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Executive Summary 

D4 is the second in a series of three deliverables (i.e. D2, D4, D7) that are part of WP3 activities. It 
builds on D2, which was the first deliverable in the series and described the initial FAIN Active 
Network (AN) node architecture. An early version of the deliverable D4 was issued in early March 
2002 as R5 & R6 internal reports. It describes both the revised FAIN active node architectural layers 
(i.e. R5 report) and the revised FAIN active node design (i.e. R6 report). As a follow up of D2, we 
have decided not to repeat parts of D2 here, but rather to focus on those parts the have undergone 
considerable revisions as a result of the implementation efforts and growing experience with the 
subject in year 2.These revisions may be classified into two categories: a) Concept revisions and b) 
Technical Revisions.  

Concept revisions refer to the main architectural concepts outlined in D2 in that they needed more 
focus in some cases or lacked completeness in the previous version of the deliverable. In this 
deliverable we have revisited them and described them from a different viewpoint while making the 
necessary references to the corresponding implementation, thereby adding more depth in their 
description by connecting them with experimental proofs. 

Technical revisions refer to the implementation of the FAIN Active Node architecture, which resulted 
in modifications, or extensions of the initial version of the architecture description as well as the 
particular choice of technologies and the engineering aspects thereof. 

More specifically, section 1, named FAIN Overview, provides an overview of the FAIN active node 
and network architecture that includes results from other work packages and assists the reader of the 
deliverable in understanding the general picture of FAIN. 

Section 2, named, FAIN Active Router Architectural Ingredients, summarises the concept revisions 
which was the result of the project’s intention to aim at designing a system that is flexible and 
interoperable since Active Network technology is particularly suited for systems with these properties. 

Section 3, named Revised Active Node Architecture, provides an overview of the revised node 
architecture focusing on Node OS and node management aspects. It also provides a summary for each 
one of the major components that appear in the architecture highlighting the differences since the 
previous deliverable, D2. 

Sections 4-7, provide a detailed description of each one of the FAIN Active Router components, 
namely, VE Manager, Demux, Security and RCF, respectively, that includes their design and 
engineering aspects of their implementation. 

Section 8, named, Execution Environments, describes three different execution environments that 
were the direct result of the realisations of the FAIN concepts outlined in section 2. Two of them, the 
JAVA EE and the High Performance EE, named PromethOS, have been designed and implemented as 
a proof of concept for the kind of flexibility that we envisage in FAIN. They build on the concept of 
component-based systems whereby services are downloaded in the form of components and are placed 
in the data path layer in order to process packets. The third EE, described in section 8.3, named SNMP 
Activator, is an example of a control EE from which the node interface (in this case it is an SNMP 
based interface) may be accessed. Such EE may be used by signalling protocols and it builds upon the 
SNAP EE, the background work of one of the FAIN partners, UPEN.   

Finally, in Appendix A of the document, we have extended and enhanced the ANEP protocol to suit 
for the needs of FAIN for our testbed trials. In Appendix B, we provide an overview of the current 
status of the work in WP3 by means of distinct node components with their functionality. 

D4 also represents the theoretical aspects of the architecture. The actual implementation that was built 
for M3 milestone is described in the R10 report, which also includes the scenarios to be demonstrated 
and the interface specifications, also a result of this project. 
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Comparing the two deliverables, D2 puts the emphasis on the design aspects of FAIN while D4 on the 
implementation aspects. Accordingly, the two documents may be viewed as complementary to each 
other and collectively they represent the current state of project achievement. Our intention is to merge 
the two documents into the third deliverable which will then represent the final result of WP3 
including of course any changes and modifications that will occur as a result of the FAIN testbed 
deployment and evaluation in Year 3. 
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1 FAIN OVERVIEW 

1.1 Active Networking Issues in FAIN 
The FAIN active network architecture defines active nodes, which provide full flexibility to the user 
for network management and service provisioning. The defining characteristic of an active node is the 
ability for users to load and manage software components dynamically and efficiently. This can be 
achieved safely since customers who are sharing the same active node would be provided with a VPN-
like resource partitioning. 

Packets requiring active processing are marked to allow correct handling by active routers. This allows 
the discrimination of active and conventional packets and the selection of an active node. Routing and 
node resources configuration in the active nodes could be achieved by setting policies at the network 
management level (element and network management nodes). Access to this functionality will be 
controlled and only possible via a well-defined API.  

 Active Node 
Passive Node 
Active Element  Mng . Node 

ScenarioScenario

Active Network  Mng . Node 

 

Figure 1-1: Management of Active Networks in FAIN 

Figure 1-1 exemplifies a configuration of an active network and its management nodes. 

1.2 Components in the FAIN Active Node  
In relation to D2, we provide a summary of issues that are pertinent to WP3. The FAIN Reference 
Architecture consists mainly of the following entities: AA, EE and Node OS. 

• Active Applications/Services (AA) are applications executed in active nodes.  

• Execution Environments (EE) are environments where application code is executed. A privileged 
EE manages and controls the active node and it provides the environment where network policies 
are executed. Multiple and different types of EE are envisaged in FAIN. EEs are classified into 
virtual environments (VEs), where services can be found and interact with each other. VEs are 
interconnected to form a truly virtual network.  

• NodeOS is an operating system for active nodes and includes facilities for setting up and 
management of communications channels for inter–EEs and AA/EEs, manages the router 
resources, provides APIs for AA/EEs, and isolates EEs from each other. Through its extensions 
the NodeOS offers facilities through the following components: 

§ Resource Control Facilities (RCF). Through resource control, resource partitioning is 
provided and VEs are guaranteed that consumption stays within the agreed contract during 
an admission control phase, whether static or dynamic. 
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§ Security Facilities (SF). The main security aspects are authentication and authorisation to 
control the use of resources and other objects of the node such as interfaces and 
directories. Security is enforced according to the policy profile of each VE. 

§ Application/Service code deployment facilities (ASP support). As flexibility is one of the 
requirements for programmable networks, partly realised as static or dynamic service 
provisioning, the NodeOS must support code deployment. 

§ Demultiplexing facilities (DEMUX). As flows of packets arrive at the node, 
Demultiplexing filters, classifies and diverts active packets to the appropriate VE, and 
consequently to the destination service inside the VE.  

§ Node Management Facilities (NM). The main aspects are the initiation and maintenance 
of VEs, control and management of the RCF and SF, management of the mapping of 
external to node policies into node resource and security configurations. 

    Fast Forwarding

Management VEs Active
Node

Notifications & Events Policies

                                     Node OS

Node OS
Extensions

 Resource Control
      Facilities

 Security
      Facilities

AAsAAsAAs
AAsAAsAAs

          VEs

AAsAAsMAAs
AAsAAsMAAs

 

Figure 1-2: FAIN Active Node  

Figure 1-2 describes the main design features and the components of the FAIN nodes: 

In FAIN, node prototypes that are under development include: a high performance active node, with a 
target of 150 Mb/s; and a range of flexible and very functional active nodes/servers, with the target on 
multiple VEs hosting difference EEs 

The common part of the prototypes (the FAIN middleware) is the NodeOS with the relevant 
extensions. Further details and discussions about the active node are provided in the remaining of this 
deliverable and in D2. 

1.3 FAIN Active Management Components 
Deliverable D5 will elaborate on the management approach in the FAIN project, which takes policy-
based approach. 

We envisage that the management of the active network will require the following features: 

• Policies: Description of policies required to manage the active nodes and network 

• Node management component: Design of management components within the active nodes, 
which will execute policies within an active node and monitor the local node resource usage. 
The execution of policies means mapping target policies into node resource configurations  

• Management stations: A set of management nodes that will provide mechanisms to enable 
network administrators to manage the active networks as a whole, including network policies 
set-up and processing. 

As the delivery of services will require co-operation of a number of active nodes the network 
providers will need the means of managing the active nodes as a group of nodes and not individual 
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nodes. They will need monitoring mechanisms for checking that correct policies are being defined and 
used in relation to the network before they are sent to the actual network. It will need to know what 
policies are currently loaded in the active nodes and what impact these are having on the network. It 
will also need to protect and monitor the security of the network. Therefore, the network/service 
provider needs a set of management mechanisms that will enable it to manage the network as a whole.  

In FAIN we see the need for two types of management nodes in order to provide these mechanisms:  

• Element Management Stations (EMS) 

• Network Management Stations (NMS) 

The main difference in functionality provided by these two types of management nodes is in the policy 
types, which they could process and manage, in the sub-networks, which they cover and in the 
creation of management domains for different types of users, as shown in Figure 1-3.  

Element Management Node

Policy Execution
Manager

Network Layer

Mang.Virtual Environments Active
Node

Notifications Policies

Network Management Node

PoliciesNotifications

 

Figure 1-3: Active Network Management 

Furthermore, the relationships between the EMS, NMS, and active nodes with regards to the policy 
flow are shown in Figure 1-3. 
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2 FAIN ACTIVE ROUTER ARCHITECTURAL INGREDIENTS 
As a result of the analysis carried out in the previous deliverable, D2, we have focused on the 
following architectural ingredients as the most critical for realising the FAIN Active Router 
architecture: 

• The Execution Environment(s) 

• The Open Interfaces 

• The Network Element 

We have analysed and used these architectural ingredients with a clear separation between 
Control/Management and Transport planes and with the introduction of the interoperability plane.  

The questions we faced were: a) how do we realise each one of them, and, b) how can they be 
combined (integrated) to fulfil the project objectives? Answering these questions gave rise to the 
details of the AN node architecture (see section 3 onwards) and provided a proper justification for the 
validity of the FAIN reference model (the “cube”) argued in D2. In the remaining of this section we 
provide a description of these architectural ingredients highlighting on the design objectives thereof 
manifested as specific properties. 

2.1 The FAIN Execution Environments 
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A3

Component
• A composite block built 
using basic blocks.
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A7

A4 A5

C2C2

C1C1

Building Block
• A composite block built 
using basic blocks.

Binding

 

Figure 2-1: The Programming Environment 

There have been a lot of views on the definition of an Execution Environment (EE) among 
researchers. Elaborating further on the analysis outlined in D2, and drawing from an analogy based on 
the concepts of class and object in object-oriented systems, we have distinguished between the type of 
an EE and the corresponding instances thereof.  

An EE type is characterised by the programming methodology and the programming environment that 
is created as a result of the methodology used. In contrast, an EE instance represents the realisation of 
the EE type in the form of a runtime environment by using specific implementation technology e.g. 
programming language and binding mechanisms to maintain operation of the runtime environment. 
Accordingly, any particular EE type may have multiple instances while each instance may rely on 
different implementations. 
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Such distinction allowed us to address the issue of the principles that must govern and the properties 
that must be possessed by systems in next generation networks, from the issue of how to build such 
systems. 

In FAIN one of the properties that has been the centre focus of our design and implementation efforts 
is flexibility and in particular, composability and extensibility aspects thereof. 

The programming methodology that was used as part of the FAIN EE type was the building block 
approach according to which services break down into primitive, distinct blocks of functionality, 
which then may be bound together in meaningful constructs. To this end, services can be rebuilt from 
these primitive forms of functionality, called building blocks, while the building blocks may be reused 
and combined together in series of different arrangements as this is dictated by the service itself. The 
result of this process is the creation of a programming environment like the one depicted in Figure 2-1. 

In FAIN we have built two different EE instances, namely, Java EE and High Performance EE, of this 
type described in section 8. 

2.2 The Open Interfaces 

Con
tr

ol
Pla

ne

Binding

Resource/Service
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Figure 2-2: The building block abstraction 

The next ingredient to our FAIN Active Router architecture is the identification and specification of 
open interfaces. While their scope varies from node level to network level, we primarily focus on the 
node level as this is the level where high level service requirements will be translated (mapped) into 
low (node) level interface accesses for the purposes of configuration and control of the node 
functionality thereby resulting in the behaviour expected by high level services. 

This is also the level where standards are required so that services at different levels may access the 
same specification across different implementations. However, taking into account the fact that the 
node must be able to support flexibility a standard specification must adhere to the following 
principle: 

Standardisation should not interfere with the development of new 
technologies and become a confinement to technological advancements 
but be capable of accommodating them. 

From the outset of the principle above, it seems that there is a conflict between the programming 
methodology which aims at creating component-based programming environments with the property 
of extending and reconfiguring themselves and a standard which implies that the functionality 
exported by the set of interfaces is fixed and only changes at a very slow pace. In other words, how is 
it possible for a standard to evolve at a similar pace with the technological advances? The answer can 
be found in the observation that such specification must also possess the same property, namely, 
flexibility and in particular composability and extensibility. 
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In FAIN we have captured the semantics of the composition mechanism as part of the node open 
interface. To this end, the control part of any new functionality is enhanced by a set of generic classes 
that offer methods that allow any control client to deploy into the node this new node functionality 
while binding it with other components at runtime. Figure 2-2 depicts how the enhanced control 
interface of functionality encapsulated in the form of a building block looks like from the viewpoint of 
the control plane. Such interfaces that participate in composability operations have been specified as 
part of the VE management framework described in section 4. 

2.3 The Network Element 
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Figure 2-3: The Network Element Model 

The previous two ingredients, namely the EE instances and the Open interfaces require a network 
element to reside in. Packets arriving at the node have to follow different data-paths inside the node. 
At every part of the node EEs have been instantiated implementing the same programming 
methodology and creating component-based programming environments. This gives rise to a new 
generation of network elements with architectures that are component-based. Such trend has been 
accelerated by the advent of innovative network products like the Network Processors (NP). Figure 
2-3 depicts the new environment in the form of a Network Element Model. 

In FAIN we have designed and built a prototype of an AN node that approximates the scenario above. 
Instead of a NP we have built one EE at the kernel space and another one at the user space. Both EEs 
support composability and receive packets, which are then directed to specific components as part of 
their data-path node crossing. More detailed description is provided in R10 as part of M3. 

2.4 The Interoperability Layer 
One goal of the FAIN Active Router architecture is the realisation or support of interoperability while 
preserving backward compatibility.  

It should be noted that EEs are not being restricted to the transport plane and they apply also to the 
control & management planes. Since the control/management planes control the network element 
(which in turn controls the data-path creation), the control/management EEs can control the data-path 
behaviour. As different control/management EEs can implement the same open interface specification, 
this open interface specification can then abstract the structure of different data-paths. The control and 
management interfaces are therefore exported inside different control/management EEs. It is this open 
interface specification that defines the interoperability layer. 
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Figure 2-4: The Interoperability Layer 

One of the major results of the FAIN approach is the creation of a layer that allows services to be 
deployed in heterogeneous environments. Recall from D2 that the FAIN reference model allows EEs 
to coexist within the same node in a synergistic way using each other’s capabilities and services. 
Accordingly, EEs that exist in the transport plane and support specific component-based data-paths 
can be controlled by EEs in the control and management planes. 

Creating an interoperability layer requires that the same open node interface specification - including 
the binding part used for composition purposes - must be implemented by every EE (EE instance) in 
the transport plane. In addition, in every C/M EE instance, control interfaces that adhere to the same 
specification must be provided in an EE specific format and connected with those in the transport 
plane that represent the actual implementation. The connection is the subject of what we call 
adaptation layer and its equivalent is the driver’s layer of an operating system (Figure 2-4). 

The specification itself represents the interoperability layers, which is realised inside the different EE 
instances of the control and management planes (Figure 2-4). In FAIN we have demonstrated this 
during the Opensig2002 demo and it is described in R10 of M3. In section 8.3, we describe a control 
EE that is built on the principle of control and transport plane separation and access an SNMP based 
interface that is exported inside the control EE instance (SNAP EE). 
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3 REVISED ACTIVE NODE ARCHITECTURE 
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Figure 3-1: Overview of AN node architecture  

In the section 2, we have highlighted some architectural ingredients and argued on the principles and 
objectives in using them in designing the FAIN Active Router architecture and its corresponding 
implementation. In this and subsequent sections we describe an architecture that integrates among the 
different components and how the ingredients have been used. 

The AN node architecture has continued to evolve and in its revised version it reflects changes that 
were carried out as a result of the implementation and integration efforts. The changes pertain to the 
detail design of each one of the major node components and the specification of the inter-component 
interfaces. Figure 3-1 depicts the AN node overview of the major components and their corresponding 
interfaces that comprise the FAIN AN node architecture. Note that the figure shows the logical, not 
necessarily the physical distribution of the main components or their subparts. In this section we 
provide a summary and comment on the changes of the original AN node architecture, which is still 
valid and may be found in D2. Detailed description of the architecture and the changes are given in the 
corresponding sections that describe the components. 

More specifically, The Privileged Virtual Environment has been enhanced with a new component, 
called VE manager, which implements the VE management framework. This component is the most 
crucial one as it offers a number of node services that are deemed necessary to configure and set-up 
the node. It is used for instantiating new VEs, deploying EEs and components therein as well as 
control interfaces that allows services inside VEs to customise resources according to application-
specific requirements. In addition, the proposed framework allowed the implementation of other 
components like resource managers in RCF or channel managers in DMUX to be easily integrated 
with the implementation of the framework by means of a set of classes from where these components 
inherited. Finally, the VEM manager specified another set of interfaces, namely the Template Manager 
and Component manager that facilitate communication and integration with types of EEs other than 
the one that the VEM used for its own implementation. This will enable future integration with other 
implementation instances that are currently under development. 
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The DMUX has been enhanced with a Channel manager that is capable of creating different types of 
Channels, which are used to receive different types of packets, e.g. data packets or ANEP packets, and 
consequently deliver these packets to the proper services that are running inside different VEs. These 
channels are created by the DMUX components and are given to the requested VEs, which control 
them. To this end, VEs may request the creation or deletion of channels as well as configure these 
channels to receive certain packets, e.g. a specific IP address. The DMUX actually provides the two-
ends (input and output) of a plug and play data-path that is supported by the component-based AN 
node architecture.  

The goals of security architecture as stated in D2 remain the same. The architecture itself was further 
developed and is now more precisely defined. Two new entities were added, namely, the Security 
Manager and the Connection Manager. The former impacted the authorisation functionality, which 
now supports multiple authorisation engines, and exports security interfaces (policy and credentials) to 
the node. The latter, provides security support for hop-by-hop data integrity over connections with 
adjacent nodes. To this end, the security related options of the ANEP header were also specified and 
used in scenarios that involve this aspect of security functionality. 

The AN node resource control (RCF) has adopted the VEM framework whereby the resources and 
their corresponding resource managers of the original RCF architecture in D2 are encapsulated in the 
Components manager of the VEM. Accordingly, the RMs can be deployed and controlled as any other 
regular service component through the interfaces inherited from the Component Manager. The RCF 
has also been extended with an Admission Control entity that is responsible for deciding whether the 
new VE creation request may be accepted provided that there are resources available left in the AN 
node. 

The revised AN node architecture has been implemented in a Java EE on top of a Linux operating 
system using the Netfilter for packet classification and forwarding. This implies that the management 
functionality of the node has also used a Java EE. However, another aspect of the architecture is the 
simultaneous support of multiple EEs provided by the VEM framework. To this end, we have built 
two different types of EEs: one high performance EE in the kernel space of the Linux operating 
system and one control EE, called Active SNMP, which is based on SNAP EE. 

The high performance EE is capable of dynamically deploying service components in the data-path on 
behalf of different VEs. The Active SNMP EE is an example of in-band signalling EE that enables 
valid users to control node resources by communicating with an SNMP agent. 
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4 VIRTUAL ENVIRONMENTS & MANAGEMENT 
The FAIN active node allows for a variety of execution environments tailored to the specific needs 
potential active services may have. However, in order to manage different services in different 
environments a dedicated management environment is needed. The role of the management 
environment is to provide a uniform interface for accessing services running in the various execution 
environments. It supports interfaces for the installation, creation, and configuration of service 
components, especially the initial set-up of connections between components. The communication 
between components during their runtime can happen in whatever way is most effective and does not 
necessarily involve the management environment. 

The concept of virtual environments is used to associate service components and their resource 
consumptions with the appropriate identity. We envisage one dedicated virtual environment owned by 
the node provider, however there could be several virtual environments owned by several service 
providers. The mapping from virtual environments to execution environments is not necessarily one-
to-one, meaning that components represented in a virtual environment can be spread over different 
execution environments and components residing in an execution environment can be represented in 
different virtual environments. 

VE1 VE2 

EE1 EE2 

 

Figure 4-1: Mapping of components viewed on the virtual and execution level. 

The collection of APIs described in this document provides the interface between the network 
management and the active node. The active service provisioning (ASP) part will use the template 
manager of the node provider to install new service types on the node. Subsequent services can be 
instantiated with the help of the component manager. A variety of resource managers are then used to 
allocate and monitor resources. The policy decision and enforcement points known from the policy 
based network management can be realised as components inside the management framework. In this 
way they can easily interact with already installed components – like resource managers and monitors 
– and make their own functionality available to other components. 

After presenting the overall design - the individual parts will be outlined in more detail. Finally a 
collection of scenarios will illustrate the usage of the APIs.  

4.1 Design 
The three basic types of interfaces residing in the management environment are iTemplateManager, 
iComponentManager, and iComponentInitial. The management environment allows adding new 
interfaces to components so that they can offer their specific functionality. 
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Figure 4-2: UML description of the VEM framework interfaces. 

The interface iTemplateManager is assigned to a particular execution environment or virtual 
environment. It offers operations for installing templates in the managed environment, which means 
making code available for the creation of instances of a particular component type. Installation of a 
template includes the set-up of a manager for component instances; the manager’s interface 
iComponentManager is the return value of the installation process. In the case that a template manager 
is assigned to a virtual environment all requests have to be forwarded to the manager of the 
appropriate execution environment because this is the place where the instances of component live. 

The interface iComponentManager offers operations for managing instances of components including 
creation, listing, and deletion. The parameters for the creation of a component are specific to the type 
managed by the component manager (as defined by the respective template) and the result is the 
component’s iComponentInitial interface. The component manager uses the parameters to initialise the 
new component instance. Where supported the parameters may also contain a description of the 
resource bounds for the new component. In this case the component manager acts as a resource 
manager and allocates the initial resources while it monitors the component’s resource consumption 
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during runtime. Note that not all component managers need to support the features of a resource 
manager. 

The interface iComponentInitial is used for the initial access of a client to a component. In order to get 
access to the component the client has to authenticate itself at this interface. The parameters for the 
authentication are the credentials of the client and the result is the component’s requested specific 
interface tailored for the calling client. 

The abstraction of ports is used to represent the connections a component provides to the outside 
world where interfaces as mentioned above are just a special kind of ports. Ports can be used for 
information exchange in any format or they can be used for expressing dependencies among 
component instances. Using the interface iComponentInitial a client can retrieve the references to the 
other interfaces and ports supported by the component. 

4.2 Components 
All components have a type, a unique name and an owner. The configuration of a component is 
described by properties. Interested clients can register for getting notified when particular properties 
change. To get access to the component's API a client has to authenticate itself first. The component 
manager that created the component sets the name and the initial configuration. Components can offer 
multiple interfaces in addition to the basic ones, e.g. a bandwidth manager will offer an interface for 
reserving bandwidth in addition to the interface for configuration. 

4.2.1 Ports 
Components are accessed and interconnected by ports. Ports can be used for exchanging information 
or to model this exchange. Ports are also useful to express dependencies among components. A port 
has a name valid in the context of the holding component as well as a reference to the component 
itself. A port is described by a direction, an address (i.e. the endpoint for data exchange like an IP 
address, a memory address, an IOR, etc.), a format (i.e. the protocol used for data exchange like IP, 
ATM, IIOP, HTTP, etc.), and an optional type used for typed ports (e.g. an interface repository ID). 

4.2.2 Properties 
Instances of components are identified by a unique name and are owned by an identity. An identity is 
defined by its name and credentials. Assigning an owner to each component instance allows to control 
access and to do accounting both based on identities. Additionally components can have a number of 
freely definable properties. Such a property is constituted by its name and a value expressed as a 
CORBA Any. Properties can also be used to define a component’s behaviour, e.g. a property may 
define a resource limit for a particular user or may restrict the access and usage of a component’s 
interface. 

4.2.3 Configuration 
A component exposes an interface for configuration issues. At this interface it is possible to get and set 
properties as well as to register for property observation. An observer can implement call-back 
operations to get notifications about specific properties or about the set of properties as a whole. The 
call-back interface can be registered at the respective component. 

The name and owner of the component can also be retrieved at the configuration interface. 
Additionally the ports of the component can be set-up and connected to other ports. 

A component can be started and stopped. A newly created component is in stopped state. Starting and 
stopping together with getting and setting the component’s properties is particularly useful to achieve 
mobility: stop the component, get the component’s properties, re-instantiate the component at a 
different location, set the previously retrieved properties, start the new component. 
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4.3 Component Manager 
A component manager is used to manage instances of components associated to a specific template, 
thus it is acting as a component factory. Managing comprises the creation, activation, deactivation, 
discovery, deletion, and update of instances. Creating a component instance is done by setting up a 
placeholder for the instance and use the specified resource profile to check the availability of the 
required resources. This may require to contact other managers for creating according resources. The 
ID of the new instance will be determined by the component manager and has to be unique; the owner 
will be set to the identity of the caller as detected during authentication. There is also an operation to 
explicitly set the owner during creation. 

 
After a component instance was successfully created - i.e. all required resources are available - the 
instance may be activated specifying an initial set of properties. Activation will put the instance into a 
running state and make it functional. Now it is possible to retrieve the component's initial interface and 
start interaction. During runtime a component instance may be suspended and resumed. The actual 
implementation of this is component specific. Instances may also be deactivated and eventually 
deleted. When deactivating an instance it is possible to get the final state as a set of properties. This is 
useful for replacing an instance with a new one. 

 
The component manager can also support updating of instances when a new template was installed. 
During an update a component will be deactivated and the state as represented by the component's 
properties will be saved. Then a new instance will be created from the recent template and activated 
with the previously saved properties. 

 
All component managers offer an operation to retrieve the list of current component instances. 
Specific managers may additionally offer operations to find instances by specific features.  

4.4 Template Manager 
A template manager manages templates (e.g. JAVA classes, object files, etc.) for component 
instances. This comprises the installation, removal, and updating of templates. A template always 
includes a factory for the instances, which will be created from the template. This factory is called a 
component manager. 

A template manager is assigned to a virtual environment (VE) representing a specific service provider 
or to an execution environment (EE). A special template manager is assigned to the privileged virtual 
environment representing the node provider. Figure 4-3 below depicts a possible layout of managers 
for two virtual environments and three execution environments. The EE2 is of a type from which only 
one instance can exist (e.g. kernel or hardware) and is shared among VEs, EE1 and EE2 may be 
different instances of the same type (e.g. JAVA virtual machines). 

The active service provisioning (ASP) module will use the node manager to install a new templa te on 
the node. This is done by passing a description of the template to the template manager of the node 
provider, which will forward the request to the template manager of the matching VE, which in turn 
will forward it to the template manager of the matching EE. 

A template description comprises: 

• the name of the template, 

• the version of the template, 

• the name of the class implementing the component manager, 

• the path to the archive of the template, 

• the VE identifier, 
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• the EE type identifier, and 

• optional additional properties defining template specific features. 

 

template manager 
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template manager 
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template manager 
for EE3 

template manager 
for EE2 

template manager 
for EE1 

 

Figure 4-3: Hierarchy of template managers with respect to VEs and EEs. 

The process of the installation begins with the examination of the description. After the class of the 
component manager is known it will be instantiated and initialised. The component manager can now 
use an EE specific API to reflect the installation inside the EE. The name of the template is returned as 
a result of the installation process. This name can be used to get the reference to the respective 
component manager. Additionally the component manager is registered at the template manager so it 
can be retrieved when instances of components need to be created later. 

When a template is de-installed the corresponding component manager has to be destroyed. It is 
specific to the service whether running component instances are destroyed, too. When a template is 
updated the corresponding component manager has to be re-instantiated. Whether this affects running 
component instances is again service specific. 

4.5 Specific Component Managers 
While template managers are only specific to the execution environment in which templates should be 
eventually installed the component managers are even more specific. For each type of components 
there needs to be a component manager. When a particular type of resource is represented by a type of 
component (e.g. a process represented by a component) there has to be the appropriate resource 
manager (e.g. a process manager). In order to define a manager one should specify the additional 
interfaces and operations if any, the properties supported for resource creation, and the dimensions and 
units supported for monitoring resources if applicable. 

There are two special managers: one for managing virtual environments and one for managing 
execution environments, other important managers are channel manager for demultiplexing packets to 
active services, traffic manager for managing traffic of a virtual environment, and the security 
manager. 

4.5.1 Virtual Environment Manager 
A manager for virtual environments is used to create and destroy virtual environments (VEs). When a 
VE is created the associated resources have to be specified. The VE manager will create all the 
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requested resources using the appropriate resource managers. When the virtual environment is 
activated the VE manager will activate all the previously created resources. The VE manager has to 
ensure that the resources consumed by components created inside the VE will not exceed the overall 
VE quota. 

The minimal resources, which have to be specified for a virtual environment, are a suitable execution 
environment needed for running services and a channel needed for demultiplexing packets to service 
instances. 

4.5.2 Execution Environment Manager 
A manager for execution environments is used to create and destroy execution environments (EEs). 
When an EE is created the type and the associated resources have to be specified. The EE manager can 
use other managers (like process managers) to create an environment of the requested type. There may 
be cases where only one instance of an EE can exist like for kernel environments. 

An EE can be assigned to one VE exclusively or it can be shared among VEs. In the la tter case the 
components executing in the EE have to be charged for resource consumption individually to the 
appropriate VE. 
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5 DEMULTIPLEXING 

5.1 Introduction 
In active network, an active node receives packet data and processes it. To realize it, packet data 
should be transmitted to a proper environment for processing in the node. Therefore the active node 
classifies receiving packet data at first. Then the active node transmits packet data to the proper 
processing environment based on a categorized class. To classify the packet data, it must have an 
identifier. For example, packet data might have a specific identifier such as a processing environment 
ID or classification might be executed based on an IP header data. Someone sends packet data with the 
environment ID but other one might send packet data without the environment ID. Therefore FAIN 
active node has to deal not only the packet with the ID but also the packet without the ID. In addition, 
even if an IP data-gram has an environment ID, when the IP data-gram is fragmented, fragmented IP 
packet data doesn’t have the environment ID except a first IP packet data. Therefore active node must 
handle fragmented packet data. Besides, in FAIN active network, packet data that should be executed 
processing will be changed dynamically, therefore the active node has to support dynamic updating of 
policies that include relation between conditions and handling procedures of the data that is classified 
by the conditions. 

The objective of FAIN demultiplexing framework is providing mechanism to realize dynamic 
updating of demultiplexing policy and processing of packet data regardless of existence of specific ID 
for processing environment for both receiving packet data and forwarding packet data. 

The scope of FAIN demultiplexing framework includes providing an interface for dynamic updating 
of demultiplexing policies and transmitting packet data to an appropriate processing environment after 
classifying the data. 

5.2 Survey and Requirement Analysis 
At first, we survey related works and then define requirements for FAIN active packets and 
demultiplexing. 

5.2.1 Survey of related work 

5.2.1.1 ANEP (Active Packet Encapsulation Protocol) 
Figure 5-1 shows ANEP packet format. ANEP is currently used in the ABONE (Active network 
backbone) 

l Version  

It specifies a version of header format in use. This field is 8 bits long. 

l Flags 

It specifies how to handle packets when a node does not recognize the type ID. This field is 8 bits 
long. But most significant bit (MSB) is only used. If the MSB of this field is 1, the node should 
discard the packet. If the MSB of this field is 0, the node tries to forward the packet. In the current 
version, the MSB of flag’s field is only used.  

l Type ID 

It specifies evaluation environment of the message. This field is 16 bits long. The IDs for public 
use are under the authority of the Active Networks Assigned Number Authority (ANANA). 
Currently, 140 numbers are assigned by the ANANA. 

l ANEP Header Length 

It specifies the length of ANEP header in 32 bit words. This field is 16 bits long. 
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l ANEP Packet Length 

It specifies the length of ANEP packet in 32 bit words. This field is 16 bits long. 

l Options  

It includes type, length and value of option. 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 Version (8bit) Flags (8bit) Type ID (16bit) 

1 ANEP Header Length (16bit) ANEP Packet Length (16bit) 

2--k Options 

k--n Payload 

Figure 5-1: ANEP Packet Format 

Figure 5-2 shows ANEP option format. 

l FLG 

It specifies how to deal with the option data. This field is 2 bits long. If the value of bit 0 is one, the 
options are only meaningful inside the specified evaluation environment. In addition, if the value 
of bit 1 is zero, option data is ignored and processing is continued. If the value of bit 1 is one, the 
packet is discarded. 

l Option Type  

It specifies a type of option. This field is 14 bits long. Currently four types are defined. 1)Source 
Identifier, 2)Destination Identifier, 3)Integrity Checksum, 4)N/N Authentication are defined. 

l Option Length 

It specifies length of option data. This field is 16 bits long. 

l Option Payload 

It includes the data of option. 

 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

1 FLG Option Type (14bit) Option Length (16bit) 

2--k Option Payload (Option Value) 

Figure 5-2: ANEP Option Format 

5.2.1.2 SAPF (Simple Active Packet Format) 
Figure 5-3 shows a SAPF packet format. SAPF is simply composed of version and sixty-three(63) bits 
selector. 

l V (Version) 

It specifies version of header format in use. This field is 1 bit long. 

l Selector 

It specifies a value for selecting a packet handler. This field is 63 bits long. 
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 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 V Selector  

1  (63bit) 

2 Payload 

Figure 5-3: SAPF Packet Format 

5.2.1.3 Berkeley Packet Filter in BSD OS 
Figure 5-4 depicts a diagram of Berkeley Packet Filter(BPF). In this filter, when packet data are 
received at the network link driver, they are usually sent to a normal protocol stack. But when BPF is 
listening on this interface, the network link driver transmitted to the BPF filter at first. After that, a 
user-defined filter decides whether packet data are to be accepted or not. Then the packet data are 
transmitted to a proper application. 
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Figure 5-4: Berkeley Packet Filter 

5.2.1.4 NetFilter in Linux OS 
Figure 5-5 depicts a diagram of NetFilter. The Netfilter is currently used in the Linux operating 
system. It has five hooks. An incoming packet enters Hook-1(NF_IP_PRE_Routing) at first. For 
example, the Hook-1 is used for network address translation(NAT). After that, the packet is classified 
at a routing module-1, and routed either to a local process or forwarded to another host. When the 
packet is routed to a local process, it enters Hook-2(NF_IP_LOCAL_IN), before being transmitted to 
the local process. When the packet is forwarded to another host, it enters Hook-3(NF_IP_FOEWARD) 
and then enters Hook-4(NF_IP_POST_ROUTING). When a packet is created in a local process, it 
enters Hook-5(NF_IP_LOCAL_OUT) and then enters to a routing module-2. The packet is routed to 
the proper output port at the routing module-2 and is transmitted to outside network. In the NetFilter, 
Iptables is used for filtering a packet. The Iptables uses Hook-2, Hook-3 and Hook-5. Therefore a user 
program can control a packet flow by the Iptables. 
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Figure 5-5: Netfilter 

 

5.2.2 Requirement for Demultiplexing 

5.2.2.1 Requirement for Active Packet format for Demultiplexing 
According to previous surveys, following requirements are listed for packet format. 

l Active packet format must include an identifier for distinguishing which data should be 
dispatched to which VE/EE. For example, we need to decide whether we should send data to VE-
1 or privileged VE. 

l In addition, active packet format also must include a size of an active packet and a size of an 
active packet header. 

5.2.2.2 Requirement for Demultiplexing Mechanism 
l Demultiplexing mechanism must deal with identifier of VE, EE type of active packet for 

distinguish of flows. 

l Demultiplexing mechanism must send received data to a security component for executing 
security check before transmitting data to a proper VE/EE. 

l Demultiplexing mechanism must create an in channel for sending  data to a VE/EE and create an 
out channel for receiving data from a VE/EE for sending data to the outside node. 

5.3 Demultiplexing Framework 
The packet data are delivered to a proper VE or service by a demultiplexing function. The packet data 
include both ANEP(Active Network Encapsulation Protocol) packet and other data packet. The ANEP 
packet delivers active packet data and the other packet delivers not active data but data for being 
processed. Figure 5-6 depicts a block diagram of packet data delivery.  

Active packet data (ANEP) delivery: (1) At first a VE/EE requests a channel manager to create a 
new active channel for receiving ANEP packet data. (2) The channel manager creates an active 
channel. (3, 4) Then the VE/EE sets a filter condition to the network(Netfilter) through the active 
cannel. The filter condition contains which ANEP packet data should be sent to the VE/EE. (5) The 
Netfilter transmits ANEP packet data to the channel manager. (6) The channel manager checks a 
security of the ANEP packet before sending it to a proper VE/EE. (7, 8) After executing the security 
check, the channel manager sends ANEP packet data to the proper VE/EE through the proper active 
channel. (9) If there is ANEP packet data for sending to another node, the VE/EE sends ANEP packet 
data to the proper active channel. (10) The active channel executes the security check before sending 
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the ANEP packet data to the outside network. (11, 12) After security checking, the active channel 
transmits ANEP packet data to the outside network by socket through the channel manager. 

Non active packet data delivery: (13) At first a service requests the channel manager to create a new 
data channel for receiving data packet. (14) The channel manager creates a data channel. (15, 16) Then 
the service sets the filter condition to the Netfilter through the data cannel. The filter condition 
contains which data packet should be sent to the service. (17) The Netfilter transmits data packet to the 
channel manager. (18, 19) The channel manager sends data packet to the proper service through the 
proper data channel. (20) If there is data packet for sending to another node, the service sends data 
packet to the proper data channel. (21, 22) The data channel transmits data packet to the outside 
network by socket through the channel manager. 
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Figure 5-6: Block Diagram of Packet Delivery 

5.3.1 Active Channel 
The active channel is used for transmitting ANEP packet data from the Netfilter to a VE/EE. The 
active channel is created for each combination of a VE-ID and an EE-ID as shown in the Table 5-1. 
Therefore the VE/EE has to inform the combination to the channel manager for creating a new active 
channel. 

Table 5-1: Relation between execution environment and Active Channel 

No. VE-ID EE-ID Active Channel 
1 1 1 active_Ch-11 
2 1 2 active_Ch-12 
3 2 1 active_Ch-21 

- - - - - - - - - - - - 
n L M active_Ch-(LM) 
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5.3.2 Data Channel 
The data channel is used for transmitting non- ANEP packet data from the Netfilter to a service. The 
data channel is created for each combination of a source IP address, a destination IP address, a 
protocol number, a source port number and a destination port number as shown in the Table 5-2. 
Therefore a service has to inform the data flow identifier to the channel manager for creating a new 
data channel. 

Table 5-2: Relation between data flow and data channel 

No. Source_IP Dest_IP Protocol Source_Port Dest_POrt Data Ch 

1 sip-1 dip-1 p-1 sp-1 dp-1 dCh-1 
2 sip-1 dip-1 p-1 sp-1 dp-2 dCh-2 

- - - - - - - - - - - - - - - - - - - - - 
m i j k l m dCh-(ijklm) 
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6 SECURITY 

 

Figure 6-1: Revised security architecture. 

The revised security architecture is depicted in Figure 6-1. The original security architecture in D2 has 
been enhanced with two new entities; the Security manager and the Connection manager, which are 
described below.  

6.1 Introduction of the Security manager  
One of the visible changes to the architecture is adding of the security manager to the architecture. 
Security manager was added to the architecture because of two reasons. First is that we feel that the 
approach with only one authorization engine wasn't flexible enough. There can be one or more 
different authorization engines in the system, which provide authorization decision. There is also a 
need in some cases with aim to get single authorization decision to combine one or more authorization 
decisions in single one. Case is obvious if we have to decide on the bases of two different security 
policies, which have different root of trust in the sense of the Keynote, trust management system. The 
second reason is that we needed an abstraction in the system that can enable us to export security 
policy and credentials interfaces to the rest of the system. The following picture shows the operation 
of the security architecture while providing authorization decision. 

Security manager enables larger degree of flexibility then previous design. It enables us to keep the 
partial authorization decisions and combine them in latter stage to return complete authorization 
decision. In the system is an entity that is responsible for finding call related credentials and security 
policies. In the later stages of the project it will enable us to provide additional services like caching of 
authorization decisions and revoking of old authorization decisions.  
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Figure 6-2: Security Manager interfaces. 

Related to security manager our efforts mainly focused on generalising the internal authorization 
interface. This interface is available to the other NodeOS components for providing authorization 
decisions. While the interception of the call is interface specific, the authorization decision, seen as a 
service, should have same interface as for all interceptions. We have generalized the interface in the 
call with following parameters: subject, object, action and environment. While subject and object are 
obvious in this context, action means the methods defined in the interface, like file related read, write 
or append operation. Environment is sequence of statements, which describe the environment of the 
call like time or requested bandwidth. 

6.2 Role of the Connection Manager 
Though Connection Manager is new component in the security architecture its functionality is only 
extending Security Environment Manager as stated in D2. Connection Manager role is to take care for 
connections with neighbour Active Nodes and to provide interfaces, which can be used to manage 
existent and to define new connections. Connections are used to provide Hop-By-Hop data integrity 
service and are defined with following parameters: Key Identifier, that uniquely identifies the 
connection, symmetric key, which is stored in secure environment, identification of a symmetric 
algorithm used for this connection, time validity of the connection defined with start and end time, 
highest sequence number of the packet exchanged over the connection, and identification of the in or 
out channel protocol and addresses. These parameters are used to control the lifetime of the connection 
and to build or verify Hop-by-Hop integrity option as defined in appendix (A.1.4.1), where connection 
parameters are further explained. 

Connections can be managed dynamically or via management system. At this stage security 
architecture supports management through management system, but we are working on dynamic 
connection management.   

6.3 Operation of the security architecture regarding the security 
options 

ANEP related security options have to be parsed and understood on every node the active packet 
passes. Parsed ANEP packet with options as defined in previous sections becomes on the node an 
object of the form as shown in Figure 6-4. The picture shows the four-step process to get the active 
packet related security context. Parsing of the packet gives basic parts of the packet object. V 
represents ANEP version used, F presents flags that control the node behaviour when the TypeId, 
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identification of the particular execution environment, is not known on the node. Options are sequence 
of options that are in the header but are not directly related to security architecture (besides resource 
vector). Private and ignored options are result of the parsing process and flags as defined in the ANEP 
options. Variable option as a security consequence is separated because it represents variable parts of 
users data or code. Static parts of user data/code are in the payload.       

 

Figure 6-3: Credentials processing. 

Credential options as defined in appendix (10.1.4.2), have to be parsed again to get security related 
fields. There can be one or more credentials options in the packet, each bind to the packet via digital 
signature mechanisms. The process of verifying and fetching credentials is shown in picture 5-2. 
Credentials can be already packed in the credential option or can be referenced in the option. The 
upper case explains the needed steps to fetch credential and to verify the credential itself. Credentials 
can be X.509 certificates, X.509 attribute certificates or KeyNote credentials. Authority that the node 
trusts digitally signs all such credentials. For first phase implementation we assume direct trust 
between such authority and nodes. With so gathered verified certificate or credential we can verify the 
digital signature in the credential option. Digital signature covers the credential option itself, the 
payload and static options of the packet (VE and EE Id). If the verification can be done, we get the 
credential, which can be used to provide security context on the node. Similar is the procedure in the 
case of in line credential but without intermediate step of fetching the credential. Both options are 
provided because the credentials can be big in size. The fetched credentials can be cached on the node. 

Digital signature in the Credential Option is result of cryptographic operation on the parts of the 
packet that the signature covers with usage of the senders’ private key. In the case of X.509 
certificates the private key used must form a key pair with the public key in the certificate. In the case 
of attribute X.509 certificate the public key with which the digital signature can be verified is obtained 
from the X.509 certificate which is referenced in the attribute certificate (HOLDER field). In the case 
of Keynote credential the Licensee field must be a public key of the sender. 

SID in the picture is unique pointer to the active packet in the node. It helps us track the packet 
through the node from demultiplexing the packet-to-packet processing and sending it toward next hop. 

The last step related to credentials is resolving from the credentials either users identity, group role or 
public key. Public key is related to the trust management systems like KeyNote, where principal 
authorization information can be related to the principal public key. The resolved identifier has to be 
meaningful for already installed security policies on the node to be able to provide authorization 
decision based on this identifier.   



D4-Revised Active Node Architecture and Design  Page 25 of 38 

Copyright  2001 FAIN Consortium  May 2002 

 

Figure 6-4: Parsed ANEP packet and Credential Option resolving. 

6.4 Security related interfaces to other node submodules 
Security architecture doesn't work alone in the active node. It has to have meaningful interaction with 
other node submodules. For this purpose we have defined a set of interfaces for each node submodule.  

6.4.1 Interfaces between SA and DEMUX 
Interface between DEMUX and SA is first critical point of the architecture. At this point the hop-by-
hop integrity of the active packet has to be checked and packet, which can be seen as request, 
authenticated and if needed authorized to access destination channel. Because this process should not 
be driven by DEMUX, we have identified only one interface, which passes needed data to security 
area, which does all needed checks. 

When the packet leaves the node there is a problem of building the packet and provisioning of the 
integrity service for the packet for the next hop. This can be build only with data in SA, so the security 
area will build the entire packet on the ANEP level and up, and return it to the sending component. 
After that sending component can add appropriate lower level protocol information to this data. 

6.4.2 Interface between SA and ASP 
 Interface between SA and ASP is related to the verification of active code. As defined in D2, the first 
approach that we will use in FAIN is provided by digital signature mechanisms. Therefore we have 
proposed the code certificate, which is built in the same sense as KeyNote credentials. It consists of 
certificate version, authorizer, licensee (in this case code hash), conditions and digital signature. Code 
certificate is signed by private key of the authorizer. Of course the authorizer has to be trusted on the 
node. This means that the public key of the authorizer has to be meaningfully defined as such in the 
node security policy and available on the node. 



D4-Revised Active Node Architecture and Design  Page 26 of 39 

Copyright  2001 FAIN Consortium  May 2002 

6.4.3 General SA interfaces 
Security architecture offers set of general interfaces that can be used by other node sub-modules and 
Virtual Environments. We count among these interfaces already mention Security Manager interfaces, 
namely credential and policy interface, Connection Manager interface for managing connections with 
the neighbour Active Nodes and internal authorization interface. Interface for providing authorization 
decision and interfaces to set or remove policies as can be seen on Figure 6-2 are general interfaces of 
the security architecture. Credential interface can be used in cases when credentials are not set via 
active packets but through management system (VE Manager). Primary source of security policies is 
management system that can use security architecture policy interface for this purpose. Both interfaces 
in addition to Connection Manager interface are subject to authorization check.  
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7 RESOURCE CONTROL FRAMEWORK (RCF) 

7.1 Introduction 
During the first year of the project, the resource control framework activity identified a certain number 
of key resources, mostly resources manipulated at the operating system level, that have been classified 
into physical and logical resources. It also identified a set of requirements on the consumption of 
resources, defined an element-based architecture for a resource control module, and designed the 
elements of this resource control module. This initial resource control framework provided system 
foundations for resource control services, and a flat architectural model of resources. 
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VEn

Node 
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RC RC RC RC RC

RM RM RM RM RM

R A R A

R AR A
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Hardware
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VE Management 
Layer

Admission 
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Figure 7-1: RCF reference architecture  

The resource control activities during the second year of the project extended the initial proposal with 
the definition of a higher level of resources (medium and coarse grained resources) needed by the 
resource control and management functions of the VEs, and establishes the foundations of a 
hierarchical resource control system, that generalises resource the definition of resources at various 
levels of services: hardware level, OS, EEs, VEs, and application levels. Such a resource control and 
management system can be used to allow resource manipulations at different levels of services, and 
can act as a client of services provided by the resource control system defined during year 1. The 
proposals of the previous years can be seen as examples of resource control service personalities, that 
can rely on functions of the initial resource control system. Other resource control systems can be 
defined and implemented as well. The proposed resource control systems are intended to be used as 
supporting services for the implementation of several node components, including node management 
and VE components, network service and application components. 

7.2 Resource control architecture and mechanisms 

7.2.1 Revised RCF architecture 
We define a resource control architecture for the management of virtual environments. It consists of 
resource controllers (RC), resources managers (RM) and resource abstractions (RA) organized as it is 
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shown in Figure 7-1. Service components RCs, RMs and RAs are higher-level service components 
(compared to those defined in D2) and can be implemented using the resource elements that have been 
identified in deliverable D2. 

The resource control architecture presented in Figure 7-1 includes resources positioned at the 
hardware level, the resource control layer in the kernel space, resource positioned at the user space and 
at the VE space. Resources at the user and VE spaces in particular are high level resources, that are 
implemented using low level system and hardware resources and mechanisms and algorithms that 
combine these resources. The elements of the resource control architecture are defined as follows:  

Resource Controller (RC): is a component, which is running in the Kernel Space of the node, and it 
is responsible for the actual control of the real resources of the Active Node. An RC can vary from a 
simple scheduler (e.g. CPU Scheduler) to a more complex framework, which could control a whole 
mechanism in the kernel that includes the control of more than one real resource (e.g. Netfilter 
Framework, Traffic Control Framework). Every RC has a control interface that allows its runtime 
configuration, which include the allocation and monitoring of the resources. 

Resource Manager (RM): For every RC in the Kernel Space an RM exists in the User Space, which 
is responsible for the configuration of the corresponding RC and the creation of Resource Abstractions 
of the resources that are responsible for, for every consumer of a particular resource. These RMs are 
the elementary RMs in the sense that each one of them is responsible for only one physical resource. 
RMs also exists for the construction and the control of complex resources, which are the combination 
of more than one lower level resources. The RMs are consumers of the lower level resources, which 
could be other RMs, in the sense that they bond specific capacity from them, and at the same time are 
resources for the higher level RMs and the RAs. Among others the RMs are responsible for the 
Admission Control of the incoming requests for new allocations and for the realization of the 
allocation either by the configuration of the corresponding RC or by the transmission of the request to 
the appropriate lower level RMs.   

Resource Abstraction (RA): The RAs are specific service components, which are bound up with 
specific amount of resources. The RAs are the end consumers from the RCF point of view. For every 
RA, a corresponding RM should exist in the Resource Management Layer but a RM could be 
responsible for many RAs. The RAs provide an I/Fs to the VE or the complicate RMs that belong, in 
order to be able to use their capacity.   

7.2.2 RCF Design 
The I/Fs are based on the FHG’s Node Management framework as the RMs and the RAs can be 
considered as part of it. The IDL I/Fs that RCF exports to the other frameworks can be found at the 
appendix of this document. 

7.2.2.1 Design approach and overview 
We consider that system and hardware resources, services and components of an active node are 
organized into a hierarchy of resources, which will be used for control and management purpose. This 
hierarchical organization allows control and management operations at various levels of details, 
ranging from a simple node component (e.g. a buffer in a forwarding map) to complex node 
components (e.g. system service software on a control processor), using object oriented design and 
system engineering tool (e.g. UML, CORBA). Control and management in such a system can be done 
using APIs provided at different levels of resources, depending on applications and the capabilities of 
each node. Figure 7-2 shows an example description of the components of an active node. It only 
illustrates the structure of node resources according to a resource hierarchy, that ranges from – low 
level – elementary resources to complex resources usable by node and network management services, 
or application services running outside the network. The resource hierarchy in Figure 7-2 is just an 
example, which can be modified and adapted to specific needs. This example illustrates that: 

• Resources in a switch or router consist of resources used by its switch fabric(s), its multiplexer(s), 
its forwarding map(s) and its control processor(s). 
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• Resources in a multiplexer consist of resources used by its buffer manager(s), its buffer(s) and its 
schedulers.  

• Software resources in a control processor consist of resources used by its kernel, its control 
threads, its event handlers, and VE engines. 

• Resources involved in a VE engine consist of resources used by its EE(s), its RAs, and its 
distributed object servers (e.g. CORBA servers). 

This resource control and management model generalized the flat model resource model presented in 
D2, that deals mainly with system and hardware resources, so as to allow control and management 
operations at different levels of details, ranging from the simplest (controllable and manageable) node 
resources to sophisticated resources, e.g. those used by system and application software. 

Switch/Router

SwitchFabric ForwardingMap ControlProcessorMultiplexer

BufferManager

Buffer
Scheduler

EDFScheduler

EventHandlerKernel ControlThread

VEengine

RRScheduler

ExecEnv DOServerV E R M

 

Figure 7-2: Example resource hierarchy in an active node  

7.2.2.2 Resource control operations in VE management 
A VE is a potential consumer of almost all types of resources in a node. It can use control processing 
and memory resources, packet forwarding resources (flows, buffers, schedulers, …) and possibly 
management resources. From a software engineering point of view, resources are special components 
used in VEs that need to be controlled and managed to meet the requirements of applications running 
in a VE. During the creation of a VE, a given amount of resources of each resource class (processing 
and memory resources, packet forwarding and flow resources, management resources) is allocated on 
request of the organization that owns this VE. These resources will be multiplexed between services 
supported by that VE, with different kind of resource consumption requirements. For example: 

• An application service can require that a fixed amount of resources of each class that it will 
consume should be allocated for a relatively short lifetime (compared to that of other application 
or the VE). When such an application terminates, its resources will become available to be 
allocated to another (incoming or already running) application. Such a resource allocation can be 
done using a static admission control mechanism that checks the availability of resources before 
service creation. 

• Another application service can be such that it is impossible to determine the amount of resources 
needed for its execution, before its creation. For example, this is the case of many end-to-end 
network service applications that need QoS guarantees. In such a case dynamic resource control 
and monitoring mechanisms are needed to ensure the availability of resources during its lifetime. 
Resources for such applications can be provided using run-time resource control mechanisms (this 
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is the case of applications with e.g. strong guarantees related to real-time or reliability) and/or 
resource monitoring techniques (this is the case of applications with e.g. real-time or reliability 
upper and lower bonds). Such applications require an admission control check for their creation, 
followed by a resource control and/or a monitoring mechanism during all their lifetime.  

An RA, which is a VE component that deals with resource management and control needs, is used to 
deal with resource availability requirements within a VE. One can build several specialized RA (e.g. 
for different classes or categories of resources, for different applications, etc), or build a unique RA 
that deals with resource guarantees for a whole VE. An RA will implement parts or every one of 
resource management interfaces identified in the node management framework, which are: 

• A resource control interface. 

• A resource monitor interface. 

The implementation of some of these interfaces can use run-time resource control operations: for 
example, a flow manager can use such operations to request for the creation of resource control and 
monitoring services, that will guarantee the adequate level of availability of resources during the 
lifetime of a flow with QoS constraints. Immediately after the successful creation of a flow, resource 
control and monitoring services will be operating in parallel with the delivery of packets of that flow, 
to guarantee the availability of resources for an adequate handling of packets. The flow manager will 
also request for the destruction of control and monitoring services for that flow, after it terminates. 

7.2.2.3 Run-time resource control service for the management of VE 
resources   

This section presents the principles of a run-time resource control system that can be used for the 
management of VE resources and the control of traffic with QoS requirements. Such a system can be 
used to implement some of the interfaces of an RA component, e.g. flow management interfaces, 
resource monitor interfaces (possibly in collaboration with a resource monitoring service). We 
consider a special RA component, that manages and controls the usage of packet forwarding resources 
used by a VE: such a RA component is responsible for the initial allocation and creation of packet 
forwarding resources needed by a VE, the freeing of these resources at the end of their usage, and their 
multiplexing among parallel and concurrent services. 

The RA creates a run-time control service during its initialisation. Upon its creation, a unique interface 
to the run-time control system is returned and published for control operations by local client 
applications and also by remote clients. All the interfaces of the run-time control system will be 
supported by a DOC platform (e.g. a CORBA system) to enable invocations from different address 
spaces, including from a remote node. At the end of the lifetime of the RA, the run-time control 
service will be released, just before the destruction of the RA itself. 

The run-time control system is used to control resources used by individual traffic as follows: 

• Just before the VE participates in traffic, the client application asks for the creation of an entry, 
using the run-time control interface. The entry provides means to accept the incoming traffic 
request, which will be confirmed (or not), depending of the current resource usage. 

• When a traffic request is accepted, an entry is created. Upon the creation of the entry, an interface 
to that entry is returned to the client application for subsequent packet transmissions.  

• An entry interface provides operations to access information required for the transmission of data 
packets (port numbers, buffer addresses, etc.). These information will be used to request for the 
transmission of packets belonging to the traffic using that entry. Before sending a sequence of 
packets, the client application asks for the creation of a controller for that sequence, which is a 
logical resource that will guarantee the availability of packet forwarding resources for the 
incoming sequence. A controller maintains resources needed for the transmission of packet from 
one end to another, within the same node. A controller also provides interfaces for its control, 
usage and management. When the sequence in finished, the controller can be destroyed, stored for 



D4-Revised Active Node Architecture and Design  Page 31 of 44 

Copyright  2001 FAIN Consortium  May 2002 

further usage, or allocated to the transmission of another sequence, depending on specific 
implementations and traffic conditions. 

• As a summary, the run-time control system supports three types of objects: a unique access object, 
one or many entries, and one or many controllers. The access interface serves as a single reception 
point for all incoming traffic request. Entries serve as reception points for individual traffics (e.g. a 
communication session). Finally, controllers are use to enforce QoS guarantees for sequences of 
packets with a given QoS requirement. 

It is the role of the RA to guarantee to proper functioning of the run-time control system as a whole. 
To do this, the RA could perform some management operations on the run-time control system, 
typically via a RM for that RA (in accordance of the reference architecture in Figure 7-1): add or 
remove packet forwarding resources, update the number of allowed entries and controllers to adapt the 
dimensions of the resource controllers, to actual traffic conditions. Such management operations can 
be realized within the code associated to one or many of the internal services and/or interfaces 
supported by the RA, possibly via one or many RM(s) for that RA. 

This describes the principles of a run-time control service and its usage by a RA and client 
applications. The principles of this run-time system will be generalized and described more in details 
later in this RCF section, for a run-time control system that applies to virtually all active node and 
network services with QoS and flexible processing requirements. 

7.2.3 Admission Control 

7.2.3.1 Introduction 
The FAIN active node aims to be an open environment where the user will deploy his network 
services by using a part of the node infrastructure. In order for the node to be able to support these 
services the user should have guaranteed access to the necessary resources. The resources that are 
needed from each user are allocated to a VE, which after its creation is available for the exclusive use 
of its owner. The creation of a new VE in the FAIN Node cannot always be accepted because of the 
finite amount of the resources. This requires the existence of an Admission Control mechanism within 
the RCF of the FAIN Node.  

The Admission Control in the FAIN Node addresses a set of actions that should be taken by the RCF 
during the VE’s creation phase (or during re-negotiation phase) in order to decide whether a VE 
creation request can be accepted or rejected.  

A new VE can be admitted to the node only if its requirements for resources can be satisfied without at 
the same time any commitments that have been made to the existent VEs be violated. The final 
decision for the acceptance or not of the request for the creation of a new VE should take under 
consideration three factors, namely the unreserved resources, the needs of the new VE and finally the 
usage of the resources during the past period of time. In parallel the increase of the node’s utilization 
should be achieve by the acceptance of as many VEs as possible. 

7.2.3.2 Types of Allocations 
The guarantees that the VEs have for access to the node’s resources may vary due to the different 
needs that the services might have, mostly regarding the QoS requirements. So we can define different 
levels of allocation guarantees that the RCF should be able to support to the VEs. Namely we have 
three types of allocations: 

• Hard Allocation: The VE that has hard allocation of a resource has guaranteed access to the 
whole allocated capacity, independently of the status of the node. In other words, the VE will 
have full access to this resource even if there is congestion in the node. Hard allocation is 
needed for hard real-time services with hard QoS constraints.  
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• Soft Allocation: When there are no strict QoS requirements and therefore resources 
requirements from the Services running in a VE, the VE could require only soft allocation for 
the resources. Soft allocation can be used by soft real-time services, which can provide an 
enhanced QoS without the need for hard guarantees. 

• No Allocation: There are services that don’t need any performance guarantees, and they 
perform only when there are unused resources in the node. These services are called “best 
effort”, and even though they need resources to perform they don’t need any guarantees and 
therefore no specific  resource capacity to be allocated. When in a VE are executed only these 
kinds of services, there is a need to have access to the resources but there is no need to allocate 
some of them. 

7.2.3.3 Admission Control Model 

Admission
Controller

Resource i
Manager

Node ManagerRequested Entity

Node Level
Admission Control
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Figure 7-3: Admission control process 

The admission control of whether a new VE will be admitted or not in the FAIN Node is the main 
responsibility of the RCF block together with the run time control and monitoring of the resources. In 
contrary to resource control and monitoring which are performed during the operational phase of the 
VEs, the admission control performs only during the creation or the renegotiation phase of the VEs.  

The Admission Control functionality is the responsibility of a central object, the Admission Controller 
(AC), which is in close collaboration with the RMs. In fact the AC is responsible for the Admission 
Control in Node Level and the RMs are responsible for the Admission Control independently for their 
corresponding resources.  

The creation of a VE is performed in two phases, namely the Pre-Allocation Phase and the Activation 
Phase.  

On the Pre-Allocation Phase the Node Manager, which is responsible for the creation of the new VE, 
makes a request for Pre-Allocation to the AC. The request contains the profile of the resources that are 
needed for the new VE. When the AC receives the creation request, gets in contact with the 
appropriate RMs and requests the pre-allocation of the resources, and collects the RMs responses. If 
all the responses are positive, which means that there are enough capacity from every resource, 
responds positively to the Node Manager that the resources are pre-allocated and ready to be activated. 
On the contrary if one or more responses from the RMs are negative the response of the AC is 
negative too. 

On the Activation Phase the Node Manager makes an Activation Request to the AC. Then AC makes 
requests for creation of the corresponding RAs for the new VE and gets as response the IDs of the 
RAs. After that the AC return the set of the IDs to the NM as the result of the activation.  

Figure 7-3 shows the relationship of the AC with the RMs and the two levels in which the AC is 
taking place.  The Node Level Admission Control examines the availability of the overall node and the 
Resource Level Admission Control the availability of the different Resources.  
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7.2.3.4 Admission Control Algorithms and Policies  
In order for the RCF to decide whether or not the creation of a new VE can be accepted, is has to use 
admission control algorithms and policies basically to predict if the requirements of the new VE can 
be satisfied without violating the existing contracts. 

The AC uses the Admission Control Policies in order to decide based on the replies of the RMs, 
whether or not it can admit the creation of a new VE. For example the during the Pre-Allocation phase 
that described in section 1.2.3.3, the AC is taking the decision based on a hard policy, that is that a 
request can be admit only if all the replies from the RMs are positive. Of course more tolerant and 
flexible policies can be used but for the time being, this seems to be the right choice for two reasons: it 
is simple to be implemented and it guarantees the satisfaction of the QoS constraints.   

The Admission Control Algorithms are used by the RMs in order to decide whether an allocation 
request can be satisfied. There do exist many Admission Control algorithms in the bibliography. The 
choice of which algorithm will be used for each resource depends on the specific requirements that are 
derived from the nature of the resource, and mainly on which mechanism/algorithm is used for the 
share/control.  

There are two basic approaches to admission control:  
• parameter-based: computes the amount of the resource required to support a set of VEs given 

the VEs’ characteristics 
• measurement-based: relies on measurement of actual use of the resource in making admission 

decisions. 
Parameter-based admission control algorithms can be analysed by formal methods. Measurement-
based admission control algorithms can only be analysed through experiments on either real networks 
or a simulator. 

7.3 Resource control services and applications 

7.3.1 Principles of a distributed end-to-end network engineering 
support 

7.3.1.1 Overview 
We present the principles of DENES (Distributed End-to-end Network Engineering Support), and its 
relations with other FAIN nodes service components and frameworks. DENES is an active and 
programmable node service that provides a resource control support for the implementation of 
distributed control and management services. It can be used as a control basis to implement various 
kind of end-to-end network services, distributed management services and application-level services 
based on active and programmable networks. DENES addresses the issue of providing a network-wide 
QoS guarantees, by means of hierarchical resource control and computational behaviour adaptations. 

7.3.1.2 Overall approach of resource control operations 

7.3.1.2.1 Basic principles 

The DENES system is built upon the following considerations: 

• Resources available at a node are provided with software representations of their functions, which 
allow a local (centralized) control or management of these resources. The level of details at which 
resources are represented depend on the needs of applications, and can vary from one of the 
simplest to a very complex, detailed resource representation. 

• The system that represents resources is called the reflection system, and is typically modelled and 
implemented with objects. For example, a reflection system can be built for a distributed object 
computing (DOC) platform (sometimes called a reflexive middleware) exposing APIs for control, 
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management and monitoring operations for the DOC platform, that could be use to modify their 
implementations. An example such facility is given the Java introspection mechanisms, that 
provides a foundation for discovering new objects, interface and system specifications, and thus, 
re-building parts of the platform itself. Services supporting the L interface of P1520 are in fact 
building a reflection system for the packet forwarding machinery, which allows controlling the 
usage of packet forwarding resources. 

• Resources represented in a reflection system (reflectors) are accessible from other services and 
address spaces within the same node, and also from remote nodes. Accesses to some of the 
resources can be forbidden to some clients or limited, under some specific security or access 
control conditions. Accesses to resources are enabled by e.g., the use of a DOC platform, which 
provides interfaces for remote object invocations. An interface to a reflector can be used, for 
example, to capture the current state of the corresponding resource, to perform various operations 
related to its evolution, to monitor its usage, or even to modify its computational behaviour. The 
later kind of operations in particular allows developing and deploying new executable codes to be 
used for the computations associated to a reflector in replacement of existing computations, 
provided that some security and consistent resource usage conditions are met. 

• An active node can support the execution of one or many DENES services, depending on 
implementation choices and the number and the planned usage of VEs (supported applications). A 
DENES enabled active node is intended to allow clients from the same node, homologue active 
nodes or from outside the network to perform individual node control operators, as a prerequisite 
for distributed, end-to-end network control operations that rely on the availability and the adequate 
behaviour of resources. For example, DENES engines can be used to select an admissible sub-
network under some QoS conditions, so as to establish an adequate end-to-end transmission path. 

• No specific assumption is made on the technology on which active nodes are based, a part from 
the fact that they are assumed to support open interfaces for programmability at more or less 
complex service levels (especially for packet forwarding functions), and general active network 
service components similar to those defined in and being used in FAIN, and that it is intended to 
perform flexible multimedia communication functions with QoS constraints. A node could be 
based on an ATM switch that implements Internet protocols, or Internet router technologies – 
including those intended to support next generations of internet service, e.g. base on IPv6, MPLS, 
and so on. 

7.3.1.2.2 Service paradigm 

A DENES engine operates for an entire node, one or many FAIN service spaces that make use of one 
or many VEs and EEs, depending on the partition of memory, computing and packet forwarding 
resources, and resource control implementation choices. We only require that resources controlled by 
a DENES engine belong to a unique referential for processing, memory management and transmission 
resources, in order to free a DENES engine from - non-trivial - concurrency, synchronization and 
resource state monitoring problems. 

A DENES engine regularly reacts to service requests from clients, for the transmission of: 

• a packet, 

• a sequence of packets with a given QoS profile (an estimated constant QoS), 

• or the packets of an entire service session.  

Clients are local network and application service components, homologue active nodes or host systems 
operating outside the network. Requests are addressed through a control channel, in order to ask for 
resource availability before actual data communications. The DENES engines analyses resource 
availability for incoming requests, performs resources reservations if needed, and sets-up adequate 
activities and mechanisms in order to guarantee the incoming service contract when it is possible. In 
case the supporting node cannot satisfy the specified resource needs, the DENES engine notifies the 
client that it cannot satisfy the request, so that the client can try another node or reconsider its QoS. 
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7.3.1.2.3 Objectives, usage and interests 

A client can request the transmission of a packet, a sequence of packets, or packets of an entire service 
session through a node. This client will ask a DENES engine for QoS guarantees before any effective 
data transfer. The results of such an inquiry can be one of the followings: 

• YES, this node can guarantee the required QoS, 

• NO, this node cannot guarantee the required QoS, 

• UNDETERMINED, at this time it is impossible for this node to say whether or not it can 
guarantee the require QoS. 

In the first case, the DENES engine guarantees that given the current resource conditions and the 
specified QoS requirements, the node can handle the incoming traffic and engages to respect the 
specified QoS contract. In the second case, the current resource conditions are such that the DENES 
engine is sure the incoming traffic cannot be handled with the required QoS. In the last case, the 
resource conditions and the QoS requirements are such that the node cannot determine if it can handle 
the incoming traffic or not. By resource conditions, we are talking about both the state of physical and 
logical resources to be used and their behaviour, which is encapsulated, typically with a hierarchical 
object-oriented reflection system, that presents local and remote invocation interfaces, and that can be 
modified at any time though active code injection mechanisms. 

We aim at a DENES engine, which provides the same type of interfaces for all the requests in order to 
simplify APIs. Also, DENES engines must be able to handle active packets transmitted with requests, 
and interact with the corresponding node services components (e.g. the adequate EE) in order to 
activate the execution of new codes. 

A request should contains all the information necessary for a DENES engine to decide on the 
possibility for nodes to handle the corresponding traffic, along with a specification of QoS constraints. 
Upon the reception of a request, a DENES engine identifies all the resources involved in such traffic, 
and analyses their availability (e.g. I/O ports to be used, for the forwarding of packets from one end of 
the node to another, schedulers, buffers and queues, etc.). In case it is impossible to satisfy the 
specified requirements (from a first analysis), a DENES engine might try to modify resources for a 
better service (e.g., try to allocate more memory for buffers, for a reliable traffic). Thus, we would like 
to be able to dynamically modify both the computational behaviour of resource and their size 
(especially concerning physical resources), at the limit as frequently as the occurrence of traffic 
requests. In the extreme case, a DENES engine can “install” an entire packet forwarding machinery 
transmitted through a request (under some security and consistency constraints), which will be used to 
ensure an incoming traffic. 

A DENES engine provides a node service support for the deployment of flexible multimedia 
communication services with various QoS constraints. Using DENES, it is possible to implement 
distributed policy-based network management (e.g. PEPs and PDPs as DENES clients, where policies 
will be used to derivate QoS constraints), existing and next generations of Internet protocols, multicast 
services and applications with QoS constraints (reliability in particular), VPN, etc. 

7.3.1.3 DENES service model and role in a node service 
architecture 

A DENES engine provides the run-time support for objects running on the control system of an active 
network node. It supports the concurrent execution of objects that allow an access to node resource 
control functions, from both the outside world and other node service components. This is done via the 
use of public interfaces, that are made accessible to authorized clients during the lifecycle of theirs 
supporting objects. Objects running on a DENES engine allow clients to: 

• Request for the initialisation of a new traffic with QoS and resource usage constraints. 

• Control the use of resources, to guarantee their availability during traffic. 
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• Release or re-allocate currently used resources for another traffic. A DENES engine can act for 
several ongoing traffics concurrently. 

Virtually, a DENES engine can provide resource control for the use of any kind of resource in a node. 
However, the current design focuses on control operations for the use of physical packet forwarding 
resources and their immediate software representation (reflectors, for programmability), for QoS 
guarantees and flexible packet forwarding systems. The current DENES design focuses on 
accessibility and resource control for packet forwarding resources, under QoS and resource 
modification constraints. 

 

Figure 7-4: A DENES engine in an active node  

Figure 7-4 illustrates the position of a general DENES engine in an active node, and its relations with 
other node services. It is intended to use services provided by active node execution environments, 
remote control platforms, local resource access control and management functions and possibly 
NodeOS primitives, control and management processor operations, packet forwarding hardware 
drivers, etc. Its target clients are the generic network services supports and applications, services 
components running outside the node, and possible other active node service components. 

• Packet forwarding hardware drivers and primitive control and management control processor 
operations can be used to provide low-level resource related operations to the outside word in case 
these operations are not supported by the NodeOS. 

• NodeOS primitives can be used to provide an external access to operating system primitives, 
especially those with active node constructs. 

• Basically, the remote control platform is an object-oriented middleware, which allows remote 
object invocations on DENES supported objects. The term “control” here is related to the 
execution of a (sequential) application code on a remote system. In case a remote control platform 
is used by in the EE for example  (e.g. an ORB-based EE), the same control platform can be 
shared. 

• DENES engine is using EEs and other active node services for the execution request of new codes 
(e.g. replace services provided by a packet forwarding system), or to benefit from other active 
node related services (security, code lookup, code mobility, etc.). 

• Generic network service components will use DENES engines to develop flexible end-to-end 
network service components, which control node resources to satisfy a required QoS. 
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7.3.2 DENES service architecture and component specification 

7.3.2.1 Overview 
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Figure 7-5: DENES service components and relations with P1520 service levels 

Compared to the P1520 service model, a DENES service is roughly situated between the L interface 
and the U interface. Its level of service is equivalent to those of the U interface supporting services. 
We do not try to position here service provided by an EE or a remote control platform, which are in a 
transversal service plan and can be virtually used in any other P1520 service level. As it is presented in 
Figure 7-5, a DENES service typically uses services supporting an interface L (currently, a reflection 
system associated to a packet forwarding machinery, typically that of an ATM system), and offers U-
level interfaces, for both local and remote accesses. Local access interfaces are used by local client 
components, while homologue nodes or application host systems use remote interfaces.  

The differences between local and remote interfaces rely on the type of resources needed for their 
implementation. For example, remote interfaces are implemented using communications via a control 
channel and node I/O ports, while local interfaces are implemented using a shared memory, a Hoare 
monitor or any other local communication and synchronisation mechanism. Local DENES clients can 
be services supporting parts of the U interface and upper (V interface), i.e., typically generic routing 
services, end-to-end admission controllers and connection managers, services used by various network 
and application service models (RSVP, DiffServ, MPLS,), policy-based network management 
services. All these clients can be local (their local representatives) or remote clients (a remote 
representative, for the case of distributed services). 

A DENES system supports three types of objects: 

• ENTRIES: An engine can support several concurrent entries, which are objects providing an 
initial access point for individual traffics. 

• traffic MANAGER: An engine supports a unique traffic manager, which provides an initial access 
point to all the clients of the DENES system. 

• Traffic CONTROLLERS: An engine can support several concurrent traffic controllers, which 
provides a top level reflector of packet forwarding resources used by an individual traffic, and 
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which can be manipulated from the outside world. 

In the following text, we describe some of the major roles identified for each of these objects. These 
roles can be extended and described in more details for an implementation. 

7.3.2.2 Traffic manager 
A traffic manager offers a unique access point for the use of resource control services. Before any 
interaction, a client asks the traffic manager for the creation of an entry, that will be used for further 
resource control related operations. Thus, a traffic manager interface provides an operation for creating 
entries. However, the destruction of an entry can be done through an operation at its interface 
(preferable solution), as well as through an operation at the traffic manager’s interface. The destruction 
of an entry should interact with other DENES supporting objects (the traffic manager in particular) in 
order to suppress all the resource bindings previously established by its creation, and to release 
resources consumed by the entry. Another important task of a traffic manager is to collect and process 
control requests issued by clients of entries. A DENES engine supports the execution of a unique 
traffic manager object, which supports a public interface accessible by both local and remote clients. 
From an implementation point of view accesses to such an interface are possible with the use of a 
DOC platform that allows the publication of a unique reference to the interface. A prospective client 
can use a DENES engine if and only if it has a reference of the traffic manager’s interface. 

7.3.2.3 Entries 
An entry offers an access point to packet forwarding resources, to be used by individual traffics. It is 
used to isolate endpoints used for an incoming packet flow. Before any data communication, a client 
asks for the creation (or the allocation) of an entry. At the end of the communication, the entry is 
destroyed or made free for use by another communication. The creation operation returns an interface 
to be used to control the entry. Whence created, an entry can be used by its creator, as well as by a 
third-party client, provided that this third party has a reference to its interface. 

An entry abstraction provides a homogenous interface for both local and remote accesses to packet 
forwarding resources. It can be used independently of the origin of the request. It is also used to 
identify basic transmission resources (e.g. port numbers or memory addresses) for communications 
from an end-point to I/O lines of the packet forwarding machinery. Initially, a DENES engine is 
installed with no entry point. Entrees are created and destroyed dynamically, depending on the arrival 
of requests issued by clients. 

7.3.2.4 Traffic controllers 
Traffic controllers are objects encapsulating packet forwarding resources used to transmit packets, 
typically from one end of a node (input ports) to another (output ports). A traffic controller offers 
means to isolate and explicitly control resources used for the transmission of a packet or a sequence of 
them with a QoS profile. The level of details in control operations depend on the possibilities offered 
by the packet forwarding machinery. For example, a traffic controller can allow modifications on the 
computational behaviour of some of the resources it uses. A traffic controller is used to guarantee the 
QoS contract established before data transmission. For example, for reliable packet forwarding, the 
traffic controller should guarantee that: 

• Queues used by I/O ports will always have enough places to avoid packet loss due to the lack of 
memory to handle incoming packets. 

• Scheduling policies and algorithms used will not lead to problems with consequences similar to 
those of a packet loss. 

• Bandwidth allocated at output lines will remain stable. 

When an entry is created, the same client to send several transmission requests, until the entry is 
suppressed can use it. A client can also change the entry currently used for a service, for a better 
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adaptation to the QoS requirements expressed by the ongoing traffic. Transmission requests typically 
specify a certain number of packets (or cells, in case of an ATM traffic) to be transmitted, with fixed 
resource requirements. When such a request is received, a traffic controller is created (or adapted) so 
as to satisfy the requirements. A traffic controller offers an interface to modify its configuration 
(memory and processing resources used) and an interface to access certain state information and 
perform some control operations. The configuration and modification interface typically leads to 
changes on the size of internal buffers used by I/O ports and multiplexers, algorithms used in the 
management of queues, etc. Information necessary for the modification are sent with a control request 
on an entry point, as an active packet, before any configuration change. 

7.3.3 Current design focus: reliable packet forwarding and related 
problems 

7.3.3.1 General reliability problems 
Packet loss in a packet switched network is mainly due to one of the following problems, as they are 
identified in: 

• The architecture and the management of queues in routers: The number of queues per service and 
service policies and algorithms (FIFO, prioritised queuing, WQS,) has a great influence on the 
efficiency (and ultimately the reliability) of packet forwarding within a router. 

• Variability in the size of data: ATM cells for example are of fixed size (53 bytes), while IP packets 
are of a variable size. While one can easily dimension resources for the transmission of data with a 
fixed size, it is generally hard to dimension resources for a reliable delivery, when the size of 
incoming packets varies. 

• The amount of memory, the allocation policies and algorithms for memory in a router. 

• Traffic variations dictated by application. 

• Link or router failures and related fault-tolerance mechanisms. 

• Bit rate errors. 

• The number of hops (router to cross from one end to another). 

7.3.3.2 Reliability within a node 
Hardware and software in a node must deal with the following problems to allow reliable delivery 
within a node. Router failure problems are not taken into account, since they involve fault-tolerant 
computing problems, which are out of the scope of the current specification. 

• Buffer management, including the calculation of the adequate size for buffers. 

• The architecture and the functioning (mechanisms, algorithms) of waiting queues. 

• Resource allocation policies, including processing, memory an I/O transmission resources. 

• The size of memory used by the different components of the system, and the related local 
communication and synchronization mechanisms. 

7.3.3.3 DENES engine for hard reliability 
Such en engine allows clients to send packets that require a guaranteed delivery upon reception at a 
node. A node that accepts a packet (or a sequence of packets) engages to deliver this (or these) 
packet(s) at the corresponding output port(s) or local destination subsystem within a finite time. The 
responsibility of the DENES engine is not engaged in case of a node or I/O link failure. The current 
DENES specification and prototyping effort is focusing on this kind of reliable delivery 
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Other reliable delivery semantics can be specified and implemented as well, for example: 

• DENES engines that engage to deliver packets within a certain loss probability interval. 

• DENES engines that engage to deliver packets with a specified packet dropping protocol, which 
will be used to drop adequate packets in case of resource problems. The packet dropping protocol 
can be specific and transmitted by a given application, based on the content on data being 
transmitted.  

This second type of reliable delivery can be taken into account by extensions of a DENES engine for 
hard reliable delivery. 

7.3.4 Relations with FAIN node components and applications 

7.3.4.1 Relations with the resource and admission control 

7.3.4.1.1 Resource control supporting components 

This RCF specification in D2 provides a foreground description of controlled node resources, their 
general behaviour and means to control a combination of these resources. It can be used as a basis for 
a refined design of resource control service supports such as DENES, and for their implementations. A 
typical refinement on the current design of DENES, that focuses on controlled packet forwarding 
resources, would describe means to combine physical packet forwarding resources (I/O ports and 
associated buffers, bandwidth) and logical packet forwarding resources (I/O queues, classifier tables, 
forwarding tables, etc), to provide complex resource specifications in the DENES sense i.e. (packet 
forwarding resource) reflectors, that will implement objects running in DENES engines (entries, traffic 
managers or traffic controllers). RCF interfaces and resource behaviours defined in D2 can be also 
used to identify functions of the basic resources that can be modified according to DENES principles 
and how do proceed, while preserving the overall integrity of the system. In turn, the derivation of 
DENES principles related to the modification of computational behaviours can stimulate further 
modifications in next versions of the behaviour model of resources. 

7.3.4.1.2 Local and end-to-end admission control with DENES 

In the previously presented admission control process scheme, admission control operations are 
performed during the allocation and the renegotiation of VE resources, in order to identify and provide 
the amount of resources used by a VE. An admission control operation is performed during the 
creation of a VE, or for the renegotiation if its resources. Such an admission control system can act as 
a local client of a DENES engine, to cover both the resource control and monitoring operations. 
Admission control can be dealt with in a more general sense, which involves resource control 
operations for several active nodes. These kind of problems are usually referred to as admission 
control for end-to-end services, and they rely on the use of multiple and “simultaneous” resource 
control operations on individual nodes involved in the end-to-end service. 

One of the main design goals of DENES is to enable the use of DENES engines running on concerned 
nodes service as the resource control infrastructure for end-to end services, in particular: network 
control and application services, distributed network management services. 

7.3.4.2 Security considerations 
7.3.4.2.1 Some potential threats 

DENES engines allow prospective clients to download executable codes used in computations 
associated to controlled resources, in replacement of existing ones. For example, executable codes can 
be transmitted with a request addressed to a reflector of an input port, as a mean to indicate the 
procedures to use to handle packets arriving at that port, for the requested service. The replacement of 
an existing behaviour can be done temporally or permanently. In this perspective, there is a risk of an 
inappropriate functioning of an input port due to new codes, or even a disorder of the overall packet 
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forwarding system. Some security check operations can be performed during the development of client 
programs using e.g. programming languages for active networks with restrictions or verifications 
related to the secure use of node resources (e.g. access to some memory areas, conditioned invocation 
of some operations, detection and elimination of infinite loops in some specific conditions, etc.), but 
these kind of verification can hardly prevent the occurrence of problems during operations, or solve 
them. Following are some (non exhaustive) examples of security problems that can occur during the 
operations of a DENES engine: 

• Unauthorized modification of resources: physical and simple logical resource, composites 
resources, and their reflectors. Consistency of the reflection system. 

• Unauthorized manipulation of data and state information. 

• Unauthorized invocation on reflectors and hazardous operations associated to new code. 

• Intentional or unintentional concurrency and resource sharing problems (e.g. famine), especially 
with clients providing end-to-end network and application services. 

• Integrity of resource chains, e.g. chains of pointers or references used for the forwarding of a 
packet from an input port to one or many output ports within the node. 

• Isolation and protection of packet belonging to different traffics: operations of a DENES engine 
should not allow the violation of measures taken elsewhere to ensure the integrity and the 
confidentiality of packets belonging to different traffics. 

7.3.4.2.2 Protection with the FAIN security framework 

We expect the FAIN security framework to apply to resource control systems as well. The current 
approach of the FAIN security framework is to develop means to protect node infrastructure services 
from security hazards due to application codes. This can apply to resource control service supports as 
well, i.e. protect a resource control system from hazards due to its clients, provided that the scope of 
the security framework is not to much restrictive, e.g. being applied only to EEs or VEs. 

7.3.4.3 Role in EEs and Ves 

7.3.4.3.1 Alternative choices 

Depending on the capabilities and the functions of the node, a DENES engine can be implemented for:  

• Resource control operations related to a single EE. 

• Resource control operations related to a single VE, that perform resource control operations 
related to one or several EEs running in the context of that VE. 

• Resource control operations related to the overall node, which perform resource control functions 
related to one or several VEs supported by the node. 

The design of DENES does not constraint a specific choice. The only constraint is that resources 
controlled by a DENES engine and the engine via a single addressing space, must manipulate the 
controller itself in order to simplify problems related to communications and synchronizations 
between services supporting the execution of DENES objects, and interactions between controlled 
resources (their reflectors). Depending on the partition of node resource spaces, a DENES engine can 
serve the entire node (single address space for all VEs and EEs), a single VE or a single EE. It is also 
possible to leave the choice of the number of engines per node and their scope to the implementer, but 
their choices need to be clarified in the related documentation. Using different choices will probably 
complicate prototype implementations. Thus, this possibility is left to future DENES specifications. 

7.3.4.3.2 EE specific DENES engines 

In this case, a DENES engine controls resources used by a single EE. A node runs as many DENES 
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engines as EEs running on the node with resource control requirements. A block of resources is 
typically reserved for individual EEs during their creation (e.g. through the execution of an admission 
control service), while resource requests associated to traffics flowing via that EE will be executed by 
the associated DENES engine, just before the traffic starts. In case of an overload of traffics in that 
EE, clients can be allowed to use another EE within the same node, provided that it can interpret the 
same packets. An active node in this case typically presents several traffic manager interfaces to local 
clients and the outside world (one per EE), each of these traffic manager interfaces offering operations 
to control several traffic managers and entries. 

7.3.4.3.3 VE specific DENES engines 

In this second case, a DENES engine controls resources used by one or several EEs running within the 
context of a single VE. A node runs as many DENES engines as VEs running on that node with 
resource control requirements. A block of resources can be reserved for individual VEs during their 
creation, using an admission control mechanism, while resource requests associated to traffics flowing 
via an EE of a given VE are executed by the DENES engine associated to that VE. In case of an 
overflow of traffic in a VE, clients can be allowed to use another VE within the same node, but this is 
rather unlikely (at a first analysis), since a VE is typically used for communications related to a 
customer or a private network. However, a customer can have many virtual networks, or several 
customers can share one or several virtual networks, provided that their environments are designed to 
ensure traffics coming from different customers, and that the business related problems 
(confidentiality, security, mutual trusts, etc.) can be ensured. 

An active node in this case typically presents several traffic manager interfaces to local clients and the 
outside world (one per VE), each of these traffic manager interfaces offering operations to control 
several traffic managers and entries. 

7.3.4.3.4 DENES engines serving multiple VEs 

A DENES engine controls resources used by all the VEs and EEs of the node. A node runs a single 
DENES engine for all the resource control requirements expressed by applications. A block of 
resources can be reserved for applicative environments at the installation of the system, other 
resources being reserved for different system software. As in the first two cases, an admission control 
mechanism can be used for the creation of the application environment, while the DENES engine is 
used for resource control associated to incoming traffics. In case of resource overflow, all the 
incoming requests are constrained to be routed via other nodes. An active node in this case presents a 
single traffic manager interface to local clients and the outside world, each of these traffic manager 
interfaces offering operations to control several traffic managers and entries. 

7.3.4.4 Relations with demultiplexing systems 
Our view of the relations of resource control and DENES with de-multiplexing systems, is that the 
later one provide means to route both resource control request and traffic flows to the appropriate EEs 
and VEs. Thus de-multiplexing systems provide a binding between some of the packet forwarding 
resources (e.g. input ports) and VEs/EEs. As such, they are potentially subject to resource control 
operations, since, their functioning can have an impact on QoS expressed by applications. A node with 
multiple DENES engines relies on the proper functioning of de-multiplexing systems for the 
transmission of requests and client packets flows to the appropriate EEs and VEs. 

7.3.5 Summary of the DENES system design - next steps 
This section presented the principles of DENES, a resource control system that will be used to enable 
new application and network services and network management services, especially those that rely on 
end-to-end QoS constraints. The presentation also focused on DENES engine that ensures strictly 
reliable communications, and the relations of a DENES engines with other FAIN node services and 
frameworks. This presentation opens the door to detailed DENES specifications with interfaces, 
prototype implementations, and further studies for the extension of its functionalities. 
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8 EXECUTION ENVIRONMENTS 
In real world application of active networks, an important aspect of usability is the degree of flexibility 
offered by an active network node. The degree of flexibility on the one hand depends on the 
manageability (cf. WP4, Deliverable D5) of a node but on the other hands it depends on the execution 
environments (EE) since the EEs provide the run-time environments where foreign code can be 
installed and run. The installation and execution of foreign code must be achievable neither resulting 
in a compromised node nor in an interruption of service of an active node.  

In FAIN, research on execution environments has revolved around a specific type of EE that manifests 
the property of flexibility and in particular the composability and extensibility as argued in section 2.1. 
Two instances of this type of EE has been designed and implemented. One instance, presented in 
section 8.1, is based on JAVA/CORBA technology, which runs in the so-called user space of an active 
network node, whereas the other, presented in section 8.2, is a high-performance execution 
environment which runs in the kernel space of a Linux operating system. Finally, another type of 
control EE has been developed, presented in section 8.3, for deploying control protocols, which makes 
use of SNAP EE and SNMP for controlling system resources. 

8.1 JAVA EE 
Since the active node management level is implemented in JAVA it requires a JAVA execution 
environment for running management components. The JAVA execution environment can also be 
used for running services implemented in JAVA. The JAVA components can be re-used as wrappers 
for implementations in a non-JAVA environment. This is done for example for demultiplexing, 
security, and traffic control. 

The implementation of the management level uses CORBA for communication between objects. Thus 
it provides strong support for CORBA ports, which can easily be added and removed by component 
implementations. Also the control of the access to CORBA ports and the later usage by clients is 
handled by the JAVA management environment and allows an easy connection to the security 
component. This functionality is also available to general service components. 

The main classes are: 

• BasicComponent, implementing interface iComponentInitial 

o get the unique ID of the component, 

o get descriptions of all offered ports by this component, 

o get access to a specific port. 

• ConfigurableComponent, derived from BasicComponent, implementing interface 
iConfiguration 

o get, set, and change the component’s properties, 

o connect and disconnect ports of the component to other ports, 

o suspend and resume the execution of the component. 

• ComponentManager, derived from ConfigurableComponent, implementing interface 
iComponentManager 

o create and delete component instances, 

o activate and deactivate component instances, 

o get a list of component instances. 

• VirtualEnvironmentManager, derived from ComponentManager, implementing interface 
iVirtualEnvironmnetManager 
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o create and delete VE instances, 

o activate and deactivate VE instances, 

o handle creation, activation, deactivation, and deletion of resources needed for a VE 
instance, 

o get a virtual environment by specifying the VE ID. 

• ExecutionEnvironmentManager, derived from ComponentManager 

o create and delete EE instances, 

o activate and deactivate EE instances, 

o map EE instances to operating system resources. 

• VirtualEnvironment, derived from ConfigurableComponent, implementing 
iTemplateManager 

o install and uninstall templates (i.e. service managers), 

o hold references to attached resources, 

o dispatching installation and uninstallation to appropriate execution environments. 

• ExecutionEnvironment (JAVA), derived from ConfigurableComponent, implementing 
iTemplateManager 

o install and uninstall templates (i.e. service managers) for JAVA services, 

o use JAVA class loader for installation. 

8.2 High Performance EE 
The high-performance EE is required for the installation of code that processes data at line speed.  
Example applications could be transcoding of multimedia streams, extended, adaptive packet filtering 
for firewall issues, distributed Web Cache functionality, load balancing etc. 

Regarding performance, one of the parameters of an EE is where the EE is instantiated. In modern 
operating systems (OS), a clear demarcation line is drawn between the so-called kernel and the so-
called user space. Kernel space is where the basic functionality of an operating system is located like 
process, memory and IO management while user space is most often seen as the address space where 
user applications like word processing etc. are run.   

Most often supported by the underlying hardware, user space and kernel space differ in privileges and 
protection boundaries. For example, kernel space usually got assigned privileges that are required to 
manage and operate a node while user space application run in a protected environment where code is 
not allowed to cross boundaries imposed by the operating system, i.e. they run as a task inside an own 
protection domain. 

Crossing protection domains is a time consuming process. Switching privileges requires even more 
processing and thus costs more time. Execution environments may be placed in any of the two 
principal address spaces, i.e. they may reside either in the user space or in the kernel space if the 
operating system provides this differentiation at all and does not run as a so-called single address 
space operating system. While running an EE in user space provides several advantages regarding the 
ease of programming and pre-available operating system support for strong protection, stability and 
dependability of the node – a user process should not be able to compromise a complete node, usually 
--, the location of EEs in user space imposes more overhead and thus results in a less performant node. 
A very well known problem is found in the crossing from kernel space to user space protection 
domains in Linux. Latest results in measuring these costs prove this problem. 

One way to address the performance issues of a node could be to run active applications in traditional 
kernel space. So, the switching of protection domains and privileges can be avoided. This, of course 
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immediately leads to the concerns regarding erroneous codes, security and stability, i.e. node safety in 
general, as active applications running in traditional kernel space would have the power as any other 
kernel component.  

Another way to address performance issues while trying to keep protection wherever possible is 
addressed by the PromethOS architecture. In PromethOS, the kernel space EEs are designed as their 
own protection domains. Based on memory management capabilities, an EE in kernel space should be 
able to run in its own virtual address space. Thus foreign code running inside of it is not allowed to 
cross the boundaries. 

8.2.1 Model 
In FAIN, the high-performance EE is modelled according to the Mach Task model, which is similar to 
the one used in UNIX. A Mach task, as defined by the Open Software Foundation, is a "container that 
holds a set of threads. More importantly, it contains those elements that the threads need to execute, 
namely a port name space and a virtual address space.". The model of the FAIN high-performance EE 
extends this model by that it allocates resources to a PromethOS-EE based on the specifications 
provided for a Virtual Environment (VE). 

Even though, the user space processes of a modern operating system follow the Mach Task model 
most often, and thus the complete PromethOS node could be modelled by this principle, we restrict 
ourselves to the PromethOS kernel space aspects. Thus, when referring to a PromethOS node, we 
implicitly refer to the kernel space NodeOS aspects and the PromethOS-EE as well as the PromethOS 
plugins. 

Internally to a PromethOS-EE, the plugins are organized as directed graphs. A graph may contain 
forks and branches. Different to many other approaches, these bifurcated branches may be 
concatenated later. 

A graph of plugins provides the processing path of arriving data packets. Every plugin along the path 
gets the chance to process the packet. PromethOS provides the mechanisms to connect the plugins in a 
processing path, and offers the methods for inter-communication between a pair of plugins. However, 
the specification of which plugins need to be interconnected is required to be provided to PromethOS 
by the ASP component. 

Resources controlled for the high-performance EE are defined as CPU cycles, memory consumption 
and IO bandwidth. Similar to Mach, where the containers are managed and controlled by a task 
manager, in PromethOS the EEs are controlled and managed internally by the PromethOS 
management component. So, PromethOS provides the framework that is used to create, set-up and 
control a high-performance EE. 

8.2.2 PromethOS v1 Requirements 
PromethOS needs to offer the following properties: 

• Dynamical loading and disposal of plugins into the operating system kernel at run-time. 
Plugins are code modules, which implement a specific router functionality. For example, a 
router plugin might implement encryption functionality. 

• Plugins may be instantiated as often as required. An instance is a specific run-time 
configuration of a singular plugin. Quite often, it is required to have several plugin instances 
of one plugins in the kernel, e.g. packet scheduling. There, a packet scheduler may work in 
different configuration, hence different instances, for several interfaces. State-of-the-art packet 
schedulers are configured hierarchically. Quite often, the several modules are used which 
work in different hierarchical levels. At different levels, the instances of one plugin may be 
configured differently. 

• A consistent and simple interface must be provided such that the plugins may be easily 
programmed. A plugin must react to several signals. In PromethOS, the plugins must react to a 
set of such signals. By a unified set, interoperability of plugins is provided. 
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• Efficient mapping of specified flows and the possibility of binding flows to specific plugin 
instances is required. Usually, filters specify sets of flows. For example, a filter may classify a 
TCP data flow from network 172.16.7.0/24 to the host 172.16.0.65. Filters may classify 
packets according to end-to-end application flows. A 6-tuple may specify filters: <Source 
Address, Destination Address, Protocol, Source Port, Destination Port, Interface>. Every 
element of a 6-tuple may be specified as irrelevant. For the former example, a filter is 
specified as: <172.16.7.0/24, 172.16.0.65/32, TCP, *, *, *>. Obviously, a filter for end-to-end 
application flows need a filter specification according to the aggregate level: a single flow 
requires the specification of all parameters. 

• High throughput along the whole data path. High throughput is achieved partly by the 
implementation residing fully in the kernel. So, expensive context switches may be omitted.  
To another degree, efficient packet classification is required, too. Packet classification allows 
the binding of flows to plugins. 

8.2.3 Netfilter Architecture 

[1] [ROUTE] [3] [4]

[5]

[2]

INPUT

Local User Processes

[ROUTE]

OUTPUT

 

Figure 8-1: Netfilter Architecture for IPv4 

PromethOS is based on the Linux Netfilter framework for packet mangling. As such, it is integrated 
into the Netfilter framework. PromethOS is loaded as a Linux kernel module at run-time. It registers at 
the different hooks of the Netfilter framework such that it may receive packets from Netfilter 
framework, and feed them back into Netfilter without violating the structure of the Linux network 
stack. The decision for this implementation was taken since the Netfilter framework provides a perfect 
environment for extensibility and has proven to be fairly stable. 
 

Netfilter, developed and implemented by Rusty Russel, provides a framework for packet filtering. 
Every protocol supported by Netfilter specifies several hooks, for example, IPv4 defines 5 hooks. A 
hook allows the interception of packet flows along the kernel internal packet path. Kernel extensions 
may register at one or several of these hooks. Netfilter calls these extensions every time a packet 
arrives at a hook. Such an extension may inspect the packet, modify it, ask Netfilter to accept it or to 
drop it or to enquire for user space. Figure 8-1 provides an overview of the Netfilter framework for 
IPv4. 

8.2.4 Extensions to Netfilter 
As a basis, Netfilter provides a framework to which kernel extensions may be bound. However, 
Netfilter requires the extensions to be available at compile time, i.e. kernel extensions must be 
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specifically compiled per kernel build. Therefore, Netfilter needs a Netfilter-extension that enables the 
kernel space packet traversal path to install plugins at run-time without the need to be specifically built 
for one kernel only. This Netfilter-extension, as provided by PromethOS, provides the mechanisms to 
load plugins and bind them to specific flows. An overview of Netfilter together with PromethOS is 
provided in Figure 8-2. 

iptables

Network Stack

Netfilter

User Space

Kernel Space

PromethOS plugins

PromethOS
Target

PromethOS EE

 

Figure 8-2: Netfilter and PromethOS 

The following functionality needed to be implemented: 

• A new Netfilter table into which filter expressions may be specified. These filters may bind 
plugins bound to flows. 

• A new Netfilter target1 must be implemented. By this target, plugins are managed and 
controlled at run-time. This target dispatches packets to the appropriate plugin instances. So, it 
classifies packets for flows. 

• iptables as the user space tool must be extended such that the new arguments can be passed to 
the new Netfilter target. 

• Control functionality should be provided to query statistical information. 

8.2.5 Implementation 
In this section, we describe PromethOS v1 as it is expected to be available for Milestone M3 in June 
2002. 

8.2.5.1 PromethOS Netfilter-Table 
To easily separate PromethOS flows from normal filters, and to allow the filters to be hooked to every 
of the available hooks, a new Netfilter-table, PromethOS, is implemented. This table need to register 

                                                 
1 The Netfilter-target provides the PromethOS framework. The PromethOS framework controls packet 
dispatching and plugin installation. 
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during load time at the Netfilter framework. Obviously, during removal, it must deregister as well. 

PromethOS plugins should be able to be activated at every hook in the Netfilter framework.  
Therefore, the table must register at every hook. However, this pre-registering consumes resources 
during run-time: every hook gets run for every packet. So, to optimise, the superfluous hooks are to be 
removed. 

The PromethOS Netfilter-table is implemented as a single Linux kernel module. At module 
initialisation-time, this module registers at the appropriate places in the Netfilter framework. Figure 
8-3 provides an overview with the example of an IPv4 protocol-hook configuration. 
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Figure 8-3: PromethOS Netfilter-Table Hooks 

8.2.5.2 PromethOS Netfilter-Target 
Flow entries in the PromethOS table point to a specific Netfilter-Target, which is named 
PROMETHOS. This target provides the data structures that are necessary for the management of 
PromethOS plugins. A control functionality is provided that keeps track of the loaded plugins and their 
instances. 

For this issue, the target exports two interfaces. One is used at initialisation time of the plugin to 
register, the other one is called at the time a plugin stops and gets unregistered. By these mechanisms, 
PromethOS is aware of the status of loaded plugins. 

8.2.6 PromethOS v1.0  
Figure 8-4 presents an overview of a PromethOS node. We identify the following entities: 

• PromethOS: framework management component. It provides the NodeOS functionality and 
resource control and framework internal management functionality. 
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• Node Management Component: Comprises all node management components as required for 
managing a PromethOS node. The node management component is outside of the scope of 
implementation work carried out by the PromethOS team. However, the interfaces allow for 
an integration of both, the node management component and PromethOS for the final 
milestone of FAIN in year three. 

• Demultiplexing and Multiplexing: These components provide the demultiplexing according to 
configurable settings. They may be re-configured at run-time.  

 

Figure 8-4: PromethOS Node  

• Control Interfaces: One interface between the node management component and PromethOS, 
and several service internal control interfaces between service components in kernel space and 
user space. Demultiplexing and multiplexing are provided as components. So, they may offer 
control interfaces to the node management component. 

• PromethOS framework entry and exit points: They provide the interfaces, which are 
connected to the Netfilter framework. 

• Service Components: Components used for the composition of services. 

Hereafter, we describe each component in more detail. 

8.2.6.1 PromethOS Framework  
The PromethOS framework is internally managed by the PromethOS component as depicted in Figure 
8-4. It provides the NodeOS functionality of a PromethOS node. This component is responsible for the 
control and enforcement of resource consumption2 and limits respectively. Further, the communication 
infrastructure is provided by this component as well. As depicted in Figure 8-4, this component is 
attached to the network stack of Linux. 

                                                 
2 Resource Control will not be available for the first release of PromethOS. 
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8.2.6.2 Node Management Component 
The node management component is responsible for managing PromethOS. It installs code, creates 
virtual environments and binds code to VE for resource control. Further, it is responsible for node 
management issues. Among others, the node management component comprises the resource control 
framework and node local service deployment. Further, it specifies the interconnection of components 
to PromethOS such that this can establish the connections. 

8.2.6.3 Demultiplexing and Multiplexing 
These components provide the demultiplexing/dispatching and multiplexing functionality. They are 
configurable at runtime. The demultiplexing component dispatches packets to the configured services. 

8.2.6.4 Control Interfaces 
Control interfaces exist between a kernel component and a user space component. Kernel space 
components may export them optionally. The kernel components involved in a user service as well as 
PromethOS itself offer them via the /proc-Filesystem of Linux. Management components (service 
internal as well the node management component) may attach to these interfaces. 

The interfaces are documented in the internal report R10 of WP3. 

8.2.6.5 PromethOS Framework Entry and Exit Points 
They provide the interfaces that are connected to the Netfilter framework. They are implemented as 
Netfilter hooks. 

8.2.6.6 Service Components 
Service components are kernel space and user space components used for a customer service. 
PromethOS handles them in a uniform way for resource control and communication. Kernel space 
components are managed as PromethOS plugins. The process model of Unix handles user space 
components. 

8.2.6.7 PromethOS Plugins 
An overview of a PromethOS plugin at run-time is provided in Figure 8-5. 

A PromethOS plugin is confined by several input and several output channels, and by a control 
interface which is optional. The plugin must explicitly register for such a control interface while at 
least one of the input and output channels are a fix requirement. The control interface may be used to 
configure and re-configure the plugin at run-time, or for gathering statistical information depending on 
the functionality the plugin offers. 
 

 

Figure 8-5: PromethOS Plugin 

Loaded plugins are interconnected such that they form a directed graph of modules. This graph defines 
the sequence of execution. However, the design of PromethOS allows this graph to be forked. As such, 
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the graph forms a tree. The PromethOS communication infrastructure handles the packet dispatching 
according to an internal signalling protocol. This signalling protocol is used such that the plugin can 
instruct the communication infrastructure to which channel packets must be forwarded. 

8.2.6.8 PromethOS Execution Environments 
PromethOS provides a kernel space execution environment (PromethOS-EE). A PromethOS-EE is 
created by the interconnection of PromethOS plugins. 

A PromethOS EE follows the model of a UNIX process or a Mach task. It serves as a container into 
which different plugins can be dynamically loaded and then run. Following this model, the PromethOS 
EE defines the boundaries for code running inside of such an EE. PromethOS EEs form the entity 
which are assigned to customers, i.e. to Virtual Environments (VE) in line with the FAIN node 
architecture. Several PromethOS EEs may be assigned to a single VE, but not the other way round 
(one EE assigned to several VEs). 

The PromethOS EE is instantiated by ways of Netfilter tables: one table per EE instance. However, 
while Netfilter currently supports only statically pre-configured tables, PromethOS extends this 
framework with mechanisms to instantiate an unlimited number of PromethOS EEs at run-time. 
However, the multiple EE instance facility may not be ready for M3. 

8.2.6.9 Customers and Virtual Environments 
PromethOS must control resources assigned to customers such that resources are only consumed as 
contracted on the one hand and on the other hand such that resources are available for different 
customers. For this reason, FAIN introduced the Virtual Environment (VE). 

A VE is similar to a domain as defined by D2. The virtual environment as used on a PromethOS node 
identifies a customer, and, thus, the specification of resources for a set of instantiated services that 
belong to the customer. Assigning instantiated services to a VE allows for sharing of resources. 

In PromethOS, Virtual Environments (VE) are built as a set of service components, i.e. components 
that may reside either in user or kernel space. A VE is an abstract identifier for aggregated resource 
accounting and control. It might be associated with a customer on behalf of which resources are 
charged. For PromethOS the clear definition of resources that might be consumed by service 
components bound to a VE is required. Service components are bound to VEs for resource control 
issues. 

8.2.7 Interfaces 
In PromethOS, two types of interfaces are required: Interface type number one that is used to create 
the PromethOS EE instances and populate them with PromethOS plugins, and interface type number 
two that is used for run-time control of PromethOS and the PromethOS plugins. The former is 
implemented for PromethOS v1 by using an extended version of the Linux iptables user space 
application, while the latter is implemented by the well known /proc Filesystem of Linux. 

8.2.7.1 Run-time Control Interfaces 
The PromethOS framework creates a management file in the /proc file system of Linux. All control 
interfaces related to PromethOS, i.e. PromethOS framework control as well as PromethOS plugin 
control, are located below /proc/promethos. Since PromethOS will be extended with resource control 
in the final project year, a differentiation is made between network related and node control related 
issues. So, at M3, the control interface offered for run-time control is accessed via reading and writing 
the /proc file system entry identified as /proc/promethos/net/management. 

The interface /proc/promethos/net/management is used to carry out system control functions. For the 
final milestone, it is assumed to instruct PromethOS regarding network-oriented resource control by 
this interface. 
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Instantiated plugins offer a control interface by using the same methods of Linux. If requested at 
plugin load time, a plugin control interface can be accessed via /proc/promethos/net/management 
#<plugininstancenumber>, where <plugininstancenumber> is the number assigned to the plugin by 
PromethOS at instantiation time. Using this interface, the plugin can be configured at run-time. The 
exact semantics and syntax of the plugin control interface is not restricted in any way by PromethOS. 
Thus, the PromethOS plugin programmer is free to define its own protocol for performing service 
internal control. It is assumed that user space service components carry out service internal control by 
attaching itself to the appropriate interface and do a request-oriented command issuing, i.e. the plugin 
react only on request issued by the user space application. 

8.2.7.2 iptables 
Iptables is the user space tool that directs the framework to instantiate PromethOS EEs and to load 
PromethOS plugins. Node-unique instance numbers identifies Plugins. To achieve this functionality 
even on a multiprocessor system without huge overhead, the /proc-Filesystem is used as well. An 
instance counter delivers unique numbers to the user space (/proc/promethos/net/instance). 

The User Space tool ‘iptables’ has been extended. New flags for the PromethOS framework must be 
passed at load-time. Help texts are provided as well. This is achieved by including a new shared 
library to the iptables tool. 

8.2.8 Outlook, Further Work And Conclusion 

8.2.8.1 Expected Achievement until M4 
For milestone M4 at the beginning of June 2002, PromethOS will provide the mechanisms to differ 
among several users and allow several instantiations of several plugins that may be bound to different 
flows each. However, resource control carried out by PromethOS will not be available for M4. 

8.2.8.2 Outlook and Further Work 
One of the clear requirements for the FAIN active network node is the integration of PromethOS into 
the management framework such that PromethOS can be managed by the same approaches like the 
remainder of the node is managed. For the release of PromethOS at the end of the project, resource 
control for PromethOS EEs is required. Aspects of high-performance must be investigated and the 
trade-off of flexibility and node reliability must be evaluated. Further plugins are required to provide 
functionality that can be installed on a FAIN active network node in the high-performance execution 
environment. And finally, the PromethOS approach must be evaluated and compared to other 
approaches in the area of active networking. 

8.2.8.3 Conclusion 
In this section, we described the architecture of a PromethOS node in its first release. We introduced 
the PromethOS plugin, the PromethOS-EE and the explained the functionality of a VE as it will be 
handled by PromethOS.  
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8.3 SNMP Activator: A Resource Control Facility for Network 
Resource Allocation 

8.3.1 Introduction 

8.3.1.1 The fundamentals: Applying active network technology to 
network management 

The is primarily an activity between Network Infrastructure Providers (NIP) in response to some 
network management signal. The signal is discussed more substantially in WP4 documents. For now, 
it is sufficient to say that NIPs have to allocate resources across the network to allow virtual 
environments to attempt to load execution environments. 

It is worthwhile reviewing some of the fundamentals of the application of active network technology 
to network management. 

8.3.1.2 Traditional Networks 
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Figure 8-6: Conventional Polling NM 

Traditional networks rely upon:  

• a priori knowledge of network device location, and 

• polling to determine what traffic has arrived at a router. 

(Conventional routers do not usually even provide this information and all the network management 
can do is monitor routes and ARP information.) 

Diagrammatically a simple client-server model using northbound telecom interfaces can represent this. 
Figure 8-6 illustrates this with the usual added difficulty that the control plane of edge networks is not 
usually routable across the public Internet (i.e. The routers and switches are located in a private 
network: 10.0/8 etc.). 
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In this scenario, a provider edge network manager X uses an SNMP client in his private control 
network to manage router A and switch P. He then communicates (by telephone, secure e-mail) a set 
of instructions to his fellow network manager Y and asks him to program the devices in other edge 
network.3 

The system is secure, but is based on human trust relationships, which are intransitive (they do not 
commute to institutions) and have a temporal dimension (largely based on “tit for tat” exchanges.). 
The design can be improved by allowing X to use SSH to login to the private network of Y and use the 
SNMP client directly but the cost is leaking information of the construction of the network-to-network 
manager whose integrity may be compromised. 

The greatest cost to the network manager is location of the routers. He would use a utility such as 
traceroute to locate the routers he wishes to configure, locate his counterpart, organise some mutual 
exchange of trust and finally implement the reconfiguration. 

In the current Internet, this is not so impractical. Routers do not have much information to use for 
feedback control and what they have is either so well-managed by a mechanical protocol (RIP or BGP 
or OSPF for routing) that network managers rarely need to intercede or is useful only for static 
policies such as choosing a network provider. (For example, a network interface may suffer a large 
load, buy another one and use it 24/7, i.e. All the time.) 

Finally, we should note that in the conventional Internet routers can do very little. Most routers will 
support DHCP, packet filtering and network address translation, RIP, IPSec, GRE and perhaps 
DiffServ, but there are very few embedded system routers that implement genuinely novel data 
transcoding methods. 

8.3.1.3 Active Networks 

8.3.1.3.1 Location Discovery: Event Channel 

The single most constraining feature of the operation of the conventional network management model 
is the need for a priori knowledge of the location of routers. 

Using a packet interceptor, it is possible to generate a signal to the router that a particular packet has 
arrived. This feature of modern packet filters was presented at the first project review when ABLE 
was demonstrated. That network management application demonstrated an initiator being accepted for 
an IPSec tunnel. In the second project review, the application was developed and an IPSec acceptor 
was created and, on arrival at the remote network, an initiator was created there. 

In architectural terms, the packet interceptor pushes an event onto an event channel to its network 
manager. It cannot be stressed too much how useful this feature of packet filters will be for network 
management. A packet now has the ability to arrive at any router in the Internet and raise an alert with 
its originator’s service provider. This will allow network users to quickly attain the level of network 
service they usually expect. 

This feature will be coupled with highly programmable routers to provide a means to rapidly establish 
ad-hoc networks for Internet users. Networks that will comprise: 

• traffic -conditioned tunnels to favoured content providers 

• encrypted tunnels to secure content providers 

• “magnetic” cache servers that migrate towards network users containing their most recently 
used information. 

                                                 
3 Unfortunately, these diagrams were produced before the FAIN reference testbed diagram was added. 
managerX should be EMS1A, managerY should be EMS2A; routerA and routerB should be AN1 and AN2 
respectively. 
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• Network address translation facilities to allow roaming users to retain their Internet identity in 
different administrative domains. 

Such ad-hoc networks would be an excellent solution to many of the problems presented by Mobile IP 
systems. 

8.3.1.3.2 Router and Network Device Programmability 

Internet router functions have improved phenomenally. A Linux or BSD router can provide packet 
counting and logging, a variety of traffic conditioning packet filters; it can adapt packet processing and 
routing according to the sub-protocols defined in the IP packet. 

A PromethOS/Netfilter-enabled router can implement sophisticated stateful packet filter methods and 
can route FTP packets via a different network that telnet or SSH. 

And, of course, a Linux or BSD router will support all of the functions available to a conventional 
embedded system router. 
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Figure 8-7: Active SNMP Client: Epoch 1 

Most importantly, a Linux or BSD router will also offer a variety of user-space daemons that can be 
used for monitoring and configuration management. 

Programmable private ad-hoc networks are now a reality, what is needed is a means of rapidly 
reconfiguring the network. 



D4-Revised Active Node Architecture and Design  Page 56 of 69 

Copyright  2001 FAIN Consortium  May 2002 

Rapid reconfiguration of the network can be achieved by using active packet technology. In Figure 
8-7: Active SNMP Client: Epoch 1, we see an SNMP client that is initially running in an Execution 
Environment in network A and uses this to interrogate a router, it also knows the location of the 
Domain Naming Service for the private control network that the router is part of; it uses this to locate 
switch P. Once it has completed issuing its instructions in networkA e.g. updating the routing table it 
instructs its EE to move it to the next hop: an execution environment in network B. 

In the second epoch of the SNMP client’s existence, Figure 8-8: Active SNMP Client: Epoch 2, we 
see the same process carried out in network B. This will be repeated until the packet containing the 
SNMP client reaches its final destination network. 

8.3.1.4 Management and Control Plane Separation 
A clear description of the nature and the responsibilitie s of the management and control plane will 
ease the explanation of the interaction between the SNMP activator and the other control components, 
which have been developed in FAIN. The management plane contains management functions that are 
ready to receive network status information from the network entities. The management plane is 
responsible for how resources should be allocated among different network devices, and it provides 
services such as configuration management which specifies the management of physical resources and 
how they are included into the configured network; resource management which manages the physical 
construction of the network; performance management which ensures the network is tuned to meet its 
performance requirements in terms of user perceived QoS; access and security management which 
manages the access rights to the network facilities and network management entities etc.  
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Figure 8-8: Active SNMP Client: Epoch 2 

On the other hand, the control plane contains elements such as mechanisms, signalling protocols and 
algorithms to control many network devices and to provide the logical task of allocating network 
resources among various application flows. For instance, via the control plane a network service 
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provider can dynamically create, terminate or modify a network service on-demand and to control the 
usage of network resources.  

The management plane and control plane are clearly distinguished in many standards: for instance in 
ISO-RM-ODP (Open Distributed Processing Reference Model) - the managers collectively form a 
management agent, whereas each controller is a performative agent that acts upon the decision of the 
managers. 

8.3.1.5 SNMP Activator: A Control Entity 
This chapter describes a network management mechanism that is one of the RCF mechanisms for 
controlling the node management resources using SNAP and SNMP across a network. The discussion 
of the RCF so far has described resources to be controlled within the active node. This mechanism is 
designed to control the resources around the active node: routers and switches that have a legacy 
SNMP management system. It is proposed as an entity on the control plane rather than on the 
management plane to ease management. Together with other control components of the FAIN active 
node such as the VE management system (which controls VEs and activation of EEs) and PromethOS 
(which controls the NodeOS plug-ins) it forms a consolidated RCF, which is the component of the 
FAIN active node, that makes it a significant technical innovation.   

The basic interfaces offered within the RCF support the allocation and monitoring of logical and 
physical resources. The VEs and applications will be interested in the allocation of the necessary 
resources, while a network management system will use these RCF interfaces to allocate resources 
using higher-level policies and to monitor the resource usage for accounting and performance 
management. The RCF mechanism described in this section is able to obtain network resources from 
any SNMP-enabled network devices that a VE has authority to manage. It uses active packets to 
implement finite state machines that program a series of SNMP-enabled network devices in a 
synchronised manner. Most usefully, the state machine would provide a means for rollback: should 
any request for a network resource fail, and then the fulfilled requests made earlier are released. Using 
this active packet mechanism, it will be possible to implement complex network reconfigurations; for 
instance, it can create IPSec tunnels and modify routing table entries to use it. 

The system uses the SNAP programming language to implement the finite state machines. It offers 
facilities to issue SNMP commands that can be applied to network devices to: 

• set and change their current operational configuration - SNMP SET 

• get the status - SNMP GET 

• set traps to report changes in state - SNMP SET TRAP 

It will also be possible to issue an instruction to any active extensions available in (or around) the 
active node. This will be used to demonstrate the loading of mobile software agents into a Java Virtual 
Machine near the active node. These mobile software agents will be used for monitoring network 
conditions and reporting directly to any virtual environments or two other management systems. 

(It is also hoped that the extension of Grasshopper by IKV for the FAIN project can be exploited by 
the SNAP system. The Grasshopper extension allows agents to be transported using ANEP packets.) 

Security will be provided for by the standard mechanism used for SNMP: username, password and 
community. SNAP packets will be transmitted in cleartext, but the authority to action the SNMP 
commands will be an active extension provided by the virtual environment within the active node. 
Mobile agents will be loaded in a similar manner while the virtual environment will be given the 
authority to load them. The mechanism in this latter case will be that available within the Grasshopper 
agency. 

8.3.1.6 ISO-RM-ODP 
As mentioned in the previous sections, the concept of the separation between the management and the 
control plane in FAIN follows the approach of many standards such as ISO-RM-ODP. RM-ODP uses 
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an object modelling approach to describe distributed systems. Two structuring approaches are used to 
simplify the problems of design in large complex systems. Five 'viewpoints' provide different ways of 
describing the system. Each viewpoint is associated with a language, which can be used to describe 
systems from that viewpoint. The five viewpoints described by RM-ODP are:  

1. The enterprise viewpoint, which examines the system and its environment in the context of the 
business requirements on the system, its purpose, scope and policies. It deals with aspects of the 
enterprise such as its organizational structure, which affect the system.  

2. The information viewpoint, which focuses on the information in the system. How the information is 
structured, how it changes, information flows, and the logical divisions between independent functions 
within the system are all dealt with in the information viewpoint.  

3. The computational viewpoint, which focuses on functional decomposition of the system into 
objects, which interact at interfaces.  

4. The engineering viewpoint, which focuses on how distributed interaction between system objects is 
supported. 

5. The technology viewpoint, which concentrates on the individual hardware and software 
components, which make up the system. 

Our SNMP SNAP approach makes several references to the ISO-RM-ODP approach. MIB is used on 
the information plane to provide the information of network devices; on the computational plane, the 
protocol is the OMG draft Resource Access Decision Facility; on the technology plane the combined 
technology of SNMP agents and SNAP packets is used to provide the access to the network resources. 

8.3.2 SNMP Activator System Approach  

8.3.2.1 Interceptor Paradigm 
Active network management is the application area for this system. Active networking is an 
interceptor paradigm. It is difficult to develop applications that rely upon intercepting data packets 
because the interceptor must decode the data packet and its intention understood. 

8.3.2.1.1 Transcoding and Active Management as examples 

Transcoding is a good application for interceptors: it is transparent to the end users. Data can be 
compressed or encrypted without the users' knowledge. 

Active network management is also a good application fits within the interceptor paradigm - it 
modifies the network to accommodate new data flows. As data arrives on the network, the active 
network management system generates a network event which is detected and code is injected into the 
network with this new data. There is no need for a separate control channel. The new control 
information will manage the new data and precedes it as it traverses the network. Managing network 
state is difficult, because it is not known how another part of the network is configured without 
actually visiting it. If the control information is sequence of instructions that are dependent upon the 
network state, then the program should follow a sequence that will be correct for the operational state 
of the network. 

8.3.2.2 ABLE: Active Networking Out-of-Band 
This can be seen in the ABLE platform for network management: Figure 8-9: ABLE-An Example of 
the Interceptor Paradigm. The ABLE platform used a router's packet filtering capabilities to supply 
ANEP UDP packets that contained a Java class to the system component "The Activator". The 
Activator reconstructed the Java class from the packet stream and forked itself. Its child then 
performed an exec() to launch a Java virtual machine that could run the Java class intercepted it. 
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ABLE proved to be deficient as an active networking system. It is useful for loading network monitors 
and managers into routers (or nearby management stations) wherever a customer data flow appeared in 
the network. It is not suitable for managing the data flow as it progresses through the network. It is, in 
effect, an out-of-band management facility. It did provide a means to locate flow managers more 
effectively, but it did not provide a means to locate the flow itself. 

This is a problem. A data flow is most unstable when it is first established. The network has to adapt to 
the load it presents and consequently the nodes through which the flow passes are most likely to 
change when the flow first presents itself to the network. 

What is needed for effective network management is an in-band management capability. Ideally, each 
flow will negotiate its next hop before it goes there. It will be seen that SNAP and SNMP can come 
close to achieving this: the SNAP packet will precede the data and go to the next hop, it will then 
establish a route for the data that will follow it. 

The information the SNAP packet will use to choose the route will state the intention of the data flow. 
For example: 

• The data flow may be an HTTP request for a large resource to be delivered to the requesting 
machine. 

• The data flow may be the star t of a large system backup: sending large amounts of data to the 
accepting machine. 

 

Figure 8-9: ABLE-An Example of the Interceptor Paradigm 

In both cases, the data flow will be asymmetric; in the former case, it will require a large capacity in 
the reverse direction, in the latter, in the forward direction. The information that states the requesting 
machine's intent is only available at the edge of the network where the request is made - only the local 
network administration knows the capability and priority of its machines for a limited resource. 
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The statement of intent is contained in an active packet that attempts to match it source with the sink 
of the data flow. The active packet can revise and choose how the source and sink impedances are 
matched. 

8.3.2.3 Introduction to the SNAP Active Packets 
SNAP (Safe Network with Active Packets) is a programming language that provides active packets. 
As a packet traverses the network it can perform computations and add and remove data to a stack 
within the packet. This is a genuinely active mode of operation. Because the SNAP programming 
language is a simple assembly language, it cannot perform any computations that are comparable in 
complexity to that of a C or Java program. Nor can it support the wide range of data types that are 
available in these languages. 

The SNAP packets are essentially UDP packets, which are embedded with assembly codes, thus they 
carry both information and commands. The SNAP packets are executed on stack-based bytecode 
virtual machines. A SNAP program consists of a sequence of bytecode instructions (pop, forw, push 
etc), a stack and a heap. The stack keeps smaller data i.e. integers, addresses (which points to the heap 
values); the heap keeps larger data i.e. byte arrays, tuples (an array of smaller value). SNAP is simple, 
light-weight, efficient (as SNAP provides only the basic operators and control flow, which leads to a 
light-weight interpreter), but one of the most attractive features of SNAP - leading SNAP to be used in 
the FAIN SNMP Activator - is it’s high level of safety. 

One security problem of most current systems is that packets may overuse local resources. The current 
approach to solve this problem is to allocate resource limits and watchdog timers, which implies that 
forced termination will be performed on any miss-behaving packets. Forced termination, however, is 
considered to be unsafe. 

To avoid forced termination, SNAP uses type-checking and dynamic monitoring to against the packets 
damaging nodes and other packets - node should be able to predict the packet usage. Prediction is 
achieved by restricting the SNAP program to bytecodes and only forward branches are allowed. Under 
these restrictions each bytecode can only be executed once, at most. The effect of the restrictions is 
that both the CPU and memory usage of such SNAP program will be in a linear proportion to the 
packet’s length, and the constant of proportionality is small and determinable. In other words, 
prediction of resource usage can then be performed based on the packet’s length. Once prediction is 
made, the node can set its upper bound for the resource consumption of a particular packet. 

It will be seen that the application of SNAP within active network management is as a finite state 
machine that follows the progression of a reconfiguration of a network. Finite state machines do not 
need a complex runtime environment and SNAP will prove to be sufficient. 

8.3.2.4 SNMP 
SNMP has been chosen as the active extension technology to work with SNAP for a number of 
reasons: 

• It is the de-facto language of network management  

• SNMP version 3 provides cryptographically strong role -based access control. 

• An extensible MIB and programmable SNMP version 3 agent have become available for 
conventional operating systems. 

• Machines that run conventional operating systems are now sufficient capable to act as network 
routers as well. 

The extensible MIB allows complex operations to be simplified to one macro instruction.  
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In SNMP, the GET and SET commands can be thought of a operation codes for a programming 
language: LOAD and STORE. One could think of the object identifiers in the extensible MIB as 
memory locations. Simple programs can be written in SNAP to test the operational state and branch to 
different operation sequences. 

8.3.2.5 Introduction to SNMP SNAP 
The techniques of SNMP and SNAP are brought together in order to activate the SNMP daemon 
located on a node in a safe and efficient fashion. Essentially, the assemble codes in the raw SNAP 
packets are to be replaced with standard SNMP commands i.e. get / set. The SNAP packets embedded 
with SNMP command i.e. the SNMP SNAP packets are executed on the targeted active nodes on 
which both SNMPD and SNAPD are enabled. The embedded SNMP commands are then extracted 
from the SNMP SNAP packets and can then be used to perform standard network management on the 
active nodes i.e. altering the routing table. 

8.3.3 SNMP Activator System Design 

8.3.3.1 Injectors and Interceptors 

8.3.3.1.1 Injectors 

Injectors inject programs into the network to reconfigure it. An injector will decide to inject code, 
because it has intercepted a request for a data flow from its own network. An injector intercepts and 
interprets some part of an application protocol. 

For example, the injector may intercept Network File System requests, obtain the user identification 
contained within the NFS request and use that to priorities the use of bandwidth to deliver the data. It 
can also make use of the MAC address, the IP address, and the current network topology in its own 
administrative domain. In effect, it monitors the state of its own network and its connection with  
external networks. 

8.3.3.1.1.1  Injection Strategies 
When a new network condition develops, an injector will attach control information to the data flows 
it hopes to control. 

• Appearing flows 

A new network condition is engendered by a new data flow and the control information will be 
attached to the new flow. 

• Disappearing flows 

Less often, an injector may know that a flow, or a set of flows has finished: a machine or user or 
another network may have disappeared from the network. It would then be expedient to inject code 
into the remaining flows. 

8.3.3.1.1.2  Experience with Injectors 
An injector was demonstrated in the first audit: the ABLE platform used a packet filter to trigger the 
injection of code that constructed an IPSec tunnel. For the SNMP activator proposed here, a more 
sophisticated packet filter will be used. This will be a PromethOS system. PromethOS is preferred 
means of providing node operating system plug-ins for active nodes. It is extension of netfilter, a 
standard part of the Linux kernel. PromethOS packet filters will have a degree of feedback; they will 
be programmed by SNAP packets to wait for particular network events. 
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Figure 8-10: The pusher and the dispatcher 

Code will be injected by the UDP SNAP packets. These will be sent to the same host as the data that 
triggered the network event. All active SNAP-enabled routers will intercept these packets as they 
traverse the network. The SNAP packets should precede the data packets in the network, so that the 
data packets will not be able to traverse the network until the SNAP packets have a created a route for 
them. If this is the case, it would be desirable to implement another PromethOS module that performs 
packet spooling. 

The difficulty with operating injectors is to decide what code to inject. 

8.3.3.1.2 Interceptors 

Intercepting SNAP packets is, technically, more complicated than injecting them. These are the 
constraints: 

• The code has to be executed as quickly as possible, so that the packet can be quickly forwarded and 
minimise latency during the establishment of the data flow. 

• The functionality required will need to make use of active extensions on the node.  

• Active extensions require blocked I/O. 

• Blocked I/O cannot be performed in the same thread as the execution of the SNAP packet, because it 
would add too much latency. 

Because of this a new invocation model is proposed. 

8.3.3.1.2.1  Active Extensions 
SNAP provides a facility to access services within the SNAP daemon: CALLS, "call service". A 
service is a C function. This will be used to dispatch the SNMP commands embedded in the SNAP 
program. 

SNAP also provides a facility to read variables maintained by the SNAP daemon: SVCV, "service 
variable collect". This will be used to return the state of SNMP variables. In this way, an SNMP 
command can be issued on one thread and the result can be returned, stored within the SNAP daemon 
and dispatched as the result in a subsequent SNAP packet. 
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8.3.3.1.3 Application Scenario: the pusher and dispatcher 

 
The pusher and the dispatcher as shown in Figure 8-10 can model the injection and interception 
approach: 

1. The pusher generates a special UDP packet (SNMP SNAP, embedded with SNMP command). 

2. The pusher sends data to the routers to retrieve current network status. 

3. The plain routers reply to the dispatcher with current network status. 

4. The dispatcher receives the current network status from the plain routers, it then generates a SNMP 
SNAP packet to pusher. This SNMP SNAP packet then programs the routing table and sets the new 
default route. 

8.3.3.2 Invocation Model 

8.3.3.2.1 Kernel and User Space SNAP processors 

The University of Pennsylvania is currently developing a kernel-based SNAP packet processor. This 
will be a node OS plug-in. This will be unable to invoke any active extensions outside of the kernel. 
Their proposed invocation model is this: 

For two SNAP-enabled nodes: A and B. 

1. A: Execute SNAP instructions that do not invoke active extensions. 

2. A: On reaching an instruction that does invoke an active extension: 

• A: Stop executing in the kernel and forward the packet to the next hop arriving at B. 

• A: Continue executing the packet program in user space. Invoke the active extension, wait for the 
result and, when it arrives, send it onto the next hop as a SNAP packet that only contains the result. 

3. B: the SNAP packet sent by A is now executed. Two conditions may arise: 

• The result of the invocation of the active extension at the previous active node is required to progress 
the computation. 

• It is not 

4. B: If the latter is the case, the packet can continue to execute. 

5. B: If the former is the case, then apply ii. 

 
Figure 8-11: Invocation Model 

In this way, SNAP packets can proceed very quickly through the network. A SNAP program will be in 
place at each active node waiting for the I/O to unblock at preceding nodes in the network. 
Diagrammatically, the situation is as given in Figure 8-11: Invocation Model. At time interval, 1, 
packet p arrives, denoted p1. It blocking commands are invoked asynchronously and the packet is 
passed on. At time period pr the result is ready. 
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Other packets arrive, p2 though to pr-1. . They may be forwarded or spooled. SNAP packets will almost 
certainly be dispatched, but it would be desirable to spool data packets . Eventually time period r 
arrives and the result of the SNAP operation invoked at time period 1 is available and it is dispatched 
immediately. 

If the data packet flow is being spooled, a release indication would be sent by the next hop, 
presumably after it has received and processed the result of the operation of p1 arriving after period r. 
A more sophisticated analysis than this would show that the synchronisation of the operation 
invocation and the arrival of the result forms a self-organising protocol - similar to Djikstra's leader 
election protocol for communications bus synchronisation. 

8.3.3.2.2 Extensions to SNAP 

In effect, the interaction between the kernel and user space SNAP interpreters requires two new 
primitives within SNAP: FORK and JOIN. These will be implicit in the calls to the active extensions: 
CALLS and SVCV. The design of the FORK and JOIN primitives is common to many operating 
systems. An identifier will be needed to specify the thread to join. The usual problem of finding a 
unique identifier in an open distributed system will be faced. 

Also SNAP will require two stacks: a supervisor stack used for synchronisation and a user stack used 
for the SNAP program. The operation of the kernel SNAP interpreter will be an atomic copy, 
increment the program counter and forward, see the Booch object collaboration diagram given in 
Figure 8-12: SNAP-atomic copy, increment program counter and forward. 

 

Figure 8-12: SNAP-atomic copy, increment program counter and forward 

8.3.3.2.3 SNAP Active Routers Component Relationships 

A Booch class diagram shows the expected relationship between the system components:  
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Figure 8-13: SNAP Active Router: Relationship Diagram 

8.3.3.2.4 Proposed Implementation 

The kernel space SNAP interpreter is not currently available, but the proposed invocation model 
(using a FORK and JOIN) can be proved using the current user space overlay network architecture of 
SNAP. Interceptors will be SNAP daemons running on active routers. They will listen on a number of 
SNAP control ports. 

At the time of writing, the SNAP interpreters are not part of a system that has packet spooling, which 
is still an experimental of the Linux kernel. 

8.3.4 SMNP-SNAP Application & Demonstration Scenario 
The below collaboration diagram shows how a SNAP packet implementing a finite state machine 
could be used to create an ad-hoc network. There are four routers in this system: r, s, t, and u. Each of 
which must move to its respective operational state: s1, s2, s3, s4. The network to be constructed is a 
sub-network that passes all of its traffic through an ATM switch. The traffic must be conditioned so 
that the bitrate limited virtual channel carrying the traffic does not arbitrarily drop cells and corrupt the 
IP packets. To simplify the management of the traffic conditioning, the traffic is carried in an IP in IP 
tunnel and conditioned. It is then unencapsula ted and given to the ATM switch's IP interface. 
Typically, this network might be used to support ADSL access for a neighbourhood. 
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Figure 8-14: Network diagram for SNMP SNAP Application Scenario 

The progression of the states of construction is this: 

• S1 - The router r, supporting DHCP, RIP version 2 and, say, two 100BaseTx interfaces offers a sub-
network to client machines. It creates an interface for that sub-network on one of its 100BaseTx 
interfaces and announces a route to the sub-network with RIP version 2 on the other interface. It 
injects the SNAP packet. 

• S2 - An upstream router, s, receives the SNAP packet and is told to wait for a RIP version 2 event - 
the announcement of the new sub-network. In response it will create an IP in IP tunnel endpoint for it. 
It passes the SNAP packet on. 

• S3 - The next upstream router, t, receives the SNAP packet and is told to construct the other IP in IP 
tunnel endpoint and to apply a traffic conditioner to the tunnel and to route the traffic to an ATM 
switch. 

• S4 - The router with the ATM interface creates a route for the unencapsulated traffic of the sub-
network. 

This is the sort of network construction task that many system administrators must perform. SNAP is 
used to carry the instructions and to record the changes of state of the network. The instructions can be 
at conceptually a high level, the extensible SNMP agent allows many simple instructions to be 
grouped together. The states correspond exactly to the construction of the system. 

Clearly, this task could be automated, the only variables are: 

• IP sub-network to be supported 

• IP tunnel endpoints addresses 

• Traffic conditioning parameters 

• ATM interface IP address 

A set of each of these could easily be embedded into a number of SNAP programs. The DHCP routers 
would be given at least one each to inject into the network when a client machine starts to use the 
network they manage the addresses for. 

8.3.5 SNMP Activator Conclusion 
The proposed SNMP SNAP approach takes the advantages of both SNMP and SNAP: simple 
protocol, light-weight packets, safe, reliable, flexible and efficient. The combined approach enables 
source routing to be performed cost-effectively on plain routers as slow Linux source routing boxes 
are avoided. 
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Figure 8-15: SNAP Program: ad-hoc network construction 

The SNAP system described to propagate SNMP command execution through a network lends itself to 
mass production of SNAP programs to construct large numbers of network. It exploits active 
networking by having control information move with the data it must support. 

The invocation model for SNAP presents the greatest challenge. If it is correctly developed to provide 
synchronised changes in state, disruption caused by transient operational states will be minimised. 

The effect of the latter could be entirely eliminated with the use of packet spooling. This would be 
synchronised to an acknowledgement message that the network has attained its new state. 
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9 CONCLUSION & FUTURE WORK 
This deliverable described the Revised FAIN Active Node Architecture the result of year 2 efforts. 
The original FAIN Active Router architecture has been refined and extended as a result of engineering 
decisions occurred during the implementation. Accordingly, security aspects of the system have been 
strengthened, and delivery of packets is currently done according to the virtual environment they 
belong to. The resource control has been integrated with the VE management framework and currently 
supports admission control decisions during VE instantiation phase. 

We have created a framework that supports a component-based node architecture, which has raised the 
level of flexibility found in legacy systems. Along with this framework new concepts have been 
elaborated and old ones have been semantically enriched. These include the Execution Environment, 
Open Interfaces and the Network Element. We have also argued about how interoperability can be 
supported in a network environment that currently undergoes a lot of changes and the technology 
offerings are diversifying. This to our view is an important result that requires further investigation to 
assess its validity. 

We have also built two different instances of the same type of EE that contribute towards component-
based system architectures; one is Java based for quick prototyping and testing and the other is a high-
performance EE supported by enhancements of a Linux-based kernel OS. The third instance of EE is a 
control based EE type that is deployed as an example of how signalling may be deployed to affect the 
communication behaviour as part of a service. 

In conclusion, a prototype of a component-based AN node has been designed and implemented and its 
capabilities will be demonstrated during M3 – also described in R10. 

During the third and final year of the project we will focus on extending the implementation work and 
further integrate between the different EEs. Some modifications are expected with respect to the 
architecture and the design of the FAIN Active Router with the most notable the RCF that should 
provide better isolation among the different Virtual Environments and enforce their corresponding 
resource profiles. In Appendix B, we provide a comprehensive table of the status of each one of the 
components together with their sub-components described in this deliverable. This table will impact 
the work that needs to be done during the next phase of the project. 

There are several issues that have not yet been fully addressed in the design of the FAIN Active router 
and that should be covered in project year work and beyond. These are: 

• Node interoperability plane: the control / management and transport planes separation controls the 
network element (which in turn controls the data-path creation), the control / management EEs can 
control the data-path behaviour. Different control / management EEs can implement the same 
open interface specification. The control and management interfaces could be exported inside 
different control / management EEs. A selected collection of all open interface specification of the 
control and management that defines the interoperability layer. 

• Evaluation /porting of PromethOS and a selected set of node components facilities into a network 
processors environment for the creation of a high speed active router (type C node) 

• Design & code optimisation of the node management framework for efficient management of the 
PromethOS and other facilities (i.e. efficient installation of code, efficient creation and 
management of virtual environments and resource control features). Provisioning of QoS 
enforcement facilities. 

• Design & implement of a modular features set for the Resource Control Framework (i.e. enforce 
resource partition, admission control, resource control policy enforcement, export resource control 
interfaces) 

• Design & implement a full features set for the Security Framework and integrated with the 
DEMUX and RCF (i.e. authorisation control, integrity checks) 
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• Design an optimised DEMUX facilities integrated with the Security and Node Management 
facilities including dynamic updating of Demultiplexing policies and transmitting packet data to 
an appropriate processing environment after classifying the data. 

• Optimised the design of a higher-level mechanism for controlling the node management resources 
across a network. This mechanism is targeted to control uniformly the resources around the active 
nodes part of the active network. 

• Dynamic updating of active services that involves reloading of classes from new code and 
restarting of instances. 

• Evaluate the use of the FAIN Active Router components into a lighter version as Active 
Application Servers  

• Evaluate Reference Configurations for efficient Active Nodes and Management deployment into a 
network. 

Finally, the deployment of the AN node on a real testbed is also expected to have an impact on the 
work to be done as part of WP3. 
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APPENDIX A  

A.1   Active Packet Format for FAIN 

A.1.1 ANEP Packet Format 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 Version (8bit) Flags (8bit) Type ID (16bit) 

1 ANEP Header Length (16bit) ANEP Packet Length (16bit) 

2--m Options 

m+1 

- - - 
n 

 

Payload 
 

Figure A-1: FAIN Active Packet Format 

Figure A-1 shows ANEP packet format. We have adopted an ANEP packet format as a FAIN active 
packet format. We only added options on the FAIN Type ID. The explanation of each field in the 
ANEP packet format is as follows; 

l Version 

It means the version of the header format in use. Currently the value of the version is one. This 
field is 8 bits long. 

l Flags 

In version one, only the most significant bit (MSB) is used. If the MSB of this field is 1, the node 
should discard the packet. If the MSB of this field is 0, the node tries to forward the packet. This 
field is composed of 8bits long. 

l Type ID 

It means an evaluation environment of the data. The value of Type ID for FAIN must be 
selected.  For demo we suggest to use the number of 10561 as a FAIN TYPE ID. 

l ANEP Header Length 

This data specifies the size of ANEP packet header in 32 bit words. The ANEP header means from 
the field of Version to the field of Options. 

l ANEP Packet Length 

This data specifies the size of the ANEP packet in 32 bit words 

l Options  

This field is used when there is an option data.  

l Payload Data 

Active code, policy data and data being processed etc. are considered as examples of payload 
data. 

A.1.2 Option Header Format 
Figure A-2 shows an option format.  

l FLG 
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It means how to deal the option data. If the value of bit 0 is one, that means the options are 
meaningful inside the specified execution environment. In addition, if the active node does not 
know how to process the indicated Option Type, the action taken is defined by the value of bit 1of 
the Flags field. If the value of bit 1 is zero, the option data is ignored and processing is continued. 
If the value of bit 1 is one, the packet is discarded. The owner of EE-ID defines the value of option 
type. In our case, we will set that the bit 0 is one and bit 1 is zero. 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 FLG Option Type (14bit) Option Length (16bit) 

1--m Option Payload (Option Value) 

Figure A-2: FAIN Option Format 

l Option Type  

It means a type of option. The owner of VE-ID defines the value of option type. Currently defined 
option types are shown in the Table A-1. 

l Option Length 

It means length of option data. The length is shown in 32 bit words (4byte). 

Table A-1: Defined Option Type  

Option Type ID Name of Option Description of Option 

0-100 Reserved Those are reserved for future use. 

101 VE ID It is a field for identifying a VE ID. 

102 EE ID It is a field for identifying EE ID. 

103-16383 Reserved Those are reserved for future use. 

A.1.3 Defined Option 

A.1.3.1 Virtual Environment (VE) Identifier 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 FLG Option Type Option Length 

1 Virtual Environment (VE) ID (32bit) 

Figure A-3: Virtual Environment Identifier 

Figure A-3 shows a format of a virtual environment (VE) identifier. This option is a must when the 
type ID in the ANEP packet is an identifier for FAIN type ID. 

l FLG 

The owner of EE-ID defines the value of flag(FLG). 

l Option Type  

The value of option type for environment identifier is 101. (For example) 

l Option Length 

The value of option length is 2 in 32 bit words (4 byte). 

l VE ID 
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This data means an identifier for sending active packets to proper VE. This field is composed of 
8bits. ANSP assigns a VE ID when a SP requests to create a new VE. But the value of zero is 
reserved for future used and one is assigned for privileged VE. 

Table A-2: Defined VE ID 

VE ID Description 

0 Reserved 

1 This number is assigned for privileged VE(ANSP) in a node. 

Others The number of VE-ID is assigned by ANSP(Network/Node owner). 

A.1.3.2 Execution Environment (VE) Identifier 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 FLG Option Type Option Length 

1 Execution Environment (EE) ID (32bit) 

Figure A-4: Execution Environment Identifier 

Figure A-4 shows a format of an execution environment (EE) identifier.  

l FLG 

The owner of EE-ID defines the value of flag(FLG). 

l Option Type  

The value of option type for environment identifier is 102. (For example) 

l Option Length 

The value of option length is 2 in 32 bit words (4 byte). 

l EE ID 

This data means an identifier for sending active packets to proper EE This field is composed of 
32bit. Each VE owner assigns the EE ID. 

A.1.4 ANEP security related options and definitions 
To enable operation of the security architecture, the architecture has to provide mechanisms to transfer 
security related information and provide data integrity service for active packets. Therefore we have 
chosen ANEP header as a carrier of needed information. ANEP header is the header of active packets. 
Options definitions, as will be presented in the following sections, follow the guidelines of the ANEP 
protocol.    

A.1.4.1 Hop-by-hop integrity option  
Hop-by-hop integrity option enables data integrity service for the active packet between two peer 
active nodes. It is defined as follows: 

Hop-by-hop integrity is an option as defined in ANEP encapsulation protocol. ANEP option type for 
the option is 5. Option flags should be defined as public (1) in first flag and set for discard if not 
understood by active node (1) in second flag. 

Option contains Key Identifier, Sequence number and HMAC. Key Identifier is 64 bit value and 
uniquely identifies sending or receiving peer on ANEP level. Sequence number is monotonically 



D4-Revised Active Node Architecture and Design  Page A-4 of 87 

Copyright  2001 FAIN Consortium  May 2002 

increasing 64 bit number for a given Key Identifier. Sending system increases this value for every 
send packet. HMAC is a keyed hash either HMAC-MD5 (128 bits) or HMAC-SHA1 (160 bits). 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 FLG Option Type Option Length 

1-2 Key Identifier (64 bit) 
 

3-4 Sequence Number (64 bit) 
 

5-

9(10) 

HMAC (128 or 160 bit) 

 

Figure A-5: Hop-by-Hop Integrity Option 

HMAC in hop-by-hop integrity option covers whole ANEP packet except HMAC value itself. In the 
packet must be only one hop-by-hop integrity option. 

While building this option the ANEP packet as will be send on the wire has to be presented in the 
security area. Depending on the information, where the packet will be send the right security 
association is selected. This way we can select the right key identifier, algorithm and secret key. Entire 
hop-by-hop option is build, with zeroed values for HMAC field. Packet is built as will be sending on 
the wire and the HMAC value is computed. Zeroed field in the option is replaced with computed 
HMAC value and the packet is returned to the MUX. Lower layer protocol fields are added to the 
packet and the packet is send to the next hop node. On the receiving side the ANEP packet has to be 
parsed so the hop-by-ho option fields can be extracted. On the basis of this information the right 
security association is selected with the needed dada to verify hop-by-hop integrity. For verifying the 
packet has to be rebuild again with zeroed HMAC field. 

A.1.4.2 Credential options 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 FLG Option Type Option Length 

 Credential Type Credential Length 

 Credential 

 Credential Location Type Credential Location Length 

 Credential Location 

 Target Type Target Length 

 Target 

 Signature Type Signature Length 

 Digital Signature 

Figure A-6: Credential Option 

Credential option enables data integrity service for the packet with a digital signature mechanism and 
binds credential option data to the packet. Credential option enables authentication service and can be 
used to transfer authorization information. Credential option is defined as is shown in Figure A-6: 

Credential option is defined as an ANEP option. Its option type is 106. Option consists of credential, 
location and target triple in addition to digital signature. Credential payload carries credential or a 
reference to credential. Location payload points to the location where the credential can be get. Target 
payload specifies application domain of intended credential usage. Target length can be zero, so in this 
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case target payload is not defined. Digital signature covers credential option and static parts of the 
ANEP packet, at the moment only a payload. 

There can be zero, one or more credential options in the packet. The triple and the digital signature are 
designed as sub options. For such sub options we have defined for now the following sub option types: 

 

ANEP_SA_CREDENTIAL_TYPE_X509 1 
ANEP_SA_CREDENTIAL_TYPE_X509_INLINE  2 
ANEP_SA_CREDENTIAL_TYPE_X509_ATTR  3 
ANEP_SA_CREDENTIAL_TYPE_X509_ATTR_INLINE  4 
ANEP_SA_CREDENTIAL_TYPE_KEYNOTE  5 
ANEP_SA_CREDENTIAL_TYPE_KEYNOTE_INLINE 6 
ANEP_SA_CREDENTIAL_LOCATION_DNS  101 
ANEP_SA_CREDENTIAL_LOCATION_WWW  102 
ANEP_SA_CREDENTIAL_LOCATION_LDAP  103 
ANEP_SA_CREDENTIAL_DS_TYPE_RSA  201 
ANEP_SA_CREDENTIAL_DS_TYPE_DSA  202 
ANEP_SA_CREDENTIAL_TARGET_NODEOS  301 
ANEP_SA_CREDENTIAL_TARGET_EE  302 
ANEP_SA_CREDENTIAL_TARGET_DOMAIN  303 
ANEP_SA_CREDENTIAL_TARGET_AA  304 

 

If there is no target option, credential in or referenced in the option should be used in all access control  
decisions. 

The digital signature in the credentials option is covering the credential option itself, the packet 
payload and static ANEP options (VE and EE identifier). While the packet payload can change on the 
active nodes (being active code or reference to a code plus data plus headers) the payload itself has to 
be split into variable and static part. Therefore we need a place in the packet to store variable parts of 
the ANEP payload. 

A.1.4.3 Variable option 
Variable option is a portion of the active packet where the variable data related to active code or active 
application has to be stored. The option number for this option is 107.  

Option flags should be defined as private (0) in first flag and set for discard if not understood by active 
node (1) in second flag. 

 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 FLG Option Type Option Length 

1-n Variable payload 

Figure A-6: Variable Option 
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A.1.4.4 Resource Vector 
Resource vector option can be used to limit the scope of reach of the active packet in the network or as 
a hint for prediction of the resource usage on the node. For the same purposes simple TTL field in IP 
protocols is used. The TTL field is decremented at every IP node that the packet has passed. While the 
resource consumption in the active networks is more complex, the resource consumptions usage 
behaviour like proportional, differential an integral can be traced from node to node. Resource usage 
option as such is protected only by hop-by-hop integrity. 

Format for the resource related option could be simple: 

 

 0   31 

N 4N+ 0 Byte 4N+ 1Byte 4N+ 2 Byte 4N+ 3 Byte 

0 FLG Option Type Option Length 

1 Resource Vector (32 bit) 

Figure A-7: Resource Vector 
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APPENDIX B  

B.1 WP3 Components, Functionality and Status 

Package / 
Component 

Area 

Component 
Name 

Lead 
Design
er/Im
pleme
ntor 

Partici
pation 

in 

M3 

Partici
pation 

in 

M4 

Partici
pation 

in 

M5 

Comments and size  
(cl.=#ofClasses, fct.=#ofFunctions, 

ncss=#of non-comment source 
statements, LOC=#ofLinesOfCode) 

Demux HEL Yes  Yes Designed, developed, integrated, 
Size: 8 cl., 87 fct., 698 ncss 

Security 
(entry-level 
checks) 

JSIS Yes  Yes Designed, developed, partially 
integrated, 
Size: 13 cl., 121 fct., 3649 ncss 

RCF NTUA Yes  No Designed, partially developed, not 
integrated, 
Size: 5 cl., 27 fct., 406 ncss 

VE 
Management 

FHG Yes  Yes Designed, developed, integrated, 
Size: 10 cl., 147 fct., 1643 ncss 

Active Node 

SNMP 
Activator 

UCL Yes  Noo Designed, developed, partially 
integrated, 
Size: 2240 LOC 

 PromethOS ETH Yes  Yes Designed, developed, integrated, 
Size: 3101 LOC 

Table B-1: Status of WP3 Components 

B.2 WP3 Sub-Components, Functionality and Status 
Working Area Subcomponent 

Functionality 
Implemented Comments 

Channel Creation 
and Deletion 

Yes Creation of a channel instance and deletion of a 
channel instance. 

Filter Configuration 
Adding and 
Removing 

Yes Adding filter condition for receiving packet data 
and removing of the condition. 

Data Interception  

(Single Queuing) 

Yes Interception of data from a network based on a 
queue. 

Decoding Yes Decoding from byte stream to a packet object. 

Transmission Yes Data transmission from a network to a proper 
client. 

Encoding Yes Encoding from a packet object to byte stream. 

Retransmission Yes Data retransmission from a client to a network 

Security Function 
Call 

Yes Security function calls for receiving data and 
sending data to outside network. 

DeMux 

Channel Resource 
Reservation and 
Release 

Partially Resource is only managed based on full node 
resource. But its not managed based on resource 
that reserved by a VE.  
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Multiple Accessing No This function is an enhancement of the DeMux. 
Data accessing by multiple clients. 

 

Data Interception 

(Multiple Queuing) 

No This function is an enhancement of the DeMux. 
Interception of data from a network based on 
multiple queues. 

ANEP packet, 
decoding 

Yes Available in Perl, encoding per specification 
porting to Java 

Connection Manager Yes Available in Perl, encoding per specification 
porting to Java  

Hop-by-Hop 
integrity sequences, 
sequence window 

Yes Available in Perl, encoding per specification 
porting to Java 

Authentication  Partially Available in Perl, will be provided in Java 

Security 

 

Integrity by digital 
signature algorithm 

Partially Available in Perl, will be provided in Java 

RCF 

 

DENES No To be implemented partially next year 

Admission 
Controller. 

Node Level 
Admission Control 

Yes Performs admission check on node level by 
accessing the involving Resource Managers. 

Traffic Manager. 

Bandwidth 
Admission Control. 

Creation of the 
Traffic Classes. 

Yes The Resource Manager, which is responsible for 
the output Traffic. Performs admission check 
based on the availability of the output bandwidth 
and creates Traffic Classes for the VEs 

Traffic Class. 

Export Traffic 
Control Interface. 

Enforce the 
Bandwidth 
Partitioning. 

Partially  Implemented: Export a control interface to the 
VE. Enforce the proper use of the part of the 
bandwidth that belongs to the VE. Enforce the 
Bandwidth partitioning per VE and per flow 
bases, by configuring the Linux TC. It gives a 
specific level of service to the flows.  

Next Year Planned: Calibration of the Linux TC 
in order to be able to assign specific amount of 
the bandwidth to the VEs. 

Interaction with 
Security 

No To be implemented next year 

 

 

Other Resource 
Managers 

No To be implemented next year 

VE Mgmt. 

 

JAVA EE Yes JAVA/CORBA environment used for executing 
VE Mgmt. and parts of Demux, Security, and 
RCF as well as active services. To take advantage 
of the implemented management features JAVA 
objects can serve as wrappers/proxies for non-
JAVA implementations. 
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Creation and 
management of VEs 
with associated 
resources 

Yes When a VE is created the VE manager tries to 
create all the required resources for this VE (EE, 
Security, Demux, etc.). 

Installation and 
management of 
active services 

Yes Uses a class loader to dynamically load code into 
a JAVA EE. VEs forward installation requests to 
the appropriate EE. 

Creation and 
management of 
service components  

Yes Dynamically instantiates objects in a JAVA EE. 

Dynamic 
configuration of 
service components 

Yes Service components can be configured via a 
flexible property scheme. 

Dynamic 
interconnection of 
service components 

Yes Service components can be interconnected via 
ports. Ports can exchange arbitrary information. 
There is implemented a strong support for 
CORBA ports. 

Monitoring of 
service components 

Yes Observers can register for notifications on 
changes of properties of service components. 

Authentication of 
clients of service 
components 

Yes Clients have to authenticate themselves when 
accessing a port. Clients can be distinguished by 
issuing client specific port references. 

 

Dynamic updating of 
active services 

No  This should reload classes from new code and 
restart instances. This is subject of next year’s 
implementation work. Planned by FHG. 

SNAP - tuple to 
string conversion 

Yes  

SNAP - naming 
service lookup 

Yes  

SNMP version 2 
"get" service 

Yes  

SNMP version 2 and 
3 set and get services 

No Planned Project Year 3 by UCL 

Reset heap service No Planned Project Year 3 by UCL 

Kernel SNAP 
interpreter 

No Planned Project Year 3 by UPenn 

SNMP 
Activator 

Kernel and user-
space SNAP 
interpreters using 
hald-sync/hald-async 
negotiation 

No Planned Project Year 3 by UCL and UPenn 

PromethOS Table Yes The PromethOS table is used to register at the 
different hooks provided in the Linux Network 
stack. 

PromethOS 

 

PromethOS 
Management 
Component 

Yes The PromethOS Management Component acts as 
the management component of PromethOS in 
kernel space. It controls the plugins and 
dispatches packets to the appropriate plugins 
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 IPtables shared 
library 

Yes The iptables shared library is used to interface to 
PromethOS from user space to load the 
components and configure the filter expressions. 

 WaveVideo Plugin Yes The WaveVideo plugin provides the active Video 
Scaling functionality. 

 NAT Plugin Yes The NAT (Network Address Translation) plugin 
provides NAT functionality within PromethOS. It 
will be used to implement the Web Service 
Distribution case study as well as other services 
in the future. 

 Resource Control No Planned for Project Year 3 by ETH. 

Table B-2: Status of WP3 Sub-Components 

 

  


