions. For specialized EEs (for example, management environment), this could be
voluntarily limited to avoid problems. Therefore, different shades of results are possible.

Transport plane:
• Technical level: Not Applicable.

Deliverable Title Page 153 of 161

Copyright 2000-2003 FAIN Consortium May 2003

• Node level: SNAP EE to Java EE and Java EE to PromethOS EE interoperability (i.e.
FAIN EEs interoperability) on the same Node may exist due to the fact that all the
EEs use the ANEP encapsulation protocol.

• Network level: Not Applicable

Control plane:
• Technical level: Not Applicable

• Node le vel: SNAP EE to Java EE and Java EE to PromethOS EE interoperability (i.e.
FAIN EEs interoperability) on the same Node may exist due to the fact that all the
EEs use the ANEP encapsulation protocol.

SNAP to Java interoperability on data path may also be extended to the control path

• Network level: Not Applicable

Management plane:
• Technical level: Not Applicable

• Node level: cf. transport plane. The EE interoperability is ensured by common node
level management APIs.

• Network level: Not Applicable

Comments: Note that the results of this evaluation (as many others) is not for quantification
(can be hardly done, and not necessarily useful), but to assess its use (i.e. the type of
applications it is better suited for).

Security Interop:

Terminology: Allows to evaluate the interoperability of two security services, especially those
running on different nodes.
Evaluation Methodology (Hint): Check the results of the processing of security measures
carried by packets. For example, the result of authentication triggered by a packet on security
service A should be the same as if the authentication was performed by security service B.
Evaluation Results:

Transport plane:
• Technical level: holds for Java only

• Node level: applies for all entries of table 2

• Network level: --

Control plane:
• Technical level: applies for Java and weakly for PromethOS and GR 2000

• Node level: should apply for all

• Network level: applies for the ANEP +FAIN opt and the DiffServ Services
Management plane:

• Technical level: holds for the XML Service Descriptors and the XML Management
policies

• Node level: applies for all entries at this point except for EMS and ASP

• Network level: applies for the SNAP activator only

 VE Interop:

Terminology: Relates the interoperability between two virtual environment (i.e. the possibility
for components running on these VEs to interact), whether they run on the same node or on
different nodes.

Deliverable Title Page 154 of 162

Copyright 2000-2003 FAIN Consortium May 2003

Evaluation Methodology (Hint): Collect means offered by FAIN VE interfaces to invocate
services from another VE.
Evaluation Results (Note): This can give different shades of results ranging from “null”
(impossible to call services from another VE) to a subset of services. But it seems hard to
allow all services to be called from the outside, for confidentiality reasons. A major goal of
VEs is to isolate stakeholders …

Transport plane:
• Technical level: Not Applicable

• Node level: only privileged VE to VE interoperation, privileged VE inherits CORBA
interoperability, VEs interaction is possible based on the DeMUX.
Same like EE properties. C.f. EE interoperability.

• Network level: Not Applicable

Control plane:
• Technical level: Not Applicable

• Node level: cf. EE interoperability

• Network level: CORBA is used for VE control messages

Management plane:
• Technical level: XML service descriptors are the base technology used in different

components in FAIN. The description of a service may provide interoperability
between components understanding and using the same description.

• Node level: ASP via the same service descriptions [41]. EMS is used to manage VEs
on the node.

Cf. EE interoperability, same as EE properties.

• Network level: Net-ASP for service deployment via XML service descriptors [41].
NMS is used to manage VEs across the network, Virtual Network ID is used to define
VEs to interact

Management System Interoperability:

Terminology: interoperability between different management systems.

Evaluation Results:

Transport plane:
• Technical level: Not Applicable

• Node level: Not Applicable

• Network level: Not Applicable

Control plane:
• Technical level: Not Applicable

• Node level: Not Applicable

• Network level: Not Applicable

Management plane:
• Technical level: Not Applicable

• Node level: Not Specified.

• Network level: FAIN management systems in different domains communicate using
RMI. A protocol describing the service agreement has been partially specified [39].

Deliverable Title Page 155 of 163

Copyright 2000-2003 FAIN Consortium May 2003

8.2.4 Openness
Level 1 Representation

Openness refers in a large sense to several criteria, typically the availability of application
programming interfaces and facilities to use different specifications and implementations of same
service functionality, e.g. format for management policies.

Table 8-5: - Table for Openness Property Type

Property: Openness

Transport Control Management
Features

Tech Node Net Tech Node Net Tech Node Net
Comments

Application
Programming
Interfaces

(API)

FI FI FI FI FI FI FI FI FI
Applies for
PromethOS

and WP4

Open System
Services

(OSS)
NA NS NS NA NS NS NA FI FI WP4

Background Document (level 2)

APIs:

Terminology: Relates the availability of APIs offered by the system. APIs can be defined at
the application level (for example, a service provider could offer APIs to its clients), at the
network level, and at the node level (VE, EE, system services interfaces).

Evaluation Methodology (Hint): Assess system design choices and implementations.
Evaluation Results:

Transport plane:
• Technical level: PromethOS is open source and can be downloaded at

http://www.PromethOS.org. The APIs are all clearly defined and well-documented
and open to modification.

• Node level: API are specified for the most of the components at this level

• Network level: API are specified for the most of the components at this level

Control plane:
• Technical level: cf. Transport plane.

• Node level: API are specified for the most of the components at this level

• Network level: API are specified for the most of the components at this level

Management plane:
• Technical level: cf. Transport plane

• Node level: API are specified for the most of the components at this level

• Network level: API are specified for the most of the components at this level
OSSs:

Terminology: Possibility to use different specifications and implementations of the same
functionality.

Deliverable Title Page 156 of 164

Copyright 2000-2003 FAIN Consortium May 2003

Evaluation Methodology: Assess system design choices and implementations.
Evaluation Results:

Transport plane:
• Technical level: Not Applicable

• Node level: Not Specified

• Network level: Not Specified

Control plane:
• Technical level: Not Applicable

• Node level: Not Specified

• Network level: Not Specified

Management plane:
• Technical level: Not Applicable

• Node level: Policies are a kind of open interfaces given in different formats, e.g.
COPS (in FAIN we make use also of different formats, the concept here expressed
remains anyway the same).

Both public and extensible interfaces apply for the ASP, e.g. XML service descriptor
and IDL (both open standards). Chameleon, experiences with modifications and
adaptations.

• Network level: cf. Node Level.

Portability
Level 1 Representation

Portability is a key system property for the implementation of active services: it determines if it is
feasible to dynamically run the same program on several nodes or node service environments. We can
distinguish three key feature of this property: the possibility to run an active code over different VEs
within a node (called context switching), the possibility to run an active code over different EEs within
the same node (run-time facility), and the possibility to run a same active code on different nodes
(program migration).

Table 8-6: - Table for Portability Property Type

Property: Portability

Transport Control Management
Features

Tech Node Net Tech Node Net Tech Node Net
Comments

Run-time
Facilities NS

F

NS NS F S NS F PI

Context
independency

NA NA NA NA NA NA NA F F

Background Document (level 2)

Run Time Facilities:

Deliverable Title Page 157 of 165

Copyright 2000-2003 FAIN Consortium May 2003

Terminology: Is code built for a specific run-time platform able to run on another run-time
platform without any modification.

Evaluation Methodology: Assess system design and implementation choices.
Evaluation Results:

Transport plane:
• Technical level: PromethOS plugins run on the PromethOS platform only.

• Node level: every FAIN node (either type A or C) offers the same API to the code
running on them. In this way the same code may run on the different node types
without need for modification (in this case the portability is limited to the same EE).

• Network level: NS

Control plane:
• Technical level: PromethOS plugins run on the PromethOS platform only.

• Node level: every FAIN node (either type A or C) offers the same API to the code
running on them. In this way the same code may run on the different node types
without need for modification (in this case the portability is limited to the same EE).

• Network level: packets may be executed in other networks, the java code can be
executed on other virtual machines on different platforms and the ANEP header is
known.

Management plane:
• Technical level: PromethOS plugins run on the PromethOS platform only.

• Node level: every FAIN node (either type A or C) offers the same API to the code
running on them. In this way the same code may run on the different node types
without need for modification (in this case the portability is limited to the same EE).
PDPs are portable to different PEPs, because PEPs offer the same interface. PEPs are
portable across different FAIN nodes (type A or C).

The ASP uses Java, OpenORB, and other dependencies (Node Management
Framework). Management Components are not compatible with the Node
Management Framework cannot be deployed directly with the ASP yet. But the ASP
is used to transport the code from the Service Repository and left it in the local service
repository, the one located in each management station. For this particular case the
installation and instantiation is done by the Management Framework.

• Network level: For the network ASP what we said regarding the ASP remains valid.

The ASP uses Java, OpenORB, and other dependencies (Node Management
Framework). Management Components are not compatible with the Node
Management Framework cannot be deployed directly with the ASP yet. But the ASP
is used to transport the code from the Service Repository and left it in the local code
repository, the one located in each management station. For this particular case the
installation and instantiation is done by the Management Framework.

Context independency:

Terminology: Is a specification done for a specific virtual environment able to run within the
context of another virtual environment without any modification.

Evaluation Methodology: Assess system design and implementation choices.
Evaluation Results:

Transport plane:
• Technical level: Not Applicable

Deliverable Title Page 158 of 166

Copyright 2000-2003 FAIN Consortium May 2003

• Node level: Not Applicable
• Network level: Not Applicable

Control plane:
• Technical level: Not Applicable

• Node level: Not Applicable

• Network level: Not Applicable

Management plane:
• Technical level: Not Applicable

• Node level Service or policy descriptions are understood in different context. The
universal service descriptor can be applied to services supposed to run in different
EEs. The high level description can be translated into different low level
implementations and downloaded by the ASP to the actual EE. Through the
description, the service becomes portable across different EEs.

ASP deploys different services throughout EEs independently on node type and EE
type.

• Network level: Service or policy descriptions are understood in different context.

Network ASP deploys different services throughout EEs independently on node type
and EE type.

8.2.5 Performance

Performance
Unlike the other properties listed in the previous sections, the performance property has been
introduced to enable quantitative-measurements.. The evaluation results cannot be interpreted without
the context of their measurement, therefore the abstraction of a level 1 representation and a
background document, as proposed in the evaluation framework, has not been applied to the
evaluation of the performance. The results of the performance evaluation are directly given in the
extensive background document style.

Throughput in User Space (DeMUX System):

Terminology: Evaluates the throughput for packet handling at the node and network level,
which (for active networks) does not only depend from bandwidth and packet forwarding
performance at nodes, but also from de-multiplexing, packet processing, performance (?), VE
management function and control functions related to the execution of multiple concurrent
EEs, etc.

Evaluation Methodology:
Figure 8-4 depicts the test system used to evaluate the DeMUX performance. The test system
is composed of two nodes. One is for sending flows and the other is an active node where is
installed the demultiplexing function. The connection between the two nodes is a 100Mbps
Ethernet. As shown in the Figure 8-4, multiple sender programs can be instantiated in the
sender node. On the other hand, multiple receiver programs can be instantiated in the active
node. In addition, to evaluate the performance of the DeMUX, especially data transmission
performance from the DeMUX program to service program, a shaper program is instantiated
for each flow that is sent by each sender program.

Deliverable Title Page 159 of 167

Copyright 2000-2003 FAIN Consortium May 2003

Sender(1) Shaper(1)

Shaper(2)

- - -

Shaper(3)

Shaper(n)

D e M U X

Sender(2)

- - -

Sender(3)

Sender(n)

Receiver(1)

Receiver(2)

Receiver(3)

- - -

Receiver(n)

S e n d e r N o d e A c t i v e N o d e

Figure 8-4: DeMUX Test System

 shows a specification of the packet sender. The sender is able to send bit rates from 0 to 2
Mbps. The packet size can be set from 0 to 5kByte. In addition, shows specifications of the
active node. The DeMUX program is implemented in a Linux box with 750MHz CPU,
128Mbyte RAM and a 100Mbps LAN card. One of the important functions is the Iptables,
which is the component to transmit data from kernel to user space.

Table 8-7: Specification of the Packet Sender

Sender Program Bit Rate Packet Size

Specification 0 - 2Mbps [250kByte/sec] 0 - 5k Byte

Table 8-8: Specification of the Active Node

No. Item Specification

1 CPU Intel Pentium III, 750MHz

2 Memory 128Mbyte

3 Operating System Linux, Kernel 2.4.2

4 Network Card 100Mbps Ethernet

5 Iptables 1.2.6a

The evaluation of the DeMUX was performed on a dynamic Shaper component as illustrated
in the . The Shaper component requests the Channel Manager to create a new data channel.
The Channel Manager creates the new Data Channel and configures the Netfilter.
Furthermore, it dynamically connects the Data Channel to the Shaper component. Then the
Netfilter intercepts a packet data that matches one of the conditions, and transmits it to the
Channel Manager. Upon receipt the Channel Manager retransmits the packet data to the
Shaper through the Data Channel. The Shaper can change the data rate and send back the data
to the Data Channel. After receiving packet data from the Shaper, the Data Channel sends it
back to the outside network through the Netfilter.

Deliverable Title Page 160 of 168

Copyright 2000-2003 FAIN Consortium May 2003

Shaper

Netfi l ter

D a t a
Channel

Channel Manager

Sender

D e m u l t i p l e x e r

Creation & Filter Condition

Packe t In Packet Out

Receiver

Figure 8-5: System Diagram for Demultiplexing Evaluation

Before starting with the evaluation of the DeMUX system the performance of the default
system as depicted in has been evaluated. The specification of the active node is shown in the
and the settings of the sender node are shown in the .The default performance of the data
transmission between the sender node and the active node was evaluated by increasing the
bandwidth of the sender flows. Since the sender program could only send up to 2Mbps by one
flow, multiple flows were used to obtain bandwidths higher than 2Mbps. The sender node
managed to send about 20Mbps data and the active node managed to receive them. The
20Mbps bandwidth was composed by ten-2Mbps data flows. At that time, 500 IP datagram
packets were sent per second. Further measurements showed that 20Mbps was a performance
limit of the sender node.

Sender(1)

Sender(2)

- - -

Sender(3)

Sender(n)

Receiver(1)

Receiver(2)

Receiver(3)

- - -

Receiver(n)

S e n d e r N o d e A c t i v e N o d e

Figure 8-6: Block Diagram of the Default Data Transmission

Table 8-9: Specification of the Sender Node

No. Item Specification

1 CPU Intel Pentium III, 850MHz

2 Memory 256Mbyte

3 Operating System Linux, Kernel 2.4.2

4 Network Card 100Mbps Ethernet

Bit Rate Performance Evaluation of the DeMUX

Deliverable Title Page 161 of 169

Copyright 2000-2003 FAIN Consortium May 2003

The performance of the DeMUX was evaluated by increasing the bit-rate of the flow from the
sender node. A specification of the flow that was used in the evaluation is shown in the . When
the DeMUX tried to receive over 6Mbps data the receiver experienced packet loss. The
DeMUX can therefore handle about 6 Mbps data flow. The localization of the exact
performance was difficult since the measurements lacked of an accurate sender.

Table 8-10: Specification of the Flow that is 5kByte long data

Flow Bit Rate Packet Size IP Packet Interval Remark

Specification 0 - 2Mbps 5kByte 0 - 50 packet/sec Fragmented

IP Datagram Packet Rate Performance Evaluation of the DeMUX

In addition to the previous experiment, the performance of receiving IP datagram packet was
evaluated. A specification of the flow that was used in the evaluation is shown in the . The
length of the IP datagrams was 1kByte long. In this case, maximum bit-rate of one flow
resulted with 400kbps. When the DeMUX tried to receive over 1.2Mbps data, packet loss
occurred even if the bit rate was under 6Mbps. The condition of 1.2Mbps is realized by three
400kbps flows. In this case, 150 IP datagram of the size of 1kByte were send per second. The
DeMUX can therefore handle about 150 IP datagram packets per second.

Table 8-11: Specification of the Flow that is 1kByte long data

Flow Bit Rate Packet Size IP Packet Interval Remark

Specification 0 - 400kbps 1kByte 0 - 50 packet/sec Not Fragmented

IP Packet Rate Performance Evaluation of the DeMUX

As a final experiment the performance of receiving an IP packet, which is not an IP datagram
packet, has been evaluated. This was done to investigate IP fragmentation. The IP datagrams
had the size of 2.5kByte as shown in . The maximum bit-rate of one flow results in 1Mbps.
When the DeMUX tried to receiver over 3Mbps data, the receiver program detected packet
loss. The condition of 3Mbs is realized by three 1Mbps flows. In this case, 150 IP datagram
packets per second were sent. In other words, about 250 IP packets of the length of 1.5kByte
were sent per second. According to these three experiments, the DeMUX can handle about
150 IP datagrams and it seams that the influence of fragmentation can be neglected.

Table 8-12: Specification of the Flow that is 2.5kByte long data

Flow Bit Rate Packet Size IP Packet Interval Remark

Specification 0 - 1Mbps 2.5kByte 0 - 50 packet/sec Fragmented

Results:
According to these three experiments, the DeMUX can handle about 150 IP datagram packets
per second or put it in another metric, the DeMUX can handle about 6Mbps data at least. In
these evaluations, even if the receiver program detected the packet loss, an exact program that
discarded packet was not investigated. Therefore, to obtain a more detailed and accurate
evaluation of the DEMUX performance, further tests may have to be run.

Deliverable Title Page 162 of 170

Copyright 2000-2003 FAIN Consortium May 2003

Response Time:

Terminology: Evaluates the network and note response time for different control and
management operations. For example, how long it takes to install a new service (VE, EE at
involved nodes, initial code needed, etc.).

Evaluation Methodology: In order to perform the evaluation we set up a VAN for deploying a
particular service. We are going to measure:

1. Bootstrap time of NMS, and EMS
2. Time required for generating the appropriate NL policies for setting up a VAN.
3. Time required for creating a VAN

a. Time for deploying functional domain (NMS - QoS PDP/PDP)
b. Times required for enforcing the corresponding element level policies through its

appropriate EMS. (Time for creating a VE by mean of policies).
i. Time for deploying functional domain (EMS - QoS PDP / AN-Service

PEP)
4. Time required for activating a VAN

c. Time for deploying functional domain (NMS- Delegation PDP/PEP)
d. Time required for enforcing the corresponding element level policies through its

appropriate EMS. (Time for activating a VE by mean of policies).
i. Time for deploying functional domain (Delegation PDP)

ii. Time for activating VE.

Figure 8-7: Topology for Evaluation Meas urement

 illustrates the topology used and where the systems used are located. All the measurements
taken might vary depending on:

• How the network topology used is? (Bandwidth, delay of links

• Where the systems are located?

• How much loaded is the system?

maladeta.upc.fa

santana.upc.fa kubrick.upc.fa

NMS
Net-ASP
Net-Code -Repository
Net-Naming-Service
EMS
Node -ASP
AN

EMS
Node -ASP
AN

Deliverable Title Page 163 of 171

Copyright 2000-2003 FAIN Consortium May 2003

santana.upc.fa is a Pentium IV 1.5 GHz with 500 MB RAM.

kubrick.upc.fa is a Pentium III 666 MHz with 378 MB RAM.

maladeta.upc.fa is Pentium 166 MHz with (it acts as a legacy router)

Deliverable Title Page 164 of 172

Copyright 2000-2003 FAIN Consortium May 2003

Evaluation Results:

Bootstrapping

NMS EMS-santana EMS-kubrick

4911 4908 3285

6059 6011 3273

Table 8-13: Bootstrapping Measurements

Comments:

As can be seen in santana.upc.fa has more load than kubrick. This explains why the same
process of bootstrapping the EMS is bigger in santana than in kubrick.

NMS:

Deploy Functional Domain

At NMS

SM

Generate
Policies

VAN Creation VAN
Activation

QoS Dlg

1481 41607 56619 1012 175

1072 36121 51127 946 336

Table 8-14: NMS Measurements

Comments:

The measurements done have been taken under a different situations. For the 1st trial we
decided to remove all data from the local code repository (i.e. Service Descriptors and
packages of services). This is the reason why in the 2nd trial, the required time for activating a
VAN is not affected by the delay associated to retrieve the Service Descriptors and the
corresponding java packages from the net service registry and the network code repository.

EMS- santana

Deploy Policy

Deploy Functional Domain

QoS Dlg QoS PDP13 Service PEP14 Dlg PDP

19697 10776 6187 4594 167

18007 10375 5015 3567 149

1410 5097 0 0 0

13 The given time includes the time required for deploying the Service PEP.
14 The Service PEP consists of two components the QoS and Delegation of Access Rights PEP, which will be
deployed of the PVE and bound together.

Deliverable Title Page 165 of 173

Copyright 2000-2003 FAIN Consortium May 2003

Table 8-15: EMS-santana Measurements

EMS – kubrick

Deploy Policy

Deploy Functional Domain

QoS Dlg QoS PDPError!
Bookmark not
defined.

Service PEPError!
Bookmark not
defined.

Dlg PDP

10922 7734 6069 5293 200

9862 7906 5089 4338 185

1741 7326 0 0 0

Table 8-16: EMS-kubrick measurements

Comments:

This evaluation has been done by applying a 3rd trial. The 1st and 2nd were done just after the
bootstrap of the management system. Under these circumstances only the ANSP Proxy
component and the PDP Manager component of the ANSP instance were running. Another
thing to consider was that as soon as the deployment of the QoS functional domain is
triggered, the QoS PDP will be deployed on the management station and the Service PEP will
be deployed inside the Privileged Virtual Environment located in the AN.

The time to deploy an element level QoS Policy for creating a VE for the 1st or 2nd trial are
bigger than for the 3rd trial. The reason is that in the 3rd trial there is no delay associated to the
extension of the management system, i.e. the QoS Domain and the Service PEP are already
running on the system so there is no need for triggering their deployment.

The same does not apply for the deployment of the Delegation of Access Rights. Due to that
the delay associated to deploy a Delegation of Access Rights is lower than for the QoS PDP,
since the delegation of access rights PEP was already deployed during the deployment of the
service PEP.

The time for deploying an element level Delegation of Access Rights for activating a VE is
bigger that the time required for deploying a QoS policy for creating a VE. This is due to the
fact that during the creation of the VE we only allocate the resources required but during the
activation of the VE the already allocated resources must be created, which is an operation that
requires more time.

PromethOS Performance Evaluation on Wave Video Plugin

We evaluate the performance of our Wave Video plugin on our active node, which is a
Pentium III PC running at 800 MHz. In order to allow for very accurate measurements, we use
the Pentium's processor clock register TSC which is incremented on every CPU cycle.
Measuring CPU cycles provides a certain degree of independence of the CPU speed but
depends on the architecture and release of the CPU, i.e. it is obvious that a CPU running at
double the frequency can spend much more time to handle packets; however, executing an
assembler instruction like a register-to-register move instruction requires only one CPU cycle
on a specific CPU release, for example. However, measuring CPU cycles and providing a
meaningful explanation is extremely difficult in a commonly used operating system since
every operating system internal states (like memory management issues) may have a
significant influence on the measured value.

Deliverable Title Page 166 of 174

Copyright 2000-2003 FAIN Consortium May 2003

Figure 8-8: Network for performance measurements

Of interest to our measurements are the CPU cycles spent in the PromethOS framework when
a Wave Video packet flows along IP network stack at the active node R (). In our experimental
setup, we configured PromethOS and the Wave Video plugin such that the plugin is attached
to the PRE-ROUTING hook of the Netfilter framework. The relevant objects for these
measurements are depicted in Figure 8-9.

Figure 8-9: Evaluated Components

We measured the number of CPU cycles spent in the PromethOS table, in the Wave Video
plugin, in a null plugin and without plugin. Transmitting the Foreman-video leads to
approximately 17000 packets that need to be processed by the Wave Video plugin.

Components measured

Cycles consumed

T plugin

Always 795

Regular 508

T table

Plugin-always 1460

Plugin-regular 1158

Null 474

Empty 156

Table 8-17: PromethOS Measurements

Deliverable Title Page 167 of 175

Copyright 2000-2003 FAIN Consortium May 2003

 provides an overview of measured CPU cycles. The time spent in the Wave Video plugin is
referred to as t plugin; the time spent in the PromethOS table as t framework. For testing
purposes, we also measured a Null-plugin, a plugin without functionality, of which we refer to
the cycles used by section null in the t table list of figures; the section "empty" refers to the
configuration where no plugin was installed in the PromethOS framework.

For the Wave Video plugin two numbers of CPU cycles are provided depending on whether
adjustments to the Wave Video filter tables are required or not. Note that the filter table is
recomputed at fixed intervals (currently each 100 ms). We refer to the configuration where
every arriving Wave Video plugin leads to a re-computation of the Wave Video filter tables
with the index (extension) "always". The regular configuration of the Wave Video plugin, in
which a filter table adjustment takes place only every tenth of a second, is referred to by the
index (extension) "regular".

In the regular case, we achieve a minimal requirement of 508 CPU cycles for the Wave Video
plugin; on our active node this is equivalent to approximately 635 ns per packet. The
PromethOS table requires additional 650 CPU cycles.

To estimate the overhead created by the PromethOS table itself, the PromethOS framework
was run "empty" and with the null plugin. Calling the empty PromethOS table consumed 156
CPU cycles. This figure indicates the cycles consumed to run through the empty list at the
PRE-ROUTING hook.

Calling the null plugin requires 474 cycles. This figure leads to the indication that the
overhead created by the PromethOS table is mainly due to the design of Netfilter and, since
PromethOS seamlessly fits into the Netfilter framework, of PromethOS itself which make use
of several indirect function calls.

Referring to the measurement results in , PromethOS proved to create little overhead.

Authentication (Performance):

Terminology: Authentication allows the system to securely verify the identity of a principal.
Evaluation Methodology: This feature has been evaluated in two respects. Firstly, we estimate
to what extent this feature has been provided within the FAIN active node (prototype). This is
depicted in Table-2. Secondly, based on the experimental measurements with the FAIN
security architecture prototype, we have tried to estimate the performance overhead imposed
by this feature. The later are presented below.
Evaluation Results:

Transport plane, Control plane, and Management plane:
• Node level: Initial performance measurements shows, that the node can process over

7000 active packets in the case of per hop authentication. Using digital signatures
based authentication the node can authenticate data origin of 570 active packets,
including the overhead of packet decoding and validating a certification path. With
credentials caching 1700 authentications can be performed.

• Measurements were done on commodity PC, with Intel P4 2.2 GHz processor, 512
MBit RAM, Red Hat Linux 8.0, kernel 2.4.18-14, Java SDK 1.3.1_3, Bouncy Castle
cryptolibrary version 1.17 and network node related FAIN code. Digital signature
algorithm was RSA encryption with SHA-1 hash, key size 768 bits, X.509 certificates
were signed with RSA encryption with MD5 hash, key size 1024 bits, certification
path length was 1. In the case of per hop authentication we have used HMAC -SHA-1
as keyed hash.

Integrity (Performance):

Terminology: Integrity enables the system to detect any modifications of the information in
transit over the network by unauthorized adversaries.

Deliverable Title Page 168 of 176

Copyright 2000-2003 FAIN Consortium May 2003

Evaluation Methodology: This feature has been evaluated in two respects. Firstly, we estimate
to what extent this feature has been provided within the FAIN active node (prototype).
Secondly, based on the experimental measurements with the FAIN security architecture
prototype, we have tried to estimate the performance overhead imposed by this feature.
Evaluation Results:

Transport plane, Control plane, and Management plane:
• Node level: Hop-by-hop integrity is provided based on a keyed hash function, when

packets need to be modified at FAIN ANNs en route. Experimental measurements
indicate that validating integrity represents 12% of the total packet processing cost on
the FAIN node. Testing environment was the same as specified in authentication
description.

• Network level: End-to-end integrity is either provided with digital signature (when
packets are not modified en route) or can be incurred from per-hop protections, when
packets are processed at ANNs. The cost of integrity provisioning for the static part of
the packet that doesn't change in the network the same results apply as in the case of
authentication. In the case when the cached credentials are used integrity validation
represents 52% of the packet processing costs.

Deliverable Title Page 169 of 177

Copyright 2000-2003 FAIN Consortium May 2003

9 CONCLUSIONS
The presentation in this document serves to assess and justify the main claims that the FAIN project
has in the area of research and development in active network technology.

Claim 1: FAIN has produced and demonstrated a novel architecture for an active network node, which
implements the concept of a virtual environment and the simultaneous use of multiple execution
environments of different types to enable a very flexible, dynamic creation and deployment of
services.

The justification of this claim has been shown by successful demonstration of a series of complex
application scenarios, each involving on-demand deployment of a service and the execution of an
application using such services.

Claim 2: FAIN has produced an architecture which is capable of supporting active services on three
different planes, where each plane has different requirements in terms of flexibility and performance.
The three planes are the transport plane, the control plane and the management plane.

Claim 2 has been shown to be justified by the fact that FAIN enables different EE types to interoperate
and jointly participate in the provisioning of a complex distributed service. High performance
transport plane functions are supported by the PromethOS execution environment, while medium
speed, but highly flexible control functions may be realized in a Java- or CORBA-based execution
environment. Active functions in the management plane and their interaction with the other planes
have been shown to be possible with a policy-based management approach, where executable policies
fulfill the requirement of flexibility in this plane.

Claim 3: FAIN has developed a service description and deployment approach, which is independent
of the specific type of platform on which service components are executed.

Claim 3 has been fulfilled by a using a platform-independent service specification, which determines
the service to be deployed in an active node. Services may be complex aggregates consisting of
several components that interoperate among each other and across execution environment boundaries.

Claim 4: The FAIN architecture, design and implementation fulfils the evaluation criteria of
flexibility, security, interoperability, openness, portability and performance to a high degree.

Claim 4 has been shown to be justified by the extensive discussion of why these criteria are fulfilled
contained in chapter 8 of this report.

Recommendation

While we feel that the work done in FAIN may have closed the book on important work in the basic
structure and functionality of an active network node and the instantiation of execution environments,
we feel that the project opened another book, which is not written as yet: The problem of dynamic
service provisioning, especially in a network-wide scope, has only been scratched on the surface. We
feel that a future phase of research in programmable networks should concentrate on this problem, and
should incorporate and integrate methods and technologies for service creation, deployment and
management that have been considered in the areas of active networks, peer-to-peer-networks, ad-hoc
networks, leading towards truly self-organizing networks and services.

Deliverable Title Page 170 of 178

Copyright 2000-2003 FAIN Consortium May 2003

10 ACRONYMS
AN Active Network

ANEP Active Network Encapsulation Protocol

ANN Active Network Node

ANSP Active Network Service Provider

API Application Programming Interface

ASP Active Service Provision

CORBA Common Object Broker Architecture

CS Core Scenario

DNS Domain Name System

DNSEC DNS Security Extensions

DSCP DiffServ Code Point

EE Execution Environment

EMS Element Management Station

GAS Generic Application Scenario

IPSec IP Security Protocol

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

MI Management Instance

NMS Network Management Station

OS Operation System

PDP Policy Definition Point

PEP Policy Enforcement Point

pVE privileged Virtual Environment

QoS Quality of Service

RM Resource Manager

SA Secure Association

SBB Scenario Building Block

SCE Service Creation Engine

SID Secure Identifier

SIP Session Initiation Protocol

SLA Service Level Agreement

SNAP Safe and Nimble Active Packets

SNMP Simple Network Management Protocol

SP Service Provider

TA Technical Annex

VAN Virtual Active Network

Deliverable Title Page 171 of 179

Copyright 2000-2003 FAIN Consortium May 2003

VE Virtual Environment

VEM Virtual Environment Manager

VN Virtual Network

Deliverable Title Page 172 of 180

Copyright 2000-2003 FAIN Consortium May 2003

11 REFERENCES

[1] S. Yoshizawa, A. Karlcut, “L-Interface for IP Router Flow & Output Queue Resource

Abstraction and its application to Differentiated Services” IEEE P1520 IP Sub-working
Group, July 1999.

[2] T. Suzuki, C. Kitahara, S. Denazis, “Data Path Creation Procedure”, WP5-HEL-049-
DataPath-Intv0-2.doc

[3] B. Ghose, V. Jain, V. Gopal, “ Characterizing QoS Awareness in Multimedia Operating
Systems”, 1999.

[4] M. Solarski, M. Bossardt, T. Becker, Component-based Deployment and Management of
Services in Active Networks, In Proceedings of IWAN’02, December 2002.

[5] FAIN team. Active Node Architecture and Design. FAIN Public Deliverable D2, May 2001.

[6] FAIN team. Revised Active Node Architecture and Design. FAIN Public Deliverable D4,
May 2002.

[7] H. Krawczyk, M.Bellare and R. Canetti. Hmac: Keyed-hashing for message authentication.
RFC2014, Infromational Februrary 1997,

[8] A. Menezed, P. van Oorschot and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[9] C. Klein, L. Mandl, “Web Service Distribution: A FAIN application scenario with
PromethOS – V1.0.doc”

[10] Requirements Analysis & Overall AN Architecture. FAIN Deliverable D1, WP2-DT-004-
D01-Int. FAIN consortium, May 2001.

[11] IETF Web Replication and Caching (wrec) Working Group. http://www.ietf.org/html.char-
ters/wrec-charter.html

[12] Building Bullet Proof Internet/intranet sites with IP Load Balancing - Scalability,
Optimisation, Fault Tolerance and Availability with RADWARE. White Paper,
Radware.com, http://www.radware.com/support/papers/bullet.pdf.

[13] cdcenter.com – content delivery and distribution resource centre. http://www.cddcenter.com/

[14] Digital Island – http://www.digisle.com/

[15] U. Legedza, D. Whetherall and John Guttag: Improving the Performance of Distributed
Applications using Active Networks. IEEE Infocom, San Francisco. Proceedings, 1998

[16] Evaluation Framework, WP5-ETH-025028.doc76-D6-Int, FAIN project, Internal Report

[17] Evaluation Framework Questionnaire, WP5-ETH-025EvalQuest001.doc76-D6-Int, FAIN project,
Internal Report

[18] C. Klein, L. Mandl: Web service Distribution - An application scenario of the FAIN architecture.
FAIN project, Internal report. To be published.

[19] E. Pfeuffer, R. Schmid, C. Meyer, C. Niedermeier: FAIN Applications in Mobile/Wireless
Networks. FAIN project, Internal Report. To be published.

[20] http://www.videolan.org/, 3 April 2003.

[21] http://www.videolan.org/pub/vlms/0.2.3/rpm/vlms-0.2.3-1.i586.rpm, 3 April 2003

[22] http://www.videolan.org/pub/vlc/0.5.0/vlc -0.5.0.tar.gz 3 April 2003

[23] http://www.videolan.org/pub/libdvdcss/1.2.5/libdvdcss-1.2.5.tar.gz 3 April 2003

[24] WP5-HEL-053-DiffServExe-intv.doc

Deliverable Title Page 173 of 181

Copyright 2000-2003 FAIN Consortium May 2003

[25] Set in Properties/Summary Subject (F9 to update), FAIN Deliverable D1
[26] Initial Active Network and Active Node Architecture, FAIN Deliverable D2
[27] Initial Specification of Case Study Systems, FAIN Deliverable D3
[28] D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W. Jackson, Angelos D. Keromytis,

Gary J. Minden, David Wetherall, "Active Networks Encapsulation Protocol", Draft RFC,
July 1997.

[29] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall, and
Gary J. Minden, “A Survey of Active Network Research”, IEEE Communications Magazine,
Vol. 35, No. 1, pp80-86. January 1997.

[30] Campbell, A. T, H. De Meer, M. E. Kounavis, K. Miki, J. Vicente, and D. Villela, “A Survey
of Programmable Networks”, ACM Computer Communications Review, Vol. 29, No. 2, pp.
7-24, April 1999.

[31] Next Generation Networks Initiative, http://www.ngni.org/overview.htm
[32] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg, “SIP: Session Initiation Protocol”,

RFC
[33] Ralph Keller, Lukas Ruf, Amir Guindehi, Bernhard Plattner, PromethOS: A Dynamically

Extensible Router Architecture Supporting Explicit Routing, Proceedings of the Fourth
Annual International Working Conference on Active Networks (IWAN 2002), Springer
Verlag, Lecture Notes in Computer Science, 2546, December 4.-6. December 2002, Zurich,
Switzerland.

[34] EMS, FAIN Deliverables n.5 and n.8
[35] NMS, FAIN Deliverables n.5 and n.8
[36] VEM, FAIN Deliverables n.5 and n.8
[37] C.Kitahara, S.Denazis, C. Tsaurochis, J. Vivero, E. Salamanca, E. Magaña, A. Galis

J.L.Mañas, Y.Carlinet, B.Mathieu, O. Koufopavlou "A Policy-Based Management
Architecture for Active and Programmable Networks", Network Magazine special issue on
"Network Management of Multi-service, Multimedia, IP-based Networks" to be published in
May/June issue 2003

[38] Marcin Solarski, Matthias Bossardt, Thomas Becker: Component-based Deployment and
Management of Services in Active Networks. In Proceedings Fourth Annual International
Working Conference on Active Networks (IWAN 2002), Zürich, Switzerland, Lecture Notes
in Computer Science 2546, Springer Verlag, Berlin Heidelberg New York, December, 2002.

[39] Service Level Agreement, Inter Domain Manager (IDM). FAIN Deliverable n.8
[40] ASP, FAIN Deliverable n. 8
[41] Network ASP, FAIN Deliverable n. 8

Deliverable Title Page 174 of 182

Copyright 2000-2003 FAIN Consortium May 2003

12 APPENDIX – MOBILITY SCENARIO EVALUATION

12.1 Introduction

The main focus of the FAIN project is on traditional IP based data networks. Restricting oneself to
wired networks does, however, exclude a technologically as well as commercially interesting type of
networks: wireless networks.
As the concept of active networks shows improvements for fixed networks [see results of the Fain
Demonstrator], an evaluation of the benefits of these concepts is certainly worthwhile taking into
account the economic importance of these networks as well as the technological challenges. Therefore,
it is in order to evaluate if and how active networking in general and FAIN concepts in particular may
be useful if applied in the mobile domain. In this work package, supplementary to the main line of
investigation in FAIN, we evaluate the extension of FAIN concepts to mobile networks taking WLAN
as the prime example.

The setup and the basic mechanisms of a wireless extension of the FAIN network are sketched in
sections 2 and 3. Chapter 4 addresses the scenarios of the mobile demonstrator in more detail. This is
the basis for the evaluation of mobility concepts in FAIN.

The evaluation of the FAIN Applications in Mobile Wireless Networks differs from the FAIN
evolution. The FAIN evaluation is focussed on properties of the core of the FAIN demonstrator, the
execution environment, whereas the evaluation of the FAIN Applications in Mobile Wireless
Networks aims at the benefits of active networking within a specific application domain: mobile
applications.

Beyond the scope of the practical experience gained by the FAIN Mobility Demonstrator, the mobility
issue deserves a broader scope to assess the benefits of active networking concept. Work in this
direction is still in its infancy, so we restrict to a short overview detailing the current status of research
and indication some main issues.

Only a few scientific papers discuss the application of active networking technology to future mobile
networks. An overview is given in section 12.6.1. They argue that programmability is a central
concept in future mobile networks, because flexibility is a key requirement for future mobile services
for the following reasons:

- Data connections in Mobile networks are considerably more fragile than in wired networks, due to
the wireless links and mobility. Hence they require sophisticated mechanisms on the network layer.

- Mobile networks are more expensive than wired networks; hence optimizations pay off more easily

- Multi-layer aspects are of growing importance in mobile networks (e.g. for Quality of Service,
Service Adaptation, Reconfigurable Radios)

- Considerable innovation in air interfaces will require adaptation to new technologies

Finding a way to deal efficiently with the flexibility of networks and protocols required by these
demands is therefore an important goal.

Flexible Quality of Service and adaptation of services is another important example of active
networking already in wired networks (see for instance the FAIN show cases). Being even more
relevant for wireless networks, one can expect a wide range of applications.

Especially because mobile networks are becoming more and more important, there is an increasing
need for a novel network infrastructure, which enables the fast deployment of the new services.
Typically, it is assumed that more flexibility is needed on the application and middleware layers than
on the networking layer.

According to 0 for the mobile domain, some Programmable Network Applications are:

Deliverable Title Page 175 of 183

Copyright 2000-2003 FAIN Consortium May 2003

• Generic mobility support (e.g. MAO)
• Multicast, including multicast to mobile users
• Mobile Proxies (http, ftp, etc.)
• Mobile Firewalls
• 3G type "signalling" for user control/metering, but with "basic" SIP alone
• Management and enforcement of (mobile) user policies/profiles
• Mobile user metering& accounting & charging & (hot) billing & fraud control
• Management and enforcement of inter-operator policies (e.g. diffserv practices at network

borders)
• Mobile Personal Network Services, context sensitive or not
• Mobile E-mail boxes
• QoS management for mobile users
• Mobile VPN, with QoS
• Detection of traffic anomalies and taking corrective actions (malicious user traffic, machines

going berserk)
• Mobile app. converters (e.g. doc to pdf, test implementation described in 0)
• Mobile transport protocol converters
• Updating of router configurations & protocols without service interruption
• Flexible load balancing & diagnostic & fault recovery

Based on the principle mechanism implemented by the FAIN Demonstrator and taking into account
the limited budget for the mobile scenarios, we focussed on dedicated scenarios (see 0 and 0) and the
underlying concept for seamless handover. Experiences gained during the implementation and by
evaluating the mobile demonstrator are documented in section 12.5. First, in section 12.5.1 the main
criteria are mentioned and second, in section 12.5.2 our evaluation results are documented. In
conclusion, the section 12.6 contains a short summary of the state of the art in active mobile networks
research and development and highlights future directions in active mobile networks research and
development.

12.2 FAIN mobile Network DEMONSTRATOR: principle Mechanisms

The FAIN mobile network is a wireless LAN, which is connected to the existing wired FAIN LAN as
an extension. So the FAIN network is extended from wired network to WLAN. Additionally, active
networking concepts are applied to mobile scenarios and their mobile applications. Most of the
principle mechanisms (implemented in the Fain mobile network) are the same principles like in the
fixed wired network of FAIN. So, a FAIN active mobile node is a special FAIN active node: a FAIN
active node is configured by a WLAN access controller (see Figure 10).

Deliverable Title Page 176 of 184

Copyright 2000-2003 FAIN Consortium May 2003

PromethOS modules

WLAN Access Controller

W
LA

N
 C

on
tro

lle
r I

nt
er

ce
pt

io
n

(A
ut

ho
riz

at
io

n,
 C

on
tro

lle
r

M
es

sa
ge

s)

WLAN Acc
Contr. Intercepter

Monitor
Modules

Routing/Bridging
Modules

(Redirectors)

Cellular WLAN
interceptor

Figure 10: FAIN Active Node for Mobile Applications

The WLAN access controller keeps a log on usage and users of the WLAN network. Based on this
information load distribution in the WLAN network is enforced. It directly interacts with the active
node by installing and configuring modules on the active node.

The FAIN active node, which is configured by the WLAN controller, is responsible for IP layer
decisions concerning the traffic in the WLAN network. It implements routing/bridging, as well as
monitoring and interception functionality required for the WLAN controller. The functionality is
realised by modules deployed at the active node.
Tasks and responsibilities of the active node are:

- Bridging between WLAN AP subnets and other networks

- Count data flow from/to AP per user

- Routing to simulate bridging functionality of active node

- Gather messages to WLAN access controller

- Message Flows

The message flows between the different entities are elaborated in the detailed design section.

Such a mobile Fain active node builds the transit from the fixed FAIN active network to the mobile
Fain active network. So the general infrastructure of the mobile scenarios results in Figure 11, see
section 12.3.
Comprising the following FAIN concepts are used for the mobile scenarios:

• Creating Virtual Environments as Part of the Virtual Networks Creation

o This demo does not use Virtual Environments. Creating Virtual Environments is part
of another demo described in 0.

• Resource Control for hard Resource Partitioning

o Resource Control is not part of this demo.

• Deployment of different Types and Instances of EEs

Deliverable Title Page 177 of 185

Copyright 2000-2003 FAIN Consortium May 2003

Manipulation of PromethOS modules using an extended version of iptables provided by
PromethOS. This provides an intermediate step towards a full integration of PromethOS
plugins into FAIN execution environments. A next step will be described in 0.

• Creating and Operating Component-based EEs

o This demo will use only one EE on one node.

• Tuning the Active Network for maximising Performance

Using PromethOS kernel modules for processing HTTP traffic will be a step towards
maximising the performance for processing web traffic.

• Simple fault management functionality

There is an automatic reconfiguration capability, which will remove shut down web servers
automatically from the list of allowed targets. When the server becomes available again, it
will be reactivated automatically after some time. As long a there is at least one working
web server, the end user will see a usable network (with maybe degraded performance of
course).

The interactive configurability of PromethOS plugins enables a service provider to react
promptly to changing requirements (e. g., web servers which must be shut down,
increasing load, etc.).

• Active Network Upgrades

o PromethOS allows the dynamic loading and unloading of plugins. This is a first step
towards a dynamic upgrade of an active node.

o There are currently no provisions for a seamless upgrade without interrupting a
running service. There will be at least a short break when the old plugin is unloaded
until the new plugin is loaded and configured.

Additionally, there is one typical mobile active networking concept, which are used for the mobile
scenarios:

• Resource Control for Access Points, especially for WLAN

o Monitoring of Load on Access Points

o Management of Active handover

o Controlling of Active handover

12.3 The Fain mobile testbed

The FAIN mobile network is a wireless LAN, a WLAN, which is connected to the existing wired
FAIN LAN as an extension. Therefore, the evaluation is restricted to WLAN, too.

The FAIN mobile test bed is shown in Figure 11. The WLAN Access controller builds the bridge to
the wired FAIN network.

Deliverable Title Page 178 of 186

Copyright 2000-2003 FAIN Consortium May 2003

lkj

WLAN
Access

Controller

FAIN active Node
(Router)

Access
Point

Access
Point

Content
Server

Terminal

Terminal

Figure 11: Generic Infrastructure of the Demos

The basic building block of the wireless LAN is the Cell. This is the area in which the wireless
communication takes place. All radio communication in the cell is coordinated by a traffic
management function. A unit called Access Point performs it. The access points connect wireless LAN
cells to a wired Ethernet LAN via a simple cable. So the access point functions as a bridge between the
cell and the wired LAN. Once connected to a wired LAN, the network management functions of the
wired and the wireless LANs can also be integrated.

Several access points can be positioned in such a way that their coverage areas converge, thus creating
a multi-cell. Stations inside the multi-cell area automatically "choose" the best Access Point to
communicate with via evaluating signal strength. Overlapping coverage area is an important attribute
of the wireless LAN setup, because it enables seamless roaming between the overlapping cells.

Users with portable stations can move freely between overlapping cells, continuously maintaining
their network connection. This ability to move around the wireless campus is called "Roaming".
Roaming is seamless, that is, a work session can be maintained when moving from cell to cell while
the user experiences, depending on the traffic, only a momentary break in the data flow. A station
implements its roaming capabilities by "choosing" the access point in its area that provides the clearest
signal.

The FAIN mobile test bed is the typical infrastructure for the generic mobile demonstration scenario,
the FAIN mobile scenarios, which are described in 0.

12.4 Fain mobile scenarios

The FAIN mobile scenarios are initiated by the interesting and promising use of mobile wireless
network technology within the edutainment domain. Especially for mobile wireless networks where
the bandwidth isn’t abundant, the FAIN concepts show their advantages. The Fain mobile scenarios
are settled in the edutainment domain. They are part of the showcase “FAIN Dino Park” 0. They
demonstrate how in a challenging wireless environment load-balancing and load reduction approaches
succeed in avoiding bottlenecks and could improve edutainment concepts.

Deliverable Title Page 179 of 187

Copyright 2000-2003 FAIN Consortium May 2003

The focus of the demonstration is on load-balancing and load distribution in mobile networks. The
implementation supports the two following demo cases for load balancing in WLAN 0:

a) on camp-on (when connecting to the system, a client is rejected and redirected to another
AP if the tried one is overloaded.)

b) pre-emptive load distribution (is load on a specific AP is getting to high, selected
terminals are redirected to other APs which have capacity available.)

Load balancing or distribution can be used to achieve non-functional requirements such as

• Reliability: deals with faults and shutdowns of particular servers by automatically redirecting
traffic to servers, which are available.

• Performance: reduced response times even if several simultaneous users use a particular
functionality.

• Scalability: by simply adding additional servers, the system can be configured to work with
higher traffic loads.

12.5 Evaluation of the FAIN Mobile Demonstrator

The mobile FAIN Demonstrator contributes to the FAIN evaluation regarding the following points:

• Flexibility Property

o Dynamic loading and unloading of PromethOS plugins

o Interactive configurability of PromethOS plugins

• Security Property

o Currently relies on the fact, that PromethOS plugins can only be loaded by root. For a
better integration into the FAIN security model see [2].

• Portability Property

o PromethOS plugins can be deployed only on active nodes running PromethOS

o PromethOS itself is based on Linux

• Reliability Property

o AN Concepts are used in this scenario to implement reliable mobile applications

• Performance

o Throughput of web traffic to be measured

• Interoperability Property

o For further study.

• Timeliness Property

o End-to-end delay: no hard requirements, should be sufficient for interactive use.

o Hard to measure anyways, as it depends on many factors (delay imposed by the web
servers, delay on active nodes, delay on non active nodes passed by packets, etc.).

• Openness Property

o Standard web protocols are used and therefore the approach is “open” to any web user
or web service provider

These points essentially reflect the result of the PromethOS evaluation as the present demonstrator is
based on it. However, these points are not in the focus of the FAIN mobile demonstrator evaluation.

Deliverable Title Page 180 of 188

Copyright 2000-2003 FAIN Consortium May 2003

To meet future requirements for ubiquitous communication, future wireless mobile systems require
both high bandwidth wireless communication links and a very efficient and widely adaptable mobility
control and management architecture. From these points of view, the a FAIN based mobile
infrastructure is to be evaluated.

12.5.1 Evaluation Methodology
For the evaluation results the following criteria are interesting:

• Scalability: Nodes, Access Points, Clients

• Performance

• Architectural Concept

• Interoperability with other concepts (good, integration with fixed networks, supports
heterogeneous networks)

• Future long-term suitability

• Mobility support

§ QoS management for mobile users

§ Updating of router configurations & protocols without service interruption

§ Flexible loadbalancing & diagnostic & fault recovery

• Adoption to other wireless networks

12.5.2 Evaluation Results
The experience with the design and development of the mobile demonstrator showed, that using FAIN
architecture and PromethOS in particular the following goals could be achieved:

• rapid prototype development

• separation of hardware and software layer in routers

• high flexibility due to programmable cross layer interfaces

• peacemeal evolution

• run-time extensibility

• implementation based on standard Linux software

As regards the issues mentioned in the evaluation methodology, the experiences may be summarized
as follows:

• Scalability: the use of active networking does not impose any additional scalability
restrictions, which do not already occur without the use of PromethOS.

• Performance: not evaluated, as the implementation is restricted to a demonstrator

• Architectural Concept: the separation of kernel und user space has been used in a beneficial
way to implement the demonstrator without having to do major kernel-programming work.

• Interoperability: is to established easily as it only requires the use of new PromethOS modules

• Future long-term suitability: by changing the PromethOS modules the system is easily adapted
to evolving technologies and standards

• mobility support: see discussion of handover at the end of this sections.

Deliverable Title Page 181 of 189

Copyright 2000-2003 FAIN Consortium May 2003

• adoption to other wireless technologies: not evaluated, as this requires considerable extensions
to other wireless technologies.

Handover is a potentially frequent event in a next generation picocellular environment. The resulting
mobility management is rather difficult. To ensure that the mobile terminal performs a handover in an
efficient and reliable way is a challenge for such mobile networks. The mobile FAIN demonstrator
presents a seamless way to perform handover. Additionally, the implemented active handover provides
an improved QoS management for mobile users and a better resource utilization concerning access
points.

12.6 Conclusions and recommendations

12.6.1 Summary of the state of the art in active mobile networks
research and development

Many scientific papers discuss the application of active networking technology to future mobile
networks. They argue that programmability is a central concept in future mobile networks, because
flexibility is a key requirement for future mobile services for the following reasons:

- Mobile networks are very fragile , due to wireless links and mobility

- Mobile networks are more expensive than wired networks; hence optimisations pay off more easily

- Considerable innovation in air interfaces will require adaptation for new technologies

So they deal with flexible networking protocols which will be needed in future mobile networks, and
mobility management and hand-over optimization as a central service of mobile networks, which can
be optimized in many ways.

Flexible Quality of Service and adaptation of services is a common example of active networking. For
instance, in 0, filters are uploaded dynamically to adapt the capabilities of the networking
environment.

At Siemens (CT SE 2) within the project MASA I 0 mobility management and seamless handover for
an enhanced support of user-defined QoS requirements was investigated. The supported networks
were UMTS FDD, WaveLAN and LAN. The focus of the project was on:

–Mapping of Quality of Service from user level (best, good, medium,..., best effort) to media stream,
system resources, and network level

and

–Dynamic adaptation of media streams depending on network (bandwidth, quality), terminal and
global policy.

The objectives of the MASA I project were the definition and implementation of a comprehensive
QoS framework for 'Mobility and Service Adaptation in Heterogeneous Mobile Communication
Networks' (MASA), in particular a Quality of Service (QoS) Framework for Audio and Video over IP
services was implemented. Siemens’s thesis is that, in order to provide high quality communication for
mobile users, media processing facilities as well as mobility handling and handoff decision
mechanisms should be closely integrated into a QoS framework. This allows, e.g., to base handoff
decisions on all available QoS elements such as availability of transcoding units or local resource
management.

The MASA framework is able to release applications of QoS-related work as much as possible and, in
addition, hides the complexity of network QoS mechanisms from the applications. The MASA QoS
framework is able to support users with the ability to continue ongoing sessions even during handoffs
and device changes (session mobility).

Deliverable Title Page 182 of 190

Copyright 2000-2003 FAIN Consortium May 2003

Similar research work was done within a project at the Lancaster University, UK. They investigated in
Component-based Active Networks for Mobile Multimedia Systems with detailed consideration of
mobile Ipv6 0. Associated with mobile Ipv6 and active networking, most of the research activities
discuss ad-hoc routing protocols and n table-driven routing protocol (proactive) e.g. destination-
sequence distance-vector (DSDV) routing or clustered gateway switch routing (CGSR) and n source
initiated on-demand routing protocol (reactive) e.g. ad hoc on-demand distance vector (AODV)
routing, dynamic source routing (DSR) and Active Source Routing.

Other research activities take care about ad-hoc networks, in which all the network nodes are mobile
terminals. The connectivity among them is continues changing. Therefore, it is difficult to find one
best ad-hoc routing protocol suitable for all circumstances. The project, described in 0, uses AN to
support customization of routing protocols, where most suitable routing protocol can be chosen from
multiple routing protocols according to the QoS requirements, security concerns, link characteristics.

To sum up, many research projects (e.g. 0, 0, 0) show, that future mobile networks can best fit for the
adoption of active networks. The main benefit of active networks is the added flexibility. This
flexibility is require for at least two points 0:

• Applications will evolve rapidly. The adaptation of lower layer infrastructure will be needed
to optimize these applications.

• New wireless technologies and ad-hoc networks will require continuous adaptation of the
networking layer.

Active networks can help to evolve separately different networking layers. So it is not necessary to
introduce completely new networking infrastructure.

Other research projects (e.g. 0) handle in particular solutions for handover. They regard handover as a
high frequency event in future macro, micro and pico-cellular mixed wireless mobile over-layer
internetworking environment. It is a very important issue to support handover efficiently and reliably
is a very important issue, which will directly influence the whole system performance. In particular,
the focus of the research activities is an efficient and reliable handover scheme. Unfortunately,
complete implementations and hands-on experiences are still missing.

12.6.2 Future directions in active mobile networks research and
development

As stated in the introduction this document just gives a short introduction into the mobility aspects of
active networking. A lot of issues still require further investigation, to name just a few:

• Tests about load balancing, practical experiences about scalability (number of access points,
number of clients, number of services)

• Use cases with utilization of different services belonging to different QoS-classes (others than
videostreaming, which is the only demonstration service)

• Management application: Monitoring as bases for accounting and billing

• Hand-over between different wireless access technologies
• Extension to heterogeneous networks consisting of fixed networks (different technologies) and

mobile networks (different technologies)

• Legacy integration: how are Clients without FAIN-specific Software handled ?

• How behave Clients with FAIN specific Software in not-FAIN-networks?

• Extension to personal mobile networks,

• Evaluation in not closed environments (other scenarios than DINO park, ….)

Deliverable Title Page 183 of 191

Copyright 2000-2003 FAIN Consortium May 2003

More concrete and directly related to the WLAN demonstrator, the present functionality may be
extended with

• Mobility Support for Applications using a Software Proxy Concept

• Content Adaptation for Mobile Users

• Reconfiguration Support for Mobile Terminals

• Application dependent decisions

• multi-layer aspects in mobile networks (e.g. for Quality of Service, Service Adaptation,
Reconfigurable Radios)

12.7 REFERENCES

[1] Mobile FAIN Demonstrator: Generic Demonstration Scenario FAIN project, E. Pfeuffer, R. Schmid, C.
Meyer, FAIN Internal Report. To be published.

[2]FAIN Applications in Mobile/Wireless Networks, E. Pfeuffer, R. Schmid, C. Meyer, FAIN project, FAIN
Internal Report. To be published.

[3]Web service Distribution - An application scenario of the FAIN architecture, C. Klein, L. Mandl, FAIN
project, Internal report. To be published.

[4]Design Specification for Mobile FAIN Demonstrator, R. Schmid, Carsten Meyer, Siemens AG, FAIN Internal
report.

[5]Mobile Controlled Handover in Wireless LAN, August 11, 2002, Attila Weyland Günther Stattenberger
Torsten Braun, LANMAN 2002, Stockholm

[6]Component-based Active Networks for Mobile Multimedia Systems, S. Schmid, J. Finney, A.C. Scott, and
W.D. Shepherd.

[7]Active Network Technology and Reconfigurability, Christian Prehofer, DoCoMo Communications
Laboratories Europe.

[8]A Survey of Active Network Research, David L. Tennenhouse, Massachusetts Institute of Technologym
Jonathan M. Smith, University of Pennsylvaniam W. David Sincoskie, Bell Communications Research,
David J. Wetherall, Massachusetts Institute of Technology, Gary J. Minden, University of Kansas.

[9]Survivable Mobile Wireless Networks: Issues, Challenges, and Research Directions, James P.G. Sterbenz,
Rajesh Krishnan, Regina Rosales Hain, Alden W. Jackson, David Levin, Ram Ramanathan, and John Zao,
BBN Technologies 10 Moulton Street, Cambridge, MA 02138, USA

[10]Technolgies for Future Mobile Networks, Dr. Christian Prehofer, DoCoMo Eurolabs, München.

[11][Prehofer-sdr-colloq an-and-reconfig-2002-06.pdf]

[12]Christian Tschudin, Henrik Lundgren and Henrik Gulbrandsen, Active Routing for Ad Hoc Networks, IEEE
Communications Magazine, April 2000

[13]A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao: Programmable Mobile Networks. Computer Networks,
Vol. 31, No. 7, pg. 741-765, April 1999.

[14]Active Networks: Applications, Security, Safety, And Architectures, Konstantinos Psounis, Stanford
University. Surveys, I E E E Communications The Design And Evaluation Of Network Services In An
Active Network Architectural Framework, Niraj Prabhavalkar- A thesis submitted to the Graduate School-
New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for
the degree of Master of Science Graduate Program in Electrical and Computer Engineering Written under
the direction of And approved by Professor Manish Parashar New Brunswick, New Jersey October, 2000

[15]Active Networks, An Integrating Technology for Research, Peter T. Kirstein, 14/9/00 LCS Conference.

[16]A Network Architecture for highly integrated Access Points for use by Multimedia Mobile Terminals,
Juntong Liu, Computer Communication System Laboratory, Telecommunication System Laboratory,
Department of Teleinformatics, Royal Institute of Technology, Stockholm, Sweden, March 1998, A thesis

Deliverable Title Page 184 of 192

Copyright 2000-2003 FAIN Consortium May 2003

submitted to the Royal Institute of Technology in partial fulfillment of the requirements for the Licentiate
of Technology degree

[17]G. Dommety, A. Yegin, C. Perkins, G. Tsirtsis, K. El-Malki, M. Khalil, Fast Handovers for Mobile IPv6,
draft-ietf-mobileip-fast-mipv6-04.txt, March 2002

[18]New Technologies in Support of Mobility, 10. Sept. 2002 Arto Juhola, VTT TECHNICAL RESEARCH
CENTRE OF FINLAND,
http://akseli.tekes.fi/Resource.phx/tivi/nets/netsaiheryhma1aseminaarikutsu.htx.liite.liitteet.2.ppt

[19]High Quality Mobile Communication, KIVS 2001 - Kommunikation in verteilten Systemen (Tagungsband),
2001, H. Hartenstein, A. Schrader, A. Kassler, M. Krautgärtner, C. Niedermeier,

[20]Component-based Active Networks for Mobile Multimedia Systems, S. Schmid, J. Finney, A.C. Scott, and
W.D. Shepherd Distributed Multimedia Research Group Computing Department Lancaster University, UK,
The 10th International Workshop on Network and Operating System Support for Digital Audio and Video,
June 26-28 2000, Chapel Hill, North Carolina, USA

[21]http://www.ist-mobydick.org/
Moby Dick - Mobility and Differentiated Services in a Future IP Network
Project Number: IST-2000-25394

