FAIN Deliverable D3

Project Number :
Project Title:

IST-1999-10561-FAIN

Future Active | P Networks

FAIN

Initial Specification of Case Study Systems

Editor :

Document No:
Contribution File Name:
Version :

Company :

Date:
Distribution :
Dissemination:

Célestin Brou

WP4-GM D-011-D3-Pub
WP4-D3vl.doc

1.0

GMD

Tuesday, May 29" 2001
Pu
Pu

Partner
UCL
JSIS

NTUA
UPC
DT

317

T
i
=

I T
E‘% =

(@)}
<
O

=
<

z
_|

C
0
i
pzd

Copyright & 2001 FAIN Consortium

The FAIN Consortium consists of:

Status

Partner
Associate Partner to UCL
Associate Partner to UCL
Associate Partner to UCL

Partner

Partner

Partner

Partner

Partner

Partner

Partner

Partner
Associate Partner to GMD
Associate Partner to GMD

Partner

Country
United Kingdom
Sovenia
Greece
Span
Germany
France
Netherlands
United Kingdom
Japan
Germany
Switzerland
Germany
Germany
Span
USA

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Pagei

The FAIN Consortium

University College London

Josef Stefan Institute

Nationa Technical University of Athens

Universitat Politecnica De Catalunya

T-Nova Deutsche Telekom Berkom GmbH

France Télécom / R&D

Koninklijke KPN NV, KPN Research

Hitachi Europe Ltd.

Hitachi Ltd.

Siemens AG

Eidgentssische Technische Hochschule Zirich

GMD Forschungszentrum Informationstechnik GmbH
IKV++ GmbH Informations- und Kommunikationstechnologie
Integracion Y Sistemas De Medida, SA

University of Pennsylvania

Project Management

Alex Gdis

University College London

Department of Electronic and Electrical Engineering,
Torrington Place

London WC1E 7JE

United Kingdom

Td +44 (0) 207 458 4463

Fax +44 (0) 207 388 9325

E-mail: agdis@ee.ucl.ac.uk

Authors

Celestin Brou (GMD) — Editor
Hui Guo (GMD)

Richard Sinnott (GMD)
Mehran Roshandel (DT)
Matthias Bossardt (ETH)
Bertrand Mathieu (FT)
Christos Tsarouchis (HEL)
Chiho Kitahara (HIT)

Jurgen Dittrich (IKV)

Juan Luis Manas (INT)

Franci Mocilar (JSIS)

Jan Laarhuis (KPN)

H.C.G Pragt (KPN)

Yiannis Nikolakis (NTUA)
Odysseas Pyrovolakis (NTUA)
Ermolaos Zimboulakis (NTUA)
Alex Galis (UCL)

Alvin Tan (UCL)

Kun Yang (UCL)

Epi Salamanca (UPC)

Joan Serrat (UPC)

Julio Vivero (UPC)

(UCL)
(JSIS)
(NTUA)
(UPC)
(DT)
(FT)
(KPN)
(HEL)
(HIT)
(SAG)
(ETH)
(GMD)
(IKV)
(INT)
(UPEN)

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Pageii

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Pageiii

Abstract

D3 is a ddiverable composed primarily of the interna reports R11, R12, R13 and R25. The
intention of this deliverable is to provide an initid specification of the case sudies that will be
used to demondrate the redisation of the architecture and overdl generd agpproach of the
FAIN project. This ddiverable itsdf provides an overdl Policy Based Active Network
Management Architecture (PBNM, PBANEM) dong with an integrated Active Service
Provisoning (ASP) Architecture that has been digned with the FAIN Enterpriss modd.
Sample scenarios are provided which are being used for (ongoing) prototyping of the
underlying architecture and approach of FAIN. It is likey that these scenarios and prototypes
will be used as the basis for further areas of implementation in FAIN, as and when the FAIN
architecture and methodology is further refined.

Keywords

Active Network, Active AN Management, Active Service Provisioning,, XML, Policy Based
Management, Agent Technology, DPE, QoS Delegation.

Change Higtory

Verson | Author Comments
V0.0 WP4 Workgroup | Initia Specification of Case Study Systems
V10 WP4 Workgroup | Integration of al comments.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page iv

ACRONYMS

AC: Active Code

AN: Active Networks

ANE: Active Network Element

ANN: Active Network Node

ANSP: Active Network Service Provider
API: Application Programming Interface
ASN: Abstract Syntax Notation

ASP: Active Service Provisioning

BML: Business Management Layer

CDB: Conflict Detection Block

CIM: Common Information Model

CLI: Command Line Interface

CMIP: Common Management Information Protocol
COPS: Common Open Policy Service
CORBA: Common Object Request Broker Architecture
DAP: Directory Access Protocol

DCE: Disgtributed Computing Environment
DCN: Data Communication Network

DEN: Directory Enabled Networks

DIT: Directory Information Tree

DME: Decison Making Entity

DMTF: Distributed Management Task Force
DPE: Distributed Processing Environment
DSCP: Diffserv Code Point

EE: Execution Environment

EM: Element Management

EMS:. Element Management System

FAIN: Future Active IP Networks

FAIN TA: FAIN Technica Annex

FCAPS: Fault Configuration Accounting Performance Security

FIFO: Firgt In First Out

GDMO: Guiddines for Definition of Managed Objects
GUI: Graphic User Interface

IDL: Interface Definition Language

IETF: Internet Engineering Task Force

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page v

ISE: Information Storage Entity

ITU: International Telecommunication Union
JDBC: Java Database Connectivity

JNDI: Java Naming and Directory Interface
LAN: Local Area Network

LDAP: Light Directory Access Protocol

LPDP: Locd Policy Decision Point

LRU: Least Recently Used

LSP: Label Switched Path

MA: Mobile Agents

MD: Mediation Device

MF: Mediation Function

MIB: Management Information Base

MIF: Management Information Format

MPLS: Multiprotocol Label Switching

NACK: Not Acknowledged

NE: Network Element

NEF: Network Element Function

NIP: Network Infrastructure Provider

NM: Network Management

NMF: Network Management Forum

NMS: Network Management System

ODBC: Open Database Connectivity

OMG: Object Management Group

ORB: Object Request Broker

OSD: Open Software Description

OSF: Operating System Function

PBANEM: Policy-based Active Network Element Management
PBANM: Policy-based Active Network Management
PBM: Policy-based Management

PBN: Policy-based Networking

PBNM: Policy-based Network Management
PBVPN: Policy-based Virtual Private Network
PCIM: Policy Core Information Model

PCIMe: Policy Core Information Model extensions
PDP: Policy Decision Point

PEP: Policy Enforcement Point

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page vi

PHB: Per-hop Behaviour

PIB: Policy Information Base

QAF: Q Adaptor Function

QoS: Quality of Service

QPIM: QoS Poalicy Information Model

RAP: Resource Allocation Protocal

RCF: Resource Control Framework

RDBMS: Relational Database Management System

RSV P: Resource Reservation Protocol
SC.: Security Context

SID: Security ID

SLA: Service Level Agreement

SML.: Service Management Layer

SNMP: Simple Network Management Protocol
SP: Service Provider

SPPI: Structure of Policy Provisioning Information
SQL: Structured Query Language

SSL: Secure Sockets Layer

TCA: Traffic Control Agreement

TINA: Telecommunications Information Networking Architecture

TMF: Telecommunications Management Forum
TMN: Telecommunications Management Network
TOM: Telecom Operations Map

ToS: Type of Service

TTCN: Tree and Tabular Combined Notation
UML.: Unified Moddling Language

VE: Virtud Environment

VPN: Virtual Private Network

WAN: Wide Area Network

WSF: Workstation Function

XML: Extensible Markup Language

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page vii

TABLE OF CONTENTS
ACRONYMS .ttt reas st e s s s se£eE e b2 ae b e 2R e R e RS se A e a8 e e e e ee s b s et e b e b et et et renetrenes \%
1 INTRODUCTION ..iiiiescerineereneesesesesseseseessse st eesssessssesssessssesesssssssesssssssssssessssessssessssasssssssessssssssssssssesssssssssssssssssesnes 2
2 ACTIVEPOLICY BASED MANAGEMENT FOR ACTIVE NETWORKS ..o 2
2.1 INTRODUCTION w..cuttueseereseesessesessesessssssssesssssssssssssssssessssessssesssssssessssessssssssssssssssssssssussssssssesssasssssesnssesessssssssssssssassesnes
211 Scopeand OBJECHIVEccuecereeceertrese et s st nnas
2.1.2 FAIN Overall Network Management Environment
22 R11- RATIONALE FOR USING ACTIVE NETWORKING APPROACH TO MANAGEMENTconiereiereneerensereaeenes 7
221 Traditional Approachesto Network Management...........coeeeererernninsseesnessssessesessssssessssssssesssssssssssnes 7
2.2.2 Why Traditional Network Management Approaches are Insufficient for Active Networks................. 8
223 Related Work on Active Networks and Management
2.2.4 Policy-Based Management of Active NEetWOrKs...........cocveneeeenieenns
225 Approach taken Within FAIN.. ...
226 FAIN MENOUOIOGY.......ceeureeeuirrenerieeerieierseeesseeeestesesessess st s et 16
2.3 SYSTEM REQUIREMENTS ON THE FAIN MANAGEMENT ARCHITECTURE
231 Requirements onthe NMSfor TEStiNG PUMPOSES.......cccoeeureierereescie e sssse st ssssssssessssssssessssens
2.3.2 Functional Requirements ONthe NIMS........ccoiiirrcrese e s
2.3.3 Network Provisioning Requirementsonthe NMS..........cccooenvnccenenecseseneenens

2.34 Network Maintenance and Restoration Requirements on the NMS
235 Network Data Management Requirements on the NMS.

2.3.6 Network Provisioning Requirementson EMS............ccccoeovvrvcennennnns

2.3.7 Network Maintenance and Restoration Requirements on EMS..........coervnrennenncnnensssesesesssseeeneens
24 RI12- INITIAL FAIN ARCHITECTUREccsustreestreseerssnsssssessssesssessssesnssesns

24.1 Policy-Based Architecture Design

242 Specification of the Components Of the SYSIEML.........cciereee e

243 Physical Architecture of the System COMPONENLS.........ccrieerrieererernerrerersserrees e sssesseaes
25 RI12 APPLYING THE ARCHITECTURE TO ELEMENT AND NETWORK LEVEL
251 Specificissuesfor thearchitecture at element [eveleevevccevececcceecccenne,
25.2 Specificissuesfor the architecture at NEWOrK [EVEL.......c.occueecccerce e
25.3 Interface of the Network Management Architecture to the Service Management Level..................... 98
26 R12- DESIGN OF TESTING ENVIRONMENT AND SCENARIOS......c.costuruturertirenstressssessssesssssssessssessssesssssssssssessssens
2.6.1 ODbjective and SCOPE......ccovvrerererrierireseesasese st ssssessessssesssnens
2.6.2 CORBA-based Test Methodology........ccccvureeeerireseninirerssenenesssseneneens
2.6.3 Engineering Scenario 1— Delegated QoS Management..................
2.6.4 Engineering Scenario 2— VPN ...
2.6.5 CONCIUSION.....oiiereeirireirerireesee e e sesesas s sss st ss et sesensassesnennans
2.7 R12 - CONCLUSIONS......utererererreressessesssssssssassssassssasssssssessssssssssssssssssssssessssessnsessssesans
3 R13-ACTIVE SERVICE PROVISONINGcoirtretiririrersireseiseasseesesessessssessesessssessssesessssesssesssssssssesssssenns 122
31 INTRODUCTION ...oiiitirireieirteeinseeessesesesesesesseseseesesessessessssesssesssssssssssssssssssssssssessssssssssssssssssssssssesssesnsessssesnssssnnes

32 REQUIREMENTSANALY SIS ...ttt sttt sttt sssasssssssssssssssssssnsns
3.21 General Issues of Requirement Analysis
322 Service INdependent ASP USE CASES ...t sss st ssssssssessssssssessssssssssssssssssssssssseseses

3.3 ASPARCHITECTURE.......oosieieireirsirstss st ississsssssssssss sttt sttt essssssssssssssssssssnsns
331 Services
3.3.2 ASP NEWOIK Al CITECLUN E.......ceveeceeectricie sttt bbb

RIS T NS N[00 [A o2 11 (1o LU T
3.3.4 Execution Environments and ASP
34 INFORMATION IMODELcuiiivieeieeseeseetsesssssesssssssessssssssesssssssstasssssesssssssssssasssssestassssssnssssssssssssssssestesssessasssssessssssssssen
3.4.1 Overview on Deployment DESCIIPLIONS ..o s
3.4.2 FAIN Deployment Description
343 SEIVICE TEMPIALE. ...ttt e
I S TRV Lot =Y () {1 L=
3.45 Nodeinformation/characteristics
3.4.6 Network Informati OnN/Char ACLEIIStICS.......uciviiuieieeieeee st ettt
35 ASP REQUIREMENTSTO SUBSYSTEMS......coiitiiieiiestesi ettt se s stsss s s e be s s sssbs s sestssassssssssessssssssssssssssssssssssssen

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page viii

351 ASP Requirements 0N the AN NOGE.........ccciiriiricnie e 154
352 ASP Requirementsto SECUrity FramewWOrK........cocinscceeere e esssesssseeas 155
3.5.3 ASP Requirements to Management SYSLEIM..........cccirrerenisinereneisieisesessssssesesss s sses e ssssssssesssssesses 155
3.6 ASP SCENARIOS ...ttt ittt eseses st es e s sessbeeasbeesebeese b ee s s seb e s se s e e e b e e et st seEee s e b e b b et e b et e s et esantreaen 156
3.6.1 In-band VErsUS OUL-OFf-DANG...........c.curiuririrreireiree et b bbbt 157
T 72 1 B o =V o =T o) o] (0 - Tod o 0RO 158
ICHSHCTIN©§1 o) o 7= Lo IF= o] o o = Tox o 100U 159

T30 o 4001 1 1 o) OO 163
3.7 ASSOCIATION BETWEEN ASP AND FAIN ENTERPRISE MODELccccovunnininineneeneineseiseisseneens 163

3.7.1 Mapping ASP to FAIN ENnterprise MOUEl ACLOIS.......covererererrereesiesisesssesessssssssesessssssesessssssssesssssssnes 163
3.7.2 Mapping FAIN enterprise model RPSt0 ASP fUNCLIONS........ccoveeieeernieeinerenere e 163

3.8 FURTHER ISSUES.....coottesiueeniseensesssessssssessssesssessssessssesnssesnssassssssnnes 163

4 CONCLUSIONSoiricereieerseeersesesesesesessesessssesesssssssssesssssessssssssssssssssesasssssssssssssssssssssssssssssssssssesssesnssesnssessssesssssnsns 164
5 REFERENCES. ...ttt sttt e s £ttt ettt 165
B APPENDIX A 1 R25... ettt sttt e R ARttt 170

6.1 INTRODUCTION ...cutuiurereurereereseeressesessesessssessssessssesssssssessssessssessssessssssessssssassassssassssassssessssesasessssssssssssssssssesssesssesns 170

6.2 INITIAL SUMMARY OF EXISTING NETWORK MANAGEMENT APPROACHES.......c.costurerieresereseresseneessssseenseeens 170
6.2.1 Existing Network Management APProaches.........coveceereveennensesiessessssessesssssenes
6.2.2 Policy Based Network Management Approaches.

6.3 INITIAL SUMMARY OFACTIVE NETWORK BASED APPROACHES TO NETWORK MANAGEMENT 186
6.3.1 Virtual ACtiVe Private NEIWOIKS........cocuriiuriciricirie ittt ses e bbb 186
6.3.2 Existing Policy Based Network Management APProaches...........cccvreneneeeenenesesnesesssessesessesnenes 189

6.4 INITIAL ISSUESIN POLICY BASED NETWORK MANAGEMENT ...coovrerereerersirnsessssssssssessssssssssssessssssssessssesssesns 195

6.5 R25 REFERENCES......coivrtterisseresseresssssssssssessssessssssssssssssssssssssssssessssessssessssassssassssassesssssssnsssssssssssssssssssessssessnsessssesnns 196

7 APPENDIX B: POLICY BASED MANAGEMENT INFORMATION MODELcccouoevierererrereeenens 198

7.1 FAIN PoLIiCcY BASED MANAGEMENT INFORMATION MODELc.outuriurireeeireeeeseesesessessesessssessssesssssssssssssssenenns 198
7.1.1 Classes InheritanCe HierarChy ...t 198
7.1.2 Aggregation Classes INheritance Hi€rarChy........ccooceecceinesccesesee et ssssssesessssssesesses 199
7.1.3 FAIN SPeCifiC ClasseS DESCIIPLION ..ottt se s s s s s s sesaen 201

8 APPENDIX C: XML POLICY MAPPING - CODE EXAMPLE.......crnecneeneeensisesises e 227

8.1 XIML-SCHEMA EXAMPLEcitteutteiretrietses st istaesseasessisessbsess st seas b sese bbb bbbt sttt bbb bbbt 227

82 XML POLICY INSTANCE MAPPING......curtutteueertueertaeestesestssessisessssessssessssssesssssssssssssssssssesssssssssssssssesssssssssssssssenses 233

83 XML EVENT MAPPING - CODE EXAMPLEc.steurtueetiresteressisesstsessssess s ssessnssssssssenes 234
831 XML-Schema
8.3.2 XML EVENE EXAIMPIE....cooeiiiieiiecieieiet ettt 237

9 APPENDIX D: DESCRIPTION OF TOOL S ...oieriereeereeressesesesessesessessssesssseens 240

0.1 INTRODUCTION .. cuutueeereeeseeressesessesessesssessssessssessssassssasssassssnssssnssssssssssssnssssessssessnsesnsesnns

9.2 TOOLSFOR POLICY INPUTcutteurereusesesseseesssessssssessssessssessssessssesessssesssssssssesssssssssassssssssssssssssssssssssssssessssessssesnsesns

9.3 TOOLSFORPOLICY REPRESENTATION
9.3.1 POlICY SPECIHTICALION......cocvieiecreieiecic ettt bbbttt n s et b s s
9.3.2 Toolsfor XML based poliCy repreSENtatioN..........ccocveeeirereeeneseseie s ssssssssssssssssesssssssseses
9.3.3 Toolsfor Rule-based policy representation and reasoning

94 TOOLSFOR POLICY STORAGE AND RETRIEVAL.....cucuttreteressereastressssessssessssessssessesssessssssssssssssssssssesnssssssssssssenses
4L OVEIVIBW ..ottt R R bbb bbbt
9.4.2 LDAP-based directory and JNDI
9.4.3 Relational Database Management System and JDBC...........ccoovrnnnenenenesenesessesesesessssssesessessees

95 TOOLSFORPOLICY TRANSPORT ...cocuriertreeerseersesessssessssssssssssssssessssesssssssssasssssssssassesssssssnsssssssssssssssssssesssessssessssesnns
9.5.1 Common Open Policy Service (COPS) and Vovida.org
9.5.2 Simple Object Access Protocol (SOAP) and Apache SOAP........ccennernnerneereeeeee s 247
.53 XIML-RPC ...ttt et et sttt s ettt
9.5.4 Mobile agent technology and Grasshopper

96 TOOLSFOR POLICY ENFORCEMENTututttreetsensssessesessesessssesssssssessssssssasssssssssasssssssssssssssesssssssssssssssssssessssesssesns
O0.6.1 COPSANA SOAPooitireettrtisirtie ittt b s e a bbb bbb bbbttt bt

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

0.6.2 AGVENINEL SNIMP.....oieeeerircereeetee ettt b b 248

9.6.3 Grasshopper based AQVENTNEL SNIMP...........cciee s 249

O.7 CONCLUSION ON TOOLS......uutertereereeseeesseseeseassassessastesessesssssssssssssssssssssssesssssssssssssssssssssssssssssssssnssssssssesnsssssssssasens 249
Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page x

LIST OF FIGURES

FIGURE 1 — POSSIBLE MANAGEMENT MIGRATION STRATEGIES.......cceosurereetrirerestsesesesssssesesssssssssssssssesssssssssssssssesssssssssssssses
FIGURE 2 - ACTIVE NETWORK IMANAGEMENTcctttrtttrtseseseststsssesesesesesesssssesssssssesssssssesssssssessssssssssssssssssssssssessssssssssssssssssssses
FIGURE 3- ACTIVE MANAGEMENT POLICIES MIGRATION
FIGURE 4 — ACTIVE NETWORK MANAGEMENToovtuitetitieeeerersssestssssssessssssessesssssssesessnns
FIGURE 5— THE LAYERS OF THE TMN-MODEL AND SOME OF THE FUNCTIONALITIES AT EACH LEVEL
FIGURE 6 - FAIN ENTERPRISEIMODELcctuctrurtutuetseststsessssessssssesesssesessessssssssessssssssessssssssesssssesssssssssssssssssessssssssesssnssssssssnees
FIGURE 7 - MAPPING BETWEEN A CTORS......coitiuitititsesreissesie st asss bbb sss bbbt s s s s s enssssssensnans
FIGURE 8- PBM A RCHITECTURE
FIGURE 9 - NETWORK PROVISIONING SCENARIO SEQUENCE DIAGRAM — MAIN BRANCHccuvrrereererrenieereeseeeereenenees
FIGURE 10 - NETWORK PROVISIONING SCENARIO SEQUENCE DIAGRAM — SUB-BRANCHccceteteiieieieieieieieieieienenes
FIGURE 11 - NETWORK PROVISIONING SCENARIOACTIVITY DIAGRAM
FIGURE 12 - SIGNALLING SCENARIO SEQUENCE DIAGRAM
FIGURE 13 - SIGNALLING SCENARIO ACTIVITY DIAGRAM. ...ttt sesesesese s sesessseseens

FIGURE 14 - RECONFIGURATION DUE TO NETWORK STATUS SEQUENCE DIAGRAM......cciuiieieieerieieieieieree et
FIGURE 15 - RECONFIGURATION DUE TO NETWORK STATUS ACTIVITY DIAGRAM......ccovuiiieiieeieteie e
FIGURE 16 - APPLICATION PROVISIONING SCENARIO SEQUENCE DIAGRAM — MAIN BRANCH
FIGURE 17 - APPLICATION PROVISIONING SCENARIO SEQUENCE DIAGRAM — SUB-BRANCH.......cccccetreriurerereeaeirerenes
FIGURE 18 - APPLICATION PROVISIONING SCENARIO ACTIVITY DIAGRAM ..ottt sesseees
FIGURE 19 - USER-SPECIFIC POLICIES PROVISIONING SCENARIO SEQUENCE DIAGRAM
FIGURE 20 - USER-SPECIFIC POLICIES PROVISIONING SCENARIO
FIGURE 21 - ALARM REPORT SCENARIO SEQUENCE DIAGRAM.............

FIGURE 22 - ALARM REPORT SCENARIO ACTIVITY DIAGRAMcueiitiiiirieieieieie ettt bbbt ses
FIGURE 23 - |IETF POLICY MANAGEMENT FRAMEWORKcocuetiteirieieieinieteieisesietssssstetsss st bessss b sessbebessssbesesssssesesssssesesaes
FIGURE 24 - LOCAL FAULT MANAGEMENT SYSTEM BLOCKS
FIGURE 25 - LOCAL FAULT MANAGEMENT ARCHITECTURE......c.cosutueteteurietetesseetetessssiesesesetesesssstesesesstesesssesesesssesesessssseseses
FIGURE 26 - CREDENTIAL COMPONENTS......coettteteteureetetesssetesesesesesesssssesesssssesesesesesesssesesesesesesesesesesesesasesesesesesesssasesesesesesesess
FIGURE 27 - PDP INTERNAL COMPONENTS
FIGURE 28 - POLICY CONFLICT CHECK SUB-COMPONENTc.cururtutuetrerestastsssesssssssessssssssesssssssssssasssssesssssessssssssessssasssssenens
FIGURE 29 - POLICY EVALUATION BLOCK COMPONENTS......cururtutuetrerertastesseessesesessssssssesssssesssssssssssessassessssssssessensasssssesens
FIGURE 30 - HIERARCHICAL NAMING STRUCTURE.........ccosurueueerereneaennenes

FIGURE 31 - MONITORING SYSTEM ARCHITECTURE
FIGURE 32 - PEP INTERNAL COMPONENTS.....ccoceuerrereseersereesessesesssessenes
FIGURE 33 - TWO INTERFACES USED IN CREDENTIAL CHECK
FIGURE 34 - MONITORING SYSTEM AND INTERFACES.......cetturtetetetrtetetsisseteiessaeietssssstetesssstesesssssesesesssesesesssesesssssesesssesesesens
FIGURE 35 - PHASE ONE SCENARIO
FIGURE 30 - PHASE 2 SCENARIO.......ccuititititeteieteteieietsiseses ettt sttt besebebesesebebesesebebesesebebesesebebebebebebebebebebesebebebebebebebesebetesesans
FIGURE 37 - TELECOM OPERATIONS IMAP.......oitiiitiiiieieieisiete e isie bbbttt bbbt bbb b bbb bbbt b bbb bbbt e b s bt ebenes

FIGURE 44 - MOBILE AGENT BASED PBNEM ARCHITECTURE.........cvtrirererereseeseesesessessessessessesssssssessessessessessessesseses
FIGURE 45 - TEST BED FOR PBVPN ..ot nerrerseres s sss st ssssesessessessessessesssssssssssssssessessessessessesseses
FIGURE 46— SET A (CACHING & WITHDRAWAL POLICIES
FIGURE 47 — SET B (CODE REQUEST)...cvutuerterestiressesessesessssesessesssssssssssssessessssssessssssssssssssssssssssssassssasssssssssssssssssssssssssssssenns
FIGURE 48 — SET C (CODE FETCHING INSTALLATION) ...cuttrtreeerseersesessesesresessessssssessssessssessssssessssesssssssssssssssssesssssenns
FIGURE 49— SET D (OBSTRUCTION CLEARANCE).......cteutremerreserseserenns

FIGURE 50— SET E (RESOURCES MONITORING)....
FIGURE 51 - SERVICE IMPLEMENTATION.....ccutuereereererserserseeseseesenseneneens

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page xi

FIGURE 58 - DIFFERENT IMPLEMENTATIONS OF THE LDAP SERVER ..ottt seenes
FIGURE 59 - ACTORSFOR SERVICE CREATION IN ACTIVE NETWORKS....
FIGURE 60 - ACTIVE NETWORK NODE ARCHITECURE.......ceuvtrertrtrereresesesesesesesesesesesesesssssesesssssesesssssssesssssessssssssssssssssssssses
FIGURE 61 - “TIGHTEN" MANAGEMENT ARCHITECT UREcouitrtrerireresesesesesesesesesesssesesesesesesssesesesssssssesssssesesesssssessssssesenes
FIGURE 62 - “ SCATTERED” MANAGEMENT ARCHITECT URE
FIGURE 63 - POLICY MIGRATION........

FIGURE 64 - ACTIVE CAPABILITY
FIGURE 65 - SERAPHIM SECURITY ARCHITECTUREccoutuereureterrersesesssessesesssessesesssessssessssssssessssssssesssssessssesssessssssssesssnsasens
FIGURE 66 - QOS POLICY CLASSHIERARCHYcoiiirireeuereerestsseessesessssssesssssessssessssssssesssssssssssssssssessassessssssssessssssssesssssasens
FIGURE 67- BASIC PBNM ARCHITECTURE GIVEN BY IETF
FIGURE 68 - EXTENSION OF PBNM ARCHITECTURE GIVEN IN FIGURE 67

LIST OF TABLES

TABLE 1— STATE OF THEART ONACTIVE IMPLEMENTATIONS OF THE MANAGEMENT PLANE.ccociiiirririeieieinienenas 9
TABLE 2 - RESOURCE ABSTRACTIONS TABLE.....cuttttttrtrtststseseetstsesesestsssssesssssesssssssessasas 111
TABLE 3- SUMMARY OF FEATURES OF EXISTING POLICY BASED MANAGEMENT TOOLSoovueuieriresesiresesesesesesesssenens 181

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 1

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 2

1 INTRODUCTION

The Deliverable D3 describes the initia implementation of case study systemsin the FAIN project. It
is composed primarily of internal reports R11&R12 (Fain initid Policy Based Network management),
R13 (Active Service Provisonning) which are outlined in chapters 2 and 3 respectively. Report R25,
the Initial Summary Networks Management Issues for Active Networks are added as an Appendix.
The context of Network Management and Active Service provisioning in FAIN aong with
assumptions on the architectural choices are explained in the associated chapters. The document
focuses on the design of architectures and presentation of candidate scenarios to be implemented to
demonsdtrate and justify the overal FAIN approach.

2 ACTIVE POLICY BASED MANAGEMENT FOR ACTIVE
NETWORKS

In this chapter management aspects in relation to active networks are studied and described. The
management concepts and approaches described in this deliverable are initial ones which will be
iteratively refined and improved throughout the life of the project.

This chapter is structured as follows. Chapter 2.1 provides the context of the management activity
within FAIN. Chapter 2.3 presents an initial analysis of the FAIN management requirements and
chapter 2.4, presents the initial FAIN management architecture. The gpplication and applicability of
thisinitia architecture to the different management levels is described in Chapter 2.5. Aninitid,
implementation of part of this architecture is presented in Chapter 2.6. Findly in Chapter 2.7
conclusions on the initial effort on management are given and recommendations and issues for
improvement and extension of the initial architecture and implementation are described

2.1 INTRODUCTION

The main purpose of this introductory chapter isto provide a careful explanation of active policy based
management for active networks and describe how the FAIN project proposes to deal with
management aspects as they pertain there.

The scope of the management research within FAIN is described in Section 2.1.1 with arguments
given for using active technology for management purposesin Section 2.1.2. Then an overview of the
current state of the art in active approaches for management is given in Section 2.2.3 with section
2.2.4 focusing on policy-based management approaches in particular. The high level approach to the
management system for FAIN is described in Section 2.2.5 and concludes this introductory chapter.

2.1.1 Scope and Objective

Within FAIN we confine oursalves to the two lowest management levels of the Telecommunication
Management Network (TMN) mode: network element management and network management. These
levels are in line with the main overal objective of FAIN: designing active nodes and building active
networks from them. In addition to these two levels the interface with the service level is studied and
described.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 3

The title of this chapter needs to be elaborated in order to understand the genera direction of the
management work to be undertaken within FAIN. Leaving out, in first instance, the management style,
i.e., ‘policy-based’, the title reads ‘ active management for active networks' . This contains two aspects
when we leave out one of the words *active'. The first is 'management of active networks meaning
that active networks have to be managed. The second is' active management of networks meaning
that the intention is to useing active technology for management purposes. Obvioudy, the ultimate

god in FAIN is the combination of both, as expressed by the title, while the ultimate management

style is policy-based. This is where we want to go with management in FAIN, i.e., and the target
Stuation. The current situation for management can predominantly be described as 'non-active SNMP-
based management of non-active networks. The target situation thus differs from the current situation
in two main respects. the implementation (active or non-active) of both the management and data
plane, and the management style used (SNMP-based or policy-based). Leaving out the management
style, there are two paths to reach the target situation from the current situation (see Figure 1).

The upper path in Figure 1 entails an ‘activation’ of the management plane first. As a consequence, it
means applying active technologies and capabilities to the management plane, which serve to manage
traditiond networks initialy. Thus the upper path leads via active management of traditional nodes
(routers, switches) to the target situation. The lower path in Figure 1 entails an *activation’ of the data
plane first. This means that non-active management or a certain style is applied to active nodes and
active networks. Thus the lower path leads via non-active management of active networks to the target
Stuation.

active/
/ passve \
passive/ active/
passive active
current \ / tar get
mgt. plane/ situation passive/ situation
data plane active

Figure 1 — Possible management migration strategies
In FAIN we will pursue both paths towards the target situation for several reasons.

The lower path will be pursued within FAIN from the outset with a policy-based management style. In
fact, this path entails bringing active nodes and active networks under the regime of policy-based
management. The most important advantage of this approach is the increased flexibility in

management offered by the policy-based style. This flexibility is needed to properly manage and

control the enhanced capabilities, w.r.t. flexibility, of active nodes and active networks. However,
notice that following this path requires as a prerequisite, early availability of the FAIN active node.
Based on this observation, and the fact that both policy-based and active network-based techniques are
emerging technologies, the advantages of this lower path will be available on alonger term.

The upper path offers several advantages. In the first place, it has been proven in the past (see Section
2.2.3.1) that deploying active technology in the management plane leads to more effective and more
efficient management. Secondly this path provides a smooth evolution towards the target situation
because the FAIN active node only needs to be available in the final step towards the target Situation.
It therefore respects the design time of the FAIN active node. Moreover, by following the upper path,
it is expected that vendors and operators will benefit from active technology in the short term. And that
because application of this technology to the management plane puts less constraints on performance
and security (only one user, i.e., the operator!) and thus on the maturity of the technology. A second
and later step in the upper path is to enhance the system with a policy-based management style.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 4

In the target Situation the advantages of both paths are combined. This is expected to happen in the
fina stage of the project and includes management of the active nodes developed within the project by
WP3.

2.1.2 FAIN Overall Network Management Environment

The FAIN active node architecture defines active nodes, which provide full flexibility to the user to
manage and provide active services.

The defining characteristic of an active node is the ability for users to load software components
dynamically and offers dynamic programmability. An active node provides at least an execution
environment, which provides the capability of running user-provided code. An important festure of
active nodes is that any undesirable operation will have limited consequences. This can be achieved
safely since each customer can in principle be provided with a dedicated active node and that
customers who are sharing the same active node would be provided with a partition of the node
resources viaa private VPN.

Packets requiring active processing are marked in some way to allow correct handling by active
routers. This alows the discrimination of active and conventiona packets and the selection of an
active node. Routing and node resources configuration in the active nodes could be achieved by setting
policies at the network management level. The management approach in the FAIN project is based on
policies.
We envisage that the management of the active network will require:

Policies: Design of management policies required to manage the active nodes and network

Management Components in the Active Nodes: Design of management components for the
active nodes, which will execute policies within an active node and which will monitor the rode
resources usage. The execution of policies means mapping target policies into node resource
configurations

Management Nodes: A set of management nodes that will provide mechanismsto enable network
administrators to manage the active networks as a whole, including network policies set-up and
processing.

The management components within the active node and the functions performed by these will
determine the management capability of the active node and hence the extent to which management
can be delegated to the node. The policy based management solution adopted by FAIN will serve to
delegate management through the execution of policies. In this way, the policies will define the rules
that will determine the behaviour of the active nodes. The execution d these policies will cause
changes in the node and will determine how it delivers the services for users. The policies are defined
and sent to the nodes by the management nodes, which deliver services. The management nodes will
need to know what policies to send to which active nodes, when to send these and what results these
have.

The network and service provider will need to be provided with management capability at the
management nodes to monitor and control the whole and/or parts of the network.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 5

The Network and/or Service providers will need to ensure the network resources are used efficiently
and that enough resources are provided to meet users demand. The Network and/or Service Providers
will need to know if the active nodes are executing the right policies and that the active nodes are
delivering the services correctly to users. As the delivery of services will require co-operation of a
number of active nodes the network providers will need the means of managing the active nodes as a
group of nodes and not individual nodes. They will need monitoring mechanisms for checking that
correct policies are being defined and used in relation to the network before they are sent to the actua
network. It will need to know what policies are currently loaded in the active nodes and what impact
these are having on the network. It will also need to protect and monitor the security of the network.
Therefore, the network/service provider needs a set of management mechanisms that will enable it to
manage the network as a whole.

In FAIN we envisage that two types of management nodes provide these mechanisms:
Element Management Nodes
Network Management Nodes

The main difference in functiondity provided by these two types of management nodes is in the policy
types, which they could process and manage, in the sub-networks, which they cover and in the creation
of management domains for different types of users as shown the following figures:

. Active Node

. Passive Node
Ii Active Element Mng. Node
L]
|i Phtesenan E Active Network Mng. Node

Figure 2 - Active Network Management

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 6

Network SETT
ManNag. Leswswsssssmssssmsunnnnuns Manag.
Iélode Node
. . :
O codse . Q Code s
% Policy ';’OIIC .
'MJ re ation “Migr rm o

‘
0 l

a

Figure 3 - Active Management Policies Migration

Physical Link

The relationships between Active Management Nodes, active Management Components in the
active nodes and the Policies are shown in Figure 4.

Notifications Policies

Notifications Policies

Active

Policy Execution Node
Manager
Network Layer P

Figure 4 — Active Network Management

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 7

2.2 R11 - RATIONALE FOR USING ACTIVE NETWORKING APPROACH TO MANAGEMENT

Traditional approaches to network management are inadequate to manage active networks. In section
2.2.1 we provide a concise overview of traditional approaches to network management. Subsequently,
we identify the limitations and provide arguments for the adoption of the more dynamic approach that
can be achieved via active networks in Section 2.2.2.

2.2.1 Traditional Approaches to Network Management

In this section we will briefly describe the most important approaches to traditional network
management. Specificaly, we consder TMN, TMF/NMF and TINA.

Telecommunications M anagement Networ k — The Telecommunications Management Network
(TMN) supports management activities associated with telecommunication networks which consist of
many types of analogue and digital telecommunication equipment and associated support equipment.
TMN supports numerous operating systems for telecommunication management. Each operating
system has management functions, which interact with potentially remote network elements or peer
operating systems.

Theimpact of TMN within the industry has not fulfilled the initial expectations due to a number of
factors. The availability of standards and the clear advantages of the object-oriented information model
did not avoid delays in the implementation of TMN due both to technical and economical factors.

Such factors included the inherent cost and complexity of the technology, the lack of application
development environments, and the costs of substituting existing technologies with new, standard-
based ones.

Tele-M anagement Forum — The TeleManagement Forum (TMF) and its member companies
intended to identify, create, develop, and implement real world solutions that automate and streamline
telecom operations. In other words, seek the most effective ways to improve public networks and
services management.

The TMF activities are structured in programs. The mgjor program areas include Process Automation
Programs and Technology Integration Programs. Each of them is subdivided in teams or subprograms
working on a specific field of the program. The TMF has aways taken a pragmatic approach: red
world and product solutions are sought. This entails the use of existing and mature technologies and
products.

TINA — The Tdecommunication Information Networking Architecture (TINA) Consortium was
formed in 1993 with the intention of defining a common architecture upon which next generation
telecommunication services could be built. The architecture proposed logically separated high level
applications from the physical infrastructure. Central to the architecture was object-oriented distributed
architectures such as the Object Management Groups and the support of Distributed Processing
Environments (DPE). The architecture itself was defined through specificaly identified components,
clear separation points called Reference Points and guidelines on how to structure applications so that
they could be easily integrated into the TINA architecture.

The TINA architecture offers certain components that can be applied directly for network
management. Unfortunately, the full TINA architecture -—the network architecture in particular — is
seen by some as being too heavyweight for most applications and services. As aresult, it has often
been the case that subsets of the overall TINA architecture have been implemented. Whilst the full
TINA architecture was not completely accepted by the telecommunications and software industry
more widely, many of the ideas that were contained within the TINA architecture were seen as useful,
and as such are currently being re-used in other aress.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 8

2.2.2 Why Traditional Network Management Approaches are Insufficient for
Active Networks

During the last decades many ‘traditiond’ -, non-active-, approaches for network management have
been proposed with some approaches having gained more relevance in industry and/or through
standardization organisations than others. However, none of these architectures is suitable to be used
in active network management. Either because they cannot or are unable to, manage some of the new
cgpabilities made possible by active networks.

Recent devel opments in the telecommunications arena have shown that customer regquirements change
rapidly with increasing demands on the infrastructure and services and protocols supported there. The
process of standardisation, development, and deployment of new protocols is a laborious and drawn
out one. A representative example of thisis the deployment of RSVP and 1Pv6, which has been widely
recognised as useful; however, their network-wide deployment has still not taken place. As aresult,
many innovative applications that would require features of new protocols cannot currently be
supported. Hence, a framework to support such network infrastructure dynamism is required.

Unfortunately, traditional network management approaches do not succeed in being able to cope with
this required dynamism. These considerations lead us to the conclusion that dynamic network
infrastructures are required expediting and facilitating the deployment and management of new
network protocol software, thereby helping to solve the problems in today’ s networks. Active
networks represent one viable way in which the dynamism of the network infrastructure can be
supported directly. Active networks allow for example an active network management system to
dynamically enhance its functionality to adapt to a new network condition or application.

2.2.3 Related Work on Active Networks and Management

This section serves as a concise overview on what has been done on the topic of active networks and
management outside FAIN. We follow the logicd divison, made in Section 2.1.1, into ‘active
management of networks in Section 2.2.3.1, and ‘ management of active networks' in Section 2.2.4.

2.2.3.1 Active Implementation of Traditional Management

Application of active technology to the management plane has been done by several research groupsin
the past. In this section an overview of these attemptsis given. In general, network management
applications am at smplifying network management tasks, using AN-technology. Also, management
tasks that were hard or even impossible to implement without AN-technology are realised. Most
gpplications focus on distributed management, using AN techniques to del egate management tasks.

Table 1 gives an overview of known active networking management applications. Although not all
applications are representative of the AN management approaches being developed in FAIN, they give
agood overview of the current status of AN management activities

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 9

Table 1 — State of the Art on Active Implementations of the Management Plane.

Application Owner Remarks

Active distributed NTT network New Internet capabilities ask for new

management, with several innovation 1ab/CTR management paradigm. Distributed control with

sample management Columbia Univ, AN technology. No further explanation

applications Kawamura/Stadler

[66]

Distributed network Bell Labs/Lucent A couple of examples: adaptive control, router

management applications Raz/Shavitt [67] configuration, element detection, network
mapping, security management (intruder
detection, fighting denial of services attacks)
Theideaisthat AN can be used for fast and easy
deployment of distributed network management.
Distributed NM is needed to more efficiently use
network resources in large and complex |P
networks.

Distributed management, e.g. | IBM Research, Use of active agents as management

configuration determination Feridun [68] components. Again, distribution of management
tasks.

Survivability of services, Univ of Kansas, How to survive mafunctions. Uses composable

backup creation and location
selection

Minden & Evans [69]

blocks.

Scriptable remote network Intel, Putzolu, Bakshi Phoenix framework: for easier network service
management [70] deployment. This gpplication makes use of
mobile agents that can run monitoring scripts on
remote locations (in stead of central location).
Topology discovery Bell Labs, Raz & The new agoritthm, report-on-tree, uses less
Shavitt [71] bandwidth than Segall’s report-direct PIF
algorithm. AN is used to implement and execute
this agorithm.
Software abstractions for Univ. Pennsylvania& | The ABLE platform offers abstractions for
network management Bdl Labs, Kornblum, management applications, making it possible to
applications Raz, Shavitt [72] abstract from heterogeneous native management
interfaces. Improvements in flexibility and
performance of network management have been
shown. Demongtration of congestion avoidance
used as a proof of concept for benefits of AN.
DARPA project on Active GE CRD, Bush, GE developed active network agorithms that
Virtual Network Kulkarni [73] alow active, intermediate network nodes to
Management (AVNM) predict their own behaviour and that make it

possible for network equipment vendorsto
provide active logical processes that accomplish
prediction for their devices. This innovation will
make possible predictive network configuration
and management.

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 10

2.2.3.2 Current Efforts in Management of Active Networks

In this section related work on management of active networks is described. Again, we do not clam to
be exhaudtive in this description, which contains both traditional and policy-based management styles.

Virtual Active Network — The concept of Virtual Active Networks (VAN) were proposed in in order
to address the problem of service provisioning and management in a telecommunication environment
that uses active networking technologies. VANSs are perceived as a generalization of traditiond Virtua
Private Networks (VPNSs). A provider setsup a VAN according to a stipulated contract with its
customer. Since every customer gets their own VAN with virtua resources (bandwidth, processing
power, memory, etc.), customers are isolated from each other.

A VAN can be described as a graph of virtua active network nodes (ANNS) interconnected by virtual
links. In the Active Network Working Group, virtual active nodes are called Execution Environments
(EEs). On a physical active node two different kinds of EESs can be ingtaled: firstly, a privileged EE-
type for the management of the physicad ANN and secondly, a customer EE type. Initialy, there will
be only a management EE on a physical ANN. Solely one management EE exists on any ANN. The
interconnection of these privileged EEs builds the management VAN. The management VAN spans
over dl physical active nodes of the provider’s network. The management EE will create, modify,
monitor and terminate customer EES.

Abone — Currently, every node on the ABone runs active networking management software known as
Anetd. It is an experimental software designed to support the deployment, operation and control of
active networks. Specificaly, Anetd allows for the:

deployment, configuration, and control of networking software, including active networking
execution environment (EE) prototypes;

demultiplexing active network packets encapsulated using ANEP to multiple EEs located on the
same network node and sharing the same input port.

Ponder — Ponder is adeclarative, object-oriented language for specifying different types of policies,
for grouping policiesinto roles and relationships, and then defining configurations of roles and
relationships as management structures. Ponder can be used to specify security policies with role-
based access control, as well as general-purpose management policies. It isintended to be extensible to
cater for future types of policies.

In Ponder, apolicy isarule that can be used to change the behaviour of a system. Separating policies
from the managers that interpret them allows the behaviour and strategy of the management system to
be changed without re-coding the managers. The management system can then adapt to changing
requirements by disabling policies or replacing old policies with new ones without shutting down the
system.

2.2.4 Policy-Based Management of Active Networks

The use of policy-based style to the management of active networks is the subject of this section.
Section 2.2.4.1 elaborates on the differences with traditional management styles, and Section 2.2.4.2
describes the advantages to be gained when using policy-based management of active networks.
Findly, having identified this more powerful management technology, the challenges it has to face
when managing active networks are described in Section 2.2.4.3.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 11

2.2.4.1 Policy-based Management Style versus Traditional Management Style

The use of policies for network management has recently been introduced to the Internet community.
However, for the deployment of Policy Based Network Management Systems in the Internet, a
standardisation process is required, to ensure the interoperability between equipment from different
vendors and PBNM systems from different devel opers. Both the Internet Engineering Task Force
(IETF) and the Distributed Management Task Force (DMTF) are currently working on the definition
of standards for Policy Based Network Management. The DMTF is mainly focused on the
representation of policies and the specification of a corresponding information model and schema. The
IETF isaso working in that field, in co-operation with the DMTF, whilst aso trying to define a
genera framework for aPBNM system, as well as a protocol that could be used for implementing a
PBNM system.

The current goal of PBN isto provide facilities, which alow contral of multiple types of devices that
must work in concert across every single domain to provide a desired service. Examples of services,
which can be controlled by PBN, are currently mainly Quality of Services (QoS) reservations.
Examples of devices, which can be “PBN-enabled”, are hosts (clients and servers), routers, switches,
firewdls, bandwidth brokers, sublet bandwidth managers and network access servers.

Policies are defined as rules governing the allocation of network resources to certain
applications/users. The IETF Policy WG defines a scalable framework for policy administration and
digtribution that will alow interoperability among the multiple devices that must work together to
achieve a consistent implementation of a network administrator’s policy. For this reason, directory
schemas are standardised in order to enable the various network devices to interpret the configuration
information congstently. For the distribution of policy information, IETF protocols such as LDAP,
DIAMETER, COPS are used.

In comparison with previous traditiona network management approaches, PBNM offers a more
flexible, a and customisable management solution alowing each router/switch to be configured on the
fly, for a specific application tailored for a customer. This flexibility, however, is not without cost.
PBNM systems have problems in security and scalability since they were originally thought to be used
in a LAN-like network environment. Another problem in current PBNM is the semantics of policies.
Actualy, the policies that can be defined are limited by the current information model, which includes
only classes for the representation of policy conditions based only on time and on packet headers. It is
not possible to define new types of conditions, like conditions based on the status of the node or the
network, without extending the core information model. Another problem of the current PBNM
architecture isthat it is only able to address fairly limited domain of issues, e.g. those that can be
trandated to fixed configuration settings. For example, QoS issues often needs complex interactions
between relevant network management components. These complex interactions can not be easily
implemented in the current PBNM architecture. Moreover, according to the policy framework, policies
are defined or modified by an administrative tool and the intervention of the administrator is aways
required.

Active networks can resolve many of the problems inherent in current PBNM technology. They alow
for enhancing the management architecture dynamicaly, for the introduction of new applications or
device specific policies, tailored to realise complex tasks, and for the automation of e network
management tasks. The Policy-Based Management architecture described in the next chapter shows
how active networks can be used to overcome many management problems inherent in traditional
management approaches.

2.2.4.2 Advantages of Policy-based Management Using Active Networks

In FAIN WP4, service logic for the PBN-based provisioning of a sample service (e.g. virtua private
networks or QoS palicies, depending on progressin the IETF) will be implemented on top of the Node
API. With this case study, we expect to be able to demondtrate the following benefits of active
networks:

flexibility

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 12

Using active networks, policies can be expressed flexibly as active code as well as data
structures - which are limited by the constraints imposed by standardised database schemas.
Policies expressed, as active code will be able to have more inherent intelligence than
traditiona policies.

extensibility/dynamicity
Active networks technology will alow the PBNM system to dynamically extend its
management functionaity through downloading of new components. Thiswill alow FAIN
PBNM to be able to cope with changing network infrastructures or protocols.

automation and distribution of management tasks
One important goa of every management architecture is to automate and distribute tasks as
much as possible. Active networks dlow for the the automation and distribution of dmogt dll
management tasks, e.g. node salf -reconfiguration due to changing network conditions.

delegation
The delegation of management tasks to customers is seen by network operators as an
important property of a management architecture, since it will dramatically reduce their
network management costs. Using active networks, a secure and effective way to delegate
management tasks to customers who will gain more control over their contracted resources
while network operators will save funds.

applications use of management
The idea network and node configuration for each application might be different, and might
change depending on network conditions. Active networks provides the technology to allow
applications to customize their assigned resources making use of the management system, i.e.,
through the use of policies way, they can achieve an optimum usage of the application
assigned resources in different network or node conditions in a secure manner.

customer-specific management
Many reasons can lead a customer to desire the use of their management system to configure,
monitor and control their assigned resources, e.g. where deep knowledge of the possibilities
specific to their needsis available, where existing, high level management applications aready
available for that system etc. Active networks technology allows customers to use their own
management system to configure node and network resources in a secure way.

simplified service deployment
Since all the FAIN nodes support the same Node API, we expect that the same PBNM service
logic may run on the different nodes. In contrast to current approaches, where the service logic
has to be devdoped individualy by each node vendor, this resultsin an improvement on the
service development and deployment process with respect to costs and time to market.

benchmarking
Since PBNM-enabled network devices are expected to be available on the market soon, the
PBNM case study alows benchmarking with existing PBN implementations, in particular with
respect to performance, interoperability and reliability.

2.2.4.3 Challenges in the Management of Active Networks
The main question for the PBANM system to address is:
‘in what respect is PBNM of active nodes different from PBNM of traditional nodes?’

The answer should first deal with the comparison between passive/traditional management of active
and passive nodes irrespective of whether it is policy-based or not.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 13

Element-level adminigtration usudly handles configuration and fault management manually, using
generic remote access capabilities (e.g., telnet in Unix), rather than a specialised protocol athough
some management applications do use SNMP to access and manipulate settings. However,
configuration management (CM) functions are often too complex to handle via SNMP and are thus
accomplished by scripts at the element under the control of the network management station (NMS).

The use of this unstructured and ad-hoc manua approach to traditional €lement management isa
significant barrier to the efficient, secure and robust operation of active networks. As such active
networks need to be managed differently. Consider using SNM P-based management to manage an
active network. Some requirements are envisaged:

when an active eement is loaded into anode, it is necessary to load respective instrumentation and
MIB components and integrate these with the element management software. It is also necessary
to load amilar M1B components into the NM S to enable management application tools to access
the enhanced feature on the active node;

these dynamic changes at e ement management level and the network management level will have
to be synchronized and coordinated with the dynamic changes of the active network;

MIB structures at element level and network level will have to change dynamicaly on atime scale
similar to the time over which MIB variables change. Furthermore, MIB data may have to persist
even if the respective active application has terminated, to facilitate analysis of potentia problems
or recovery of configuration states.

In contrast with traditional network applications, which are entirely separated from management
software, active applications need to integrate monitoring and control capabilities. The traditiona
approach to network software design has been to incorporate function-specific monitoring and control
capabilities with every protocol/network-system. For example, routing software uses the Routing
Information Protocol (RIP) to monitor network topology information, and transport-layer software can
use RSVP to control alocation of resources. Each such application requires its own specialized
instrumentation and access protocol to facilitate monitoring and control functions.

Thus, in contrast with current networks, active networks require an integration of management
mechanisms and application software. Clearly, the management framework offered by SNMPis
unable to handle the management needs of active networks.

2.2.5 Approach taken within FAIN

2.2.5.1 FAIN and the TeleManagement Forum

This section describes the top-down conceptua approach of the management system for FAIN guided
by the ideas and principles of the TdeManagement Forum (TMF). The TMF has not only defined the
TMN-mode on which FAIN has defined its focus. It also has defined a detailed map of all functions
that must be present on each level. The Telecom Operations Map (TOM) describes blocks of
functions that must be implemented by either an automated or a human process. These TOM function
blocks will be used to ensure the completeness of our architecture. In Appendix A amore elaborate
introduction into the TMN isincluded. A smplified representation of the TMN-modd is given below.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 14

TMN Lavers

Business Inventory Sales &
Management Finance

Service -
Management Billing Physical Trouble Value Added
Provisioning ~ Ticket Service

Network g P
Management Open API

Element
Management

Figure 5 — The layers of the TMN-model and some of the functiondities at each level

In the top-down conceptual approach three steps can be identified. The first is to define which TOM-
functiondities are important for us. Initialy, the minimum set of requirements prescribed by TOM will
be taken as the functionalities. The second step isto design a functiona architecture based on these
TOM-functiondities. The third step is the technica implementation of the functional architecture. In
the subsequent chapters these high-level ideas will be elaborated.

Notice that only at the third step a selection of an implementation technology is made. The
implementation can be done using policy-based techniques or by means of active implementation of
traditional management techniques. In practice we expect both implementations, as described in
Section 2.2.3.1 and Section 2.2.4, will be pursued within FAIN depending on availability/maturity of
the technology, and suitability for implementing a particular function.

Asexplained in Section 2.1.1, FAIN focusses on the two lower levels of the TMN-mode!: the Network
Management layer and the Element Manager layer. In this section the functiondities for the network
management layer are described. Also an initia architecture in which these requirements are met will
be presented. The minimal set of functions for the Network Management layer, as prescribed by TOM
are:

network planning and development
Planning of network capacity and capacity migration. Also plans the logical network configuration
and physical sites.

network provisioning
(re-)Configures the network and administrates the logica network (includes setting identifiers for
services). Also tests the network to ensure operational readiness

network inventory management
Installs and administers the physica network. Repairs and does maintenance to the network. Aligns
the inventory data with the actua network.

networ k maintenance and restor ation
Does problem analyses and testing. Maintains network quality and keeps a history of network
problems, tests and maintenance tasks.

network data management
Does collection, correlation and formatting of usage data and events. Gives notifications when the
performance of the network degrades and does traffic control.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 15

2.2.5.2 Active Networks have Impact on the Management Functions

The initial FAIN management architecture should reflect the requirements that the TOM-functions
described above. These requirements can be fulfilled by traditional network management or by active
management. As mentioned earlier in Section 2.1.1it is expected that active management has
advantages over traditional management. The term ‘active’ means that (more) intelligence is
implemented at lower TMF-levels. With this intelligence (management) decisions can be executed
lower in the network, which is more efficient and flexible because fewer layers are involved in the
process. The extra capabilities the active networks offer for management purposes are aggregation or
pre-processing and consciousness. Theimpact of these added capabilities for management purposesis
described in the remainder of this section.

Aggregation — The network elements are able to aggregate network data and events to enriched
management information. Thisinformation is passed to the network management layer instead of the
entire flow of network management data and events. The Network Management layer is then able to
react more efficiently, flexiblye and intelligently using this enriched information. This would mean

that the Active Node elements are able to collect, correlate and format management data and eventsin
a distributed manner.

Consciousness — The network elements are abl e to take conscious management decisions(i.e. based on
network status) at element level. This consciousness of the network means that the Active Node
element is intelligent enough to identify performance degradation, capacity problems and physica
problems and take appropriate action itself. This would mean a network that would react to situations
without the involvement of the Network Management layer at all.

When looking at these two manifestations of activeness in the network it is clear that the traditional
TMF separation between Network Element and Network Management layer is blurred. Some
functiondities traditionally carried out at the network management level now drop to the element
level. The network element level is not the focus of the TOM-model and thus TOM has no functions
or requirement for this level. For every function block of TOM activeness has its effects:

Network planning and development

Network elements could be given performance goals with rules what to do when these are not met.
For example change their routing table. Planning no longer only concerns bandwidth capacity but
also processor power and storage capacity. The active nodes could do part of the logical network
configuration.

Network provisioning

The active nodes could partly configure itself or negoatiate a configuration with its neighbours. It
could also test operational readiness itself.

network inventory management
The inventory management of the actual network could be automatically maintained by the active
nodes.

network maintenance and restoration
An active node which encounters a problem could try different actions/configurations to solve or
circumvent these.

network data management

Active nodes could collect, partly correlate and format usage data and events before sending these
to the Management level. It could aso notify the Network Management layer when performance
degrades below a certain level, or take action itself.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 16

From the above examples, it becomes clear that using active networks technology for management
purposes does change the way management has traditionally been implemented. In all cases, a network
element processes network management data itself and in some cases it doesn’t even consult the
Network Management level before taking action. It is therefore expected that this change resultsin
advantages with respect to scalability and flexibility of the management system.

2.2.6 FAIN Methodology

In order to cover both element and network level management aspects, we initialy adopt the same
architecture for both levels. Our initial architecture is essentially the policy-based networking
framework adopted by the IETF, enabling us to control active nodes and active networks using the
same framework. We elaborate on both thisinitial framework and on the applicability of this
framework at both element and network level in later chapters. Since different functions are required at
each level, we might expect some differences in the capabilities required at the two levels. Thusitis
expected that in further iterations of the management system, the architecture for element level will be
modified with eement-specific functiondities, while the architecture for the network management

layer will be modified with network-specific functiondlities. In other words, the initidly identical
architectures are expected to diverge during future iterations.

Anticipating future research, we pursue architecture with an explicit separation between element and
network levels. Also we study the relations, and in particularly the transformations (or mappings)
between functions/palicies at both levels. Though no comprehensive research will be conducted within
FAIN on the service management layer, we will look at interfacing to the service management layer.

2.3 SYSTEM REQUIREMENTS ON THE FAIN MANAGEMENT ARCHITECTURE

To derive the specific system requirements upon which the management architecture will be
devel oped and subsequently implemented, we consider generic requirements likely to be associated
with the Network Management System (NMS) and the Network Element Management System.

With regard to the NMS, there are severa key aspects, which should be considered during requirement
anadysis. Specifically we consider system testing purposes and functional aspects of the NMS.

2.3.1 Requirements on the NMS for Testing Purposes

Associated Service Level Agreements (SLA) should alow delegation of management functionaity.
This delegation can be specified up to a certain depth level,e.g. the Network Infrastructure Provider
(NIP) (see Déliverable D1 [103]) delegates to the Network Service Provider (NSP) (see Deliverable
D1 [103]), and the NSP can delegate functionality to the Service Provider (SP) as well, but the SP can
not delegate management functionality to the customer.

- The SLA should determine which concrete management functiondity is going to be delegated.

- The SLA should establish a determined level of Quality of Service of bandwidth and
forwarding resources.

- The SLA should be able to determine a certain level of security in the service offered.

- In SLA negotiation the management system (in representation of the NIP) should detail the
price of each of the offered resources.

- The management system should support re-negotiation of a SLA.
- The management system should support inter-domain management.

- The management system has to support policies that provide management functionaity of
general offered services.

- The management system has to support metapolicies, which alow the delegation of this
functiondlity.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 17

- The SLA should be able to determine atomic setting of offered resources.

2.3.2 Functional Requirements On the NMS
These requirements have been classified into the three main areas for network level management
specified in the Telecom Operations Map . Specificaly we consider network provisoning,
maintenance and restoration and data management
2.3.3 Network Provisioning Requirements on the NMS

The NMS must support active policies for network connectivity management.

The NMS must support metapolicies for delegation of computing and forwarding resources
of the management system to a user-specific management system (see 2.4.1.3.2.5).

The NMS must support metapolicies for control of the policy lifecycle.

The management system at the network level should be able to sipport atomic sets of
policies. It should check whether al policies can be enforced and, otherwise, remove them
aal.

The NMS must support metapolicies that alow delegation of management functionality at
the network level.

The management system should be able to check if a user is alowed to use management
functiondity, to delegate it and if so up to which levd.

The NMS must support policies with explicit QoS requirements.
The NMS must select the network resources according to the required QoS

The NMS must receive natifications from the Element Management Systems (EM S)s about
the degree of enforcement of the policies sent to them

The NMS must keep track of al the established connectivity

The NMS must provide facilities for graphica visuaisation of established connectivity
services (optional)

The NMS must support the protocols and network technologies needed to establish offered
services

The NMS must be able to modify aready established connectivity services

The NMS must be able to terminate network connectivity services releasing dl the involved
resources

The NMS must be able to send appropriate request to the EMS to support the modification
or removal of network connectivity services

The NMS must be notified about the addition and/or deletion of network resources

2.3.4 Network Maintenance and Restoration Requirements on the NMS
The NMS must receive and process state reports from the EM Ss

The NMS must inform the appropriate user about current operational status of the network
managed resources and if necessary propagate these reports upwards to client layer through
the appropriated interfaces

The NMS must be able to apply alarm filtering to avoid superfluous information according
to specific user-reconfigurable policies

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 18

Alarm filtering must be applied either in regards to the user and to the management client
layer

The NMS must be able to receive dlarm filtering criteria from the client layer

The NMS must be able to install appropriate filters in the EMSs

The NMS must be able to determine the root cause alarm suppressing al the other
correlated alarms.

The NMS must identify the affected resources in cause of failure at the appropriate
granularity level

The NMS must provide facilities to visuaize and manipulate the existing system alarms
The user must be able to acknowledge and clear dlarms

The NMS must provide a mechanism for synchronisation of alarm information

The NMS must provide a network recovery mechanism in case of failure

If legacy (passive) nodes and active nodes are co-existing, when an active node is down,
the management system should find out the appropriate active node, in order to migrate the
active circumstances.

When an active node is down, the management system should assign another active node
which has sufficient and capable resources. This active node might be chosen based on its
proximity to the failed node.

When an active node is down and an alternate active node could not be found in its
managed domain, the management system might negotiate with other managed domains to
assign an active node for replacement.

After replacement of an active node or partial migration of resources, the management
system should check whether existing SLASs can be maintained.

2.3.5 Network Data Management Requirements on the NMS
The NMS must support policies for monitoring purposes.

The management system should send monitoring reports to a user as a result of a
monitoring policy enforcement by that user.

The NMS must monitor the QoS of the network connectivity services supported.

The NMS must support the setting of filtering for performance reporting

The NMS must support the start and the stop of performance monitoring reports

The NMS must be able to store performance data in performance logs

The NMS must support facilities for performance data visualization and browsing

The NMS must support the setting of performance thresholds to generate performance
notifications

The NMS must be able to receive performance natifications from the EM Ss

2.3.6 Network Provisioning Requirements on EMS

Support of metapolicies alowing delegation of management functionality at the element
leve.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 19

Support policies for the configuration of the Resource Control Framework (see Deliverable
D2 [103]) component of an active node.

Support policies for the configuration of Virtua Environments (see Ddliverable D2 [103])
instaled in an active node (optional).

The element level should be able to provide to the user a pointer to the interface where
user's active code should be installed in an active node in order to take advantage of the
resources already reserved on that code.

The management system should be able to treat requests from the Active Service
Provisioning system asking whether a certain user is dlowed to install code in an active
node.

Support of policies for the alocation of traffic flows to EEs (see Deliverable D2 [X XX]).

The management system should be able to check if a user is dlowed to use management
functiondity, to delegate it and if so up to which levd.

The management system should alow user-specific policies.

The EMS must support metapolicies for the delegation of computing and forwarding
resources of the management system to a user-specific management system.

The EMS must support metapolicies that control the policy lifecycle.

2.3.7 Network Maintenance and Restoration Requirements on EMS
The EMS mugt be able to send state reports to the NMS

The EMS must inform the appropriate user and/or the NMS about current operational
status of the active node managed resources

The EMS must be able to apply darm filtering to avoid superfluous information according
to specific user-reconfigurable policies

Alarm filtering must be applied either in regards to the user and to the NM S
The EMS must be able to receive darm filtering criteriafrom the NMS

The EMS must be able to determine the root cause alam suppressing al the other
correlated alarms.

The EMS must identify the affected resources in cause of falure at the appropriate
granularity level

The EMS must provide facilities to visudize and manipulate the existing active node
adarms

The user must be able to acknowledge and clear darms
The EMS must provide a mechanism for synchronisation of alarm information
The EMS must provide a hode resources recovery mechanismsin case of failure

Repair and replacement should not be done only for every element or node, but for every
resource. For instance, when a certain storage facility is faulty, standby storage should be
assigned. This standby storage could be in the same node or in other node.

Recovery of fault in network element should have some interrelation with Active Service
Provisioning (ASP). In other words, for example, the fault management system should
might send notify alarm notifications that identify missing types of active codes to the ASP
module. These active codes might subsequently be reloaded in alternative active nodes or
into the repaired node.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 20

2.3.7.1.1 Network Data Management Requirements on EMS
The EMS must support policies that provide monitoring functionality.

The management system should send monitoring reports to a user as a result of a
monitoring policy enforcement by that user.

The EMS must support the setting of filtering for performance reporting

The EMS must support the start and the stop of performance monitoring reports
The EMS must be able to store performance data in performance logs

The EMS must support facilities for performance data visualization and browsing

The EMS must support the setting of performance thresholds to generate performance notifications

2.4 R12 - INITIAL FAIN ARCHITECTURE

In this chapter a description of the initid Policy-based Management architecture approach taken in
FAIN is given. The architecture described copes with the management requirements exposed in
chapter 2.3. However, the architecture described is general in the sense that it is management level
independent. Therefore, the concrete issues of the architecture at the management levels covered by
FAIN are described in chapter 2.5. Findly, the proposed implementation and the testing of the
architecture designed is described in chapter 2.6.

The description of the architecture is decomposed in three main blocks:
A high level definition of the architecture and functionality (section 2.4.1)
A detailed description of the functionality and components of the architecture (section 2.4.2),

And a detailed description of the interfaces between the components of the architecture (section
2.4.3).

2.4.1 Policy-Based Architecture Design

This section provides an introductory approach to the Policy-based Management architecture specified
throughout the chapter. This section is further decomposed in four sub-sections. In section 2.4.1.1the
main characteristics of the architecture designed are specified. Section 2.4.1.2 describes how the main
actors that interact with the management architecture are mapped to the FAIN Enterprise model. In
section 2.4.1.3 the architecture is introduced through a static diagram where the main components of
the architecture are depicted, and some dynamic diagrams that describe how the main characteristics
of the architecture detailed in section 2.4.1.1 are supported by the architecture. Finaly, section 2.4.1.4
describes the relation of the FAIN Policy-based management architecture with the IETF policy
framework and other IETF policy standards.

2.4.1.1 Introduction

Active Networks have of a double impact on network management systems. That is, they provide to
the management systems new tools to manage the network, i.e. larger configurability of node
resources, code mobility, etc., while, on the other hand, they are more difficult to manage since new
management requirements appear.

The Network Management System described in this document tries to cope with this environment,
making use of the advantages of active networks.

The proposed PBM system is based on Policy Technology in order to take advantage of the scaability
and interoperability properties of policies. Therefore, the backbone of the architecture is made of a
Policy Decision Point (PDP), Policy Enforcement Point (PEP), a policy conflict check component, and
the local policy database. The local policy database will be the repository of al palicies, currently
enforced or enforceable when the conditions are met in the managed active network.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 21

In order to fulfil the requirements related with active networks stated above other specific components
have been identified. Since different users (or applications on their behdf), can set policies in the
system a credential check component and a meta-policy database component has been introduced in
the system. The policy conflict checking is done inside each PDP. To cope with the sdlf-configuration
requirement the PDP functionality has been extended. The management functionality extensbility is
achieved through the dynamic downloading o new PDP-PEPs to the PBM system. The extended PDP
is decomposed in severa sub-components which will be described in further detail at section 2.4.

2.4.1.2 Mapping of the management system to the FAIN Enterprise model

In this chapter a brief overview of the FAIN Enterprise modd is briefly summarised. The mapping
between management systems and actors, and FAIN business roles is given as well. Findly,
management mechanisms required at the corresponding Reference Points are discussed.

2.4.1.2.1 Overview of the FAIN Business Roles and Reference Points
The FAIN enterprise modd is depicted in the figure below. It contains four groups of business roles:

- service and network users (* Consumer™).

Service and network providers (“Retailer/Service Provider”, “Active Network Service
Provider” and “Network Infrastructure Provider”).

software and hardware component manufacturers (“ Service Component Manufacturer”,
“Active Middleware Manufacturer” and “Hardware Manufacturer”).

software component distribution mechanisms, i.e. a knd of service component “yellow
pages’ (“Broker”).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 22

Croker

Consumer
(access) J RP4h™™
1
Retailer i
1
i ; Service Service
1
: Psr%r\\ll;g:r I Component Component
: RP1 Provider Manufacturer
RP5
mm RP2
Active Network Active
Service Middleware
Provider Manufacturer
RPE
mm RP3
il Hardware
Infll’:arit\::Jdcet:Jre Manufacturer
RP7

|:| Roles in the focus of FAIN

Figure 6 - FAIN Enterprise model

The business roles as understood here are dtrictly involved in the active networking business, i.e. they
reflect the additional activities/properties, which are necessary solely to facilitate active networking.
They, however, share some commonalties (common activities and properties) with their non-active
counterparts (i.e. the providers of non-active services, connectivity providers, etc.). We see these roles
mostly in the light of the TINA business model. The respective differences will be discussed later in
the document.

For adetail description of the various RPs, please refer to the FAIN deliverable D1 [XXX].

2.4.1.2.2 Mapping of NMS Actors with FAIN BM Actors

The Network Management System (NMS) developed within FAIN can be decomposed in two
systems, one at the network level (PBANM), and one at the element level (PBANEM). Both levels
will interact with one another and with other actors, i.e. the users, the active nodes (ANN) and the
Active Service Provisioning system (ASP).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 23

In the figure below we show how all these management related actors are mapped with the FAIN
Enterprise model actors. Both levels of the Network Management System (i.e. PBANEM and
PBANM), the ANN and the ASP (at least the part of it that interacts with the management system) are
owned by the Network Infrastructure Provider actor of the Enterprise modd. Also, the FAIN
Enterprise model actors that might, potentialy, be able to interact with the management system are the
Customer, the Retailer/Service Provider and theActive Network Service Provider. Therefore, they are
mapped with the User management related actor.

) g
§NT—%

Retailer/Service
Provider

PBANM %
Active Network
Service Provider
- >

% Network Infrastructure

Provider

Lo

Mapping between actors: NMS-FAIN EM

Figure 7 - Mapping Between Actors

2.4.1.2.3 Mapping of FAIN Bussiness Model RPs to NMS functions

From the previous section we get two main conclusions relevant to the mapping of NMS to FAIN
Enterprise models RPs:

The Network Infrastructure Provider owns, and is responsible for the PBANM, PBANEM,
ANN and ASP systems.

The Customer, the Retailer/Service Provider and theActive Network Service Provider, are
mapped to single users who are able to interact with the management system.

The first concluson implies that al relations between the PBANM, PBANEM, ANN and ASP
systems, are NIP internal interactions, and therefore are not related with any Reference Point.

We can draw the second conclusion from the fact that the Customer, the Retailer/Service Provider and
theActive Network Service Provider can make use of network management functions only if they have
them delegated by the NIP. Therefore, when they make use of the management functionalities they are
acting as the same actor.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 24

These two conclusions brings us to the fact that the only reference points where network management
mechanisms can be potentially used are the RP3 and RP7. However, the inter-domain RP7 is not
consider in the following discussion, because it is not discussed in details in the FAIN enterprise
modd.

2.4.1.2.3.1 Management Mechanisms Associated With RP3
Below management mechanisms for RP3 are given:

- A ANSP can negotiate a SLA with the NIP.
The ANSP can request a re-negotiation of a SLA.

The management system can report to the user-detailed information about the price of the offered
resources.

The management system can periodicaly report to the user on their assigned resources
consumption and status.

The user can:
Use the management system to configure their assigned resources.
Requests atomic sets of management actions, of which either all or none are done.
Use the management system to monitor and control a service.
Use the management system to del egate management mechanisms to one of their customers.

Use the management system to request the ingtallation of active code in their assigned
resources.

Use the management system to request the ability of installing active code by themselves at
any time on its assigned resources.

Use the management system to request the ability of managing their assigned resources with
their own management system.

Request to the management system that their assigned resources are isolated from others
assigned resources.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 25

2.4.1.3 Policy-based Management Architecture Overview

2.4.1.3.1 Static Diagram

In the figure below the Policy-based management architecture approach taken in the project is depicted
and the main components of the proposed architecture are detailed.

User
Int8
mm N1 FAIN Policy-based
Management System
Credentiadl | /| e NN .
Cheg :
Security | ~NC—7—+—8 N\ T :
I
F%Mgmt.PDP :

Int2 dn :
T —— [T Sa—— I
1 - . () I
i Monitoring System Pr PDP
: — R i = QoSPDP
! Monitoring N
: gl i) 1 || [orfiict | [Conflict
1 1 . -
: | is Resolution
1
5
! Int9
i M onitoring
! Enforcement
: Point
e e

Figure 8 - PBM Architecture

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 26

2.4.1.3.2 Network Management System Scenarios

In this chapter we aim to provide a set of representative scenarios in order to show, and better
understand, the behaviour of the presented architecture. The chosen scenarios, in our opinion,
represent the functionality by which the architecture fulfils the basic requirements given previoudy set
to the architecture. These scenarios are:

Network Provisioning Scenario
- Signdling Scenario

Reconfiguration Due to Network Status Scenario
- Application Provisoning Scenario

User-specific policies Scenario
- Alarm Event Scenario

We have to note that although in the sequence diagrams of the scenarios, the Policy Conflict Check is
shown as a different box of the PDP, this is made just to remark the policy conflict checking
functionality as a key functiondity in Policy-based Management. In the architecture, the policy
conflict checking components are within each PDP.

2.4.1.3.2.1 Network Provisioning Scenario

This scenario shows the normal behaviour of the policy based management system, where a set of
provisoning policies are received to be processed.

Pre-condition: The correct policy alowing the principal to set policies should be previoudy ingtalled.
The interaction between components in this scenario will be:

1- A st of policies are received in the Network Management System (i.e. in the
correspondent PDP) aong with a credential of the principa that sends them.

2.- The security checks component receives the policies and checks if the actor with that
credential is allowed to set policies, using the metapolicies database.

2.1.- If the credentia its incorrect then an error message is sent.

2.2.- If the credentia is correct the policies are passed to the policy conflict check sub-
component.

3.- The palicy conflict check sub-component determines the consistency of the incoming
policy with policies already set by that PDP. Possible conflicts are tried to be solve at this step aso.
Metapolicies can also be used to ease this process.

3.1.- If an unresolvable conflict is found an error message is sent back to the principal
who sent the policy and the new policy is rejected.

3.2.- In any other case the process continues to the following step.

4.- The policy conflict check passes the policies to the PDP that looks for the PEP that will be
in charge of each palicy.

4.1.- If no appropriate PEP is found, then the PEP manager might ask to the Active
Service Provisioning (ASP) system to download the PEP.

4.1.1.- If the PEP could not be downloaded then an error message is sent back
to the network manager.

4.1.2.- In any other case the process goes ahead.

4.2.- The PDP should then ingtal the downloaded PEP within the policy based
management architecture.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 27

5.- The PDP will then register in the monitoring system the events it wants to receive in order
to be able to decide when those policies should be applied, and stores the policies in the database.

6.- The monitoring system sends, when appropriate, the registered events to the PDP.
7.- The PDP processes the events and decides when the policy should be applied.

8.- The PDP then retrieves the policies from the database and passes them to the correspondent
PEP.

9.- Upon the reception of the policies the PEP redlises the appropriate actions.
10.- The PEP informs the PDP of the result of the enforcement actions.

11.- Findly, the PDP informs the principal and the network level (only the element leve,
obviously) of any configuration change in the resources of the node due to the successful enforcement

of the policy.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 28

2.4.1.3.2.1.1 Sequence Diagram — Main Branch: PEP Previously Installed

PDP

Set_Poligies (credential, poligies...)
Check_Credential
—check (policies...)

Check poI|C|es
0I|C|eng icies...)

Elemg¢nt_Status_Notificatjon

egister_Event(eventld|

EPId, policies...)

mo

Jook for PEP

e)

Store_policies (P
Event(Eventld, Event Infp)

Decides

p—

0

rtrieve_Policies (PHPId, conditions,...)

L

Ifors resources

1

Enfo]

ce_policies (actions..

N

Elem

nt_Status_Notificat|

on

licy_Enforcement

LH\

1

Figure 9 - Network Provisioning Scenario Sequence Diagram — Main branch

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 29

2.4.1.3.2.1.2 Sequence Diagram — Sub-branch: PEP Not Installed

Check Check System Database

Set_PoI|cies (credential, plolicies...)
[Check_Credentigl

ict_ check(pplicies...)

Check Eolicies
olicies(pglicies...)

ook for PEP

Download_PEP[PEP_type)
LogK for PEP type

Send PEP Code| kk—1

stall ...

P—

Register_Eyent(Eventld)

Store_[policies(PEPId, policies...)

monifors resources
P=N—
Event(Eventld, Eventinfo)
Decides

Retrieve_Policies(PEPId, gonditions,...)

Enforce_policies (actions...)

Pplicy_Enforcem..
o 1]
Elenfent_Status_Notiflcation Element_Stafus_Notification
i :
Figure 10 - Network Provisioning Scenario Sequence Diagram — Sub-branch
May 2001

Copyright & 2000/2001 FAIN Consortium

FAIN Dedliverable D3

Page 30

2.4.1.3.2.1.3 Activity Diagram

No

Download PEP

l Donwload ok?

Waiting for

policies
V

Reception of
policies

Credential OK?

Any conflict?

<>

{

Register Events

)

{

SendEvent

Retrieve
policies

Enforce Policies

(

Notify Enforcement Result

>

Figure 11 - Network Provisioning Scenario Activity Diagram

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 31

2.4.1.3.2.2 Signalling Scenario®

The goal of this scenario isto show how the node can reserve resources, say bandwidth, requested by a
signaling packet (e.g. an RSV P packet).

1.- The sgndling-reservation capable policy target sends the query up to the appropriate PEP
aong with a credential of the actor who wants to reserve the resources”.

2.- The PEP asks the PDP for a decision.

3.- The PDP will check if there is any policy in the database alowing that customer to reserve
node resources, and if so how many.

3.1.- If the customer is not alowed to reserve node resources an error message is sent
back to the PEP that sent the query.

4.- The PDP will then ask the monitoring system for the resources aready assigned to that
customer.

4.1.- If the requested resources plus the resources aready assigned are higher than the
maximum resources allowed an error message is sent back to the PEP.

5.- The PDP tells the PEP to redlise the corresponding reservation actions.

6.- Finally, the PDP informs the network level of the actions taken in the resources of the node
due to the successful processing of the request.

! This scenario is only applicable to the element level instance of the architecture.

2 We may consider also the possibility of having one PEP that receives unknown queries and that asks the PEP manager for a PEP that will
be able to process them.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 32

2.4.1.3.2.2.1 Sequence Diagram

Policy Target PEP PDP Monitoring Network Level
System

Requeslt(credential,param?ters....
1 1

Is_Request_|a Iowed(credential,parameters...
1

assighgd_resources(credential)

I

check_[rgservation_rights

pem—

Request Allowed

'

U

plicy_Enforcem..|

]

1

|
Elemgnt_Status_Notificht...

1

Element_Status_Notificat...

____________1

Figure 12 - Signdling Scenario Sequence Diagram

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 33

2.4.1.3.2.2.2 Activity Diagram

Waiting for

Request
Request
Receive
Assigned Resources
Retrieval
no

Credential allowed
Resources

iv> Assigned + Requested <=
Allowed?

es

Process
Request

Notify Request

Result

Figure 13 - Signalling Scenario Activity Diagram

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 34

2.4.1.3.2.3 Reconfiguration Due to Network Status
This scenario shows how the configuration of the active network adapts to changing network status.

Pre-condition: Sets of policies with conditions related to the network datus should have been
previoudy instaled in the policy database.

1.- The nonitoring system detects a change in one, or more, of the properties that reflects
network status. It then checks if any PDP has registered events related with the status of that property.

1.1.- If thereis no event related to that property, it does nothing.
1.2.- In any other case, it sends an event to the PDP that has registered it.

2.- The PDP will then fetch the policy or policies that satisfy the new network conditions from
the policy database and will send these policies to the appropriate PEPs.

3.- The PEPs will realise the appropriate actions on the policy targets.

3.- Findly, the PDP informs the network level (only if it is a the element level) of any
configuration change in the resources of the node due to the successful enforcement of the palicy.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 35

2.4.1.3.2.3.1 Sequence Diagram

Monitoring PDP Local Policy
System Database

Policy Target

Monitors resources

Eveni(Eventld, Eventlrifo..)

Decides

pE—

Retrieve| Holicies(PEPId, co

ditions...

I

Enforces_Po

]

icy(Actio...

Element_Statu

s_Notificat...

T

vlicy_Enforcem...

1

Figure 14 - Reconfiguration due to Network Status Sequence Diagram

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 36

2.4.1.3.2.3.2 Activity Diagram

Monitor Resources

No g@ RegisteredEvent
?

Yes

< SendEvent >
Retrieve
policies

Enforce

Policies
Notify Enforcement
Result

Figure 15 - Reconfiguration due to Network Status Activity Diagram

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 37

2.4.1.3.2.4 Application Provisioning Scenario

In this scenario we show how a customer can set their own specific policies whenever they have the
authority to do itso.

1.- The application sends the policies to the policy-based management system along with a
credential of the actor who wants to reserve the resources.

2.- The credentia check sub-component checks if the actor with that credential is alowed to
reserve node resources, and if so how many, using the policies database.

2.1.- If the credentia is incorrect then an error message is sent back the application.

22.- If the credentid is correct the policies dong with the maximum allowed
resources to be reserved are passed to the policy conflict check

3.- The policy conflict check component checks the consistency of the policies with the
policies dready set by this PDP, if any conflict isfound it tries to solveit.

3.1.- If aconflict is found an error message is sent back to the application.

3.2.- In any other case, the policy conflict check passes the policies along with the
maximum resources to the PDP.

4.- The PDP looks for the PEPs that will be in charge of the policies.

4.1.- If any of the PEPs is not found, then the PEP manager might ask to the ASP to
download the PEPs.

4.1.1.- If the PEP could not be download then an error message is sent back to
the application.

4.1.2.- In any other case, go to step 4.2

4.2.- The PDP should then ingtall the PEP properly within the network element
management architecture.

5.- The PDP then registers in the monitoring system the events to decide when those policies
should be enforced, and stores the policies in the database.

6.- The monitoring service sends, when appropriate, the registered events to the PDP.

7.- The PDP will then ask the monitoring system the resources aready reserved to that
customer.

7.1.- If the resources aready reserved plus the resources requested in the policies
increases the maximum resources allowed an error message is sent back to the customer.

7.2.- In any other case the PDP retrieves the policies from the database and passes
them to the appropriate PEPs.

8.- The PEP performs the correspondingent reservation actions.

9.- Finally, the PDP informs of any configuration change in the resources of the node due to
the successful enforcement of the policy.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 38

2.4.1.3.2.4.1 Sequence Diagram — Main branch: PEP previously installed

User Credential Policy Conflict PDP Monitoring Local Policy PEP Policy Target
Check Check System Database

Set_Policies (credential, policies...)
Check_Crederttial

Ict_checkgpalicies...)
Check policies

Stall_Policies(policies...)
LLook for PEP
= 1

ister_ Event(Evelntld)

Store_policies (AEPId, policies...)

1l

monifors resources

—

Event(Eventld, Eventipfo...)

Decides

—

assigned _resources(redentia...

check [reservation_rights

p—]

Retrieve_ Policies(REPId, conditiong,...)

Enfofce_policies (actipns...)

. O

plicy_Enforcem. |

Elenfent_Status_Notiffcation T Elempnt_Status_Notification

Figure 16 - Application Provisioning Scenario Sequence Diagram — Main branch

Copyright & 2000/2001 FAIN Consortium May 2001

Page 39

FAIN Dedliverable D3

2.4.1.3.2.4.2 Sequence Diagram — Sub-branch: PEP Not Installed

Check Check System Database

Check Credental

X ict jcies...) -
Check policies
__Policies [policies...)
for PEP
Doymload_PEP(PEP_Jtype)

LogK for PEP t...

Send PEP Code| f«—

stall ...

pz—]

Register_Eyent(Eventld

ies...)

Store_policies(PEPId, p

mopifors resources

P—

}' Event(Eventld,
assigned_resolirces(credential

check_fdservation_rights(|
1

Retrieve_Policies(PEPId, corditions,...)

Enforce_policies(actions...)
Pplicy_Enforcem...

L]

Element_Statys_Notification

Element_Status_Notifi¢ation
LH\ T

Figure 17 - Application Provisioning Scenario Sequence Diagram — Sub-branch

May 2001

Copyright & 2000/2001 FAIN Consortium

FAIN Dedliverable D3

Page 40

2.4.1.3.2.4.3 Activity Diagram

Waiting for
policies
vV

Reception of
policies

Credential
check

Send Error Back to
Customer

Conflict check

Any conflict?

No

Find PEP

Download PEP

Monitoring
Resources

RegsteredEvenf’

SendEvent

Assigned Resources
Retrieval

Credential allowed
Resources
Assigned + Requested <=
Allowed?

Yes

Retrieve
policies

Enforce
Policies

Notify Enforcement
Result

Figure 18 - Application Provisioning Scenario Activity Diagram

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 41

2.4.1.3.2.5 User-specific policies provisioning

The scenario shows how a user can use their own specific policies (and therefore their own specific
PDP and PEPs) in order to manage their resources

Pre-condition: The appropriate meta-policies dlowing the user to use their own specific policies
should have been previoudly introduced in the Network Management System.

1.- The User introduces in the Policy-based Management system a policy, aong with a
credential, requesting the ingtalation of their own management system to manage their resources.

2.- The credential check sub-component checks if the user with that credentid is alowed to
use their own management system, and if so which management functionality can they access, using
the policies database.

2.1.- If the credential isincorrect then an error message is sent back to the application.

2.2.- If the credentia is correct the policy aong with the management functionality
they are alowed to access are passed to the policy conflict check

3.- The policy conflict check component checks the consistency of the policy with the policies
aready set by this PDP, if any conflict is found it tries to solveit.

3.1.- If an unsolvable conflict is found an error message is sent back to the application.

3.2.- In any other case, the policy conflict check passes the policies aong with the
maximum resources to the PDP.

4.- The PDP receives the policy and the management functionality allocated to that user, and
passes this information to the appropriate PEPS.

5.- The PEPs will then enforce the corresponding actions in order to ensure that the user-
owned management system will only be able to access their alowed management functionality.

6.- The PDP will then request to the ASP the downloading of the User’s management system.

7.- Once the code is downloaded, the PDP will inform the user of the successful enforcement
of its policy.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 42
2.4.1.3.2.5.1 Sequence Diagram
Check Check System Database

Set_Pollcies (credential, pplicies...)
Check_Credentfial

nflict chec

cies...) -
Check policies

._Policieg(policies...)

Store_policies (PEPId, pdlicies...)

Enforce_poligies (actions...) U

3Iicy_EnforcemeE
Element_Statpis_Notification

Download_Cpgle(Codeld, Credgntial, Pointer,...)

)
=

Lppk_for_Code

—

Send Code

Elenpent_Status_Notification

Figure 19 - User-Specific Policies Provisioning Scenario Sequence Diagram

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 43

2.4.1.3.2.5.2 Activity Diagram

Waiting for

policies

Reception of
policies

Credential OK?

Yes

Conflict check

Any conflict?
No

: Store Policies :

< Enforce Policies >
: DownloadCode

< Notify Enforcement Result \

Figure 20 - User-Specific Policies Provisoning Scenario

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 44

2.4.1.3.2.6 Alarm Report Scenario

This scenario shows how the policy based active network management system described here can cope
with one of the possible management requirements related to fault management: namelyalarm reports.

Pre-condition: The appropriate darm report policies have been previoudy ingtaled following the
normal provisioning mechanisnt. This implies, of course, that the appropriate PEP that treats these
policiesis aso ingaled.

1.- An darm stuation is detected in one of the policy targets which results in the policy target
sending the correspondingent alarm report to the monitoring system’.

2.- The monitoring system then checks if any PDP has registered an event related with this
aarm.

3.- If so, the monitoring system sends an event to the PDP.

4.- The PDP upon the reception of this event decides whether any policy should be applied.
5.- If so, it retrieves the policy from the database and passes it to the correspondent PEP.

6.- Finally, the PEP will construct and send the aarm report with the appropriate information.

® The syntax of these policies should be something like: if <conditions> then <alarm report>

“ The policy target can also reflect this alarm by changing the value of an attribute. In this case, the monitoring service component will detect
the alarm situation polling the value of the attribute.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 45

2.4.1.3.2.6.1 Sequence Diagram

Policy Target Monitor PDP PEP Local Policy User
System Database

Alarfi'n_notification(alarfmId)

morjitjors resources

Evie t;vaentld, Eventlinfo)

Decides
P—

Rejtrieve_policies(PEPiId, met_conditionsj..)

gl

Enffarce_policies(actions)

dess_action()
AMarm_Notificatio ZI

“Alarm_Notification

Figure 21 - Alarm Report Scenario Sequence Diagram

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 46

2.4.1.3.2.6.2 Activity Diagram

¢

Monitor R

esources

v

<Alarm D

etecti0n>

RegisteredEvent

J/Yes

< Send

Event >

Ala
Proce

ieve

: Retr

policies

r
ssing

0

i Send Alarm N
Notification /

Figure 22 - Alarm Report Scenario Activity Diagram

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 47

2.4.1.4 Relation with the IETF Framework

Palicy S pecifications

ol

Repositary
Artess
Protocal
[e.q., LDAP)

[s |

Folicy Managerment Taol

Aternate Policy
Communication Path

Folicy

1

|

|

|

|

: Repository
|

7
—
I
PDP
Protocal for affedting
Palicy Targetz (eg.,
COPS, SHNMP
Telret CLID
PEP

Figure 23 - IETF Policy Management Framework

With reference to Figure 23 above, the main components and modules in the framework are defined
and the IETF proposa is briefly described:

Policy Rules: Serve as a point of interoperability between entities participating in any policy system
within the framework. Policy rules are defined in a standardised information model by the IETF.

Policy Management Tool: Provides a user interface where the administrator can author or edit
policies.

Policy Repository: Used to support reusability of data across managed objects; stored information
aids congistency of information throughout the managed environment.

Policy Decision Point: A logica entity that makes policy decisions for itself or for other network
elements that request such decisions.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 48

Policy Enforcement Point: The point where the policy decisions are actualy enforced. Thisisaso a
logicad component that carries out action indicated by Policy Rules, hence implementing the
functionality and behaviour specified in the Policy Rule. The Policy Enforcement Point is the device
itself if the devide is policy-aware. Otherwise, the PEP is the entity in charge of receiving the policy
decision and enforcing it in the device using commands understandable by that device.

Both the PDP and the PEP may be logically or physically the same. The choice is an implementation
issue. There may be more than one PDP per PEP to enable continued operation in a failure mode, but
only one at atimeisto bethe‘live PDP.

At first glance (Figure 8), in comparison with the FAIN architecture, the most notable discrepancy is
that the IETF does not explicitly define a security check component. The Policy Repository in IETF is
analogous to the Policy Databases in FAIN, accessible at Int9. The PDP used in the FAIN architecture
has basically the same functionality as that defined by the IETF. However, it has been extended to deal
with some Active Networks specific issues, as application specific policies, reconfiguration due to
network status, etc. Again, PEP functionadlity is basically that defined in the IETF framework always
taking in count active networks specific issues. As foreseen in the IETF, the PEP interfaces with the
managed resources at Int10, where the PBNM workgroup collaborates with the RCF workgroup. The
PEP can be seen as the module that makes the managed devices policy-aware when they aren't.

More importantly, the IETF framework describes a more straightforward policy insertion process on
the managed devices, whereas in FAIN, if a particular PEP is not found, the PDP first has to get the
relevant PEP from the Active Service Provisioning database to be downloaded within the management
architecture. With this in place, the policy from the local DB is downloaded and the PEP realises the
policy-defined actions.

As to the decision of ‘when’ a policy needsto be realised, the FAIN PBM architecture also proposes a
monitoring system to report registered events to the PDP in order to ease the decision making task.
The IETF framework does not explicitly describe this functionality.

There are, as well, two main importants approaches of FAIN to Policy-based management that can not
be seen when comparing with Figure 8, the two-tier policy based approach, and the dynamic extension
of the management functionality capability of the architecture. Both issues have been described in
detail when introducing the architecture. The two-tier policy-based architecture tries to solve
scalability issues of the IETF approach that only considers one level (it was though to be usedin
LANSs). The god of the dynamic extension of the management functionality capability of the
architecture is to face the Active Networks inherent requirement to the management system: adapting
the management functionality to the managed resources that in Active Networks are inherently
dynamic.

The IETF framework serves as a generic guideline for policy management and admission control. It
does not specifically address in its design, management issues pertaining to active networks. As such
discrepancies in terms of granularity of components within the architecture arises.

Policy Rules: Serve as a point of interoperability between entities participating in any policy system
within the framework. Policy rules are defined in a standardised information model by the IETF.
Policy Management Tool: Provides a user interface where the administrator can author or edit
policies.

Policy Repository: Used to support reusability of data across managed objects; stored information
aids consistency of information throughout the managed environment.

Policy Consumer: Thisis alogica module that parses policy information, and trandates Policy Rules
into useable form by Policy Targets.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 49

Policy Target: This is aso a logica component that carries out action indicated by Policy Rules,
hence implementing the functionality and behaviour specified in the Policy Rule. It is a specific aspect
of a device or logicd component. For example, E.g., a router has might have multiple interfaces, and
each interface has multiple capabilities, hence if a particular router has 4 interfaces, and each interface
has 4 manageabl e features, the router has 16 Policy Targets

Both the Policy Target and the Policy ConsumerPDP and the PEP may be logically or physically the
same. The choice is an implementation issue. There may be more than one Policy Consumers per
Policy Target to enable continued operation in a failure mode, but only one at atime is to be the ‘live
Policy Consumer.

Policy TargetsPolicy TargetsFor each of the Policy Targets, a Policy Consumer is notified by thethe
Policy Target

At first glance (Figure 8), in comparison with the FAIN architecture, the most notable discrepancy is
that the IETF does not explicitly define a security check component (whether it be credentid check or
conflict check). The Policy Repository in IETF is analogous to the Policy Databases in FAIN,
accessible a Int9. The Policy Consumer in IETF is closaly in-line with the PDP described in FAIN. In
fact, FAIN goes a step further by defining a FEP, which is in charge of each policy. The PEP
interfaces with the Policy Target at Int10, where the PBNM workgroup collaborates with the RCF
workgroup. The PEP can be seen as the module that makes Policy targets policy-aware when they
aren't. The definition of the Policy Target by IETF isin-line with that of FAIN.

More importantly, the IETF framework describes a more straightforward policy insertion process on
the Policy Target, whereas in FAIN, if a particular PEP is not found, the PDP first has to get the
relevant PEP from the Active Service Provisioning database to be downloaded within the management
architecture. With this in place, the policy from the local DB is downloaded and the PEP redlises the
policy-defined actions.

As to the decision of ‘when’ a policy needs to be realised, the FAIN PBM architecture also proposes a
monitoring system to report registered events to the PDP in order to ease the decision making task.
The IETF framework does not explicitly describe this functionality.

There are, as well, two main importants approaches of FAIN to Policy-based management that can not
be seen when comparing with Figure 8, the two-tier policy based approach, and the dynamic extension
of the management functiondity capability of the architecture. Both issues have been described in
detail when introducing the architecture. The two-tier policy-based architecture tries to solve
scalability issues of the IETF approach that only considers one level (it was though to be used in
LANSs). The god of the dynamic extenson of the management functionality capability of the
architecture is to face the Active Networks inherent requirement to the management system: adapting
the management functionality to the managed resources that in Active Networks are inherently
dynamic.

The IETF framework serves as a generic guideline for policy management and admission control. It
does not specifically address in its design, management issues pertaining to active networks. As such
discrepancies in terms of granularity of components within the architecture arises.

2.4.2 Specification of the Components of the System

t In this section three main areas of the Policy-based Management approach are discussed. These are, a
detailed description of the FCAPS functionaity supported by the architecture (see section 2.4.2.1).
The focus in FAIN isin configuration and fault management, therefore these two sub-sections will be
more detailed. The functional description is followed by an in depth description of the man
architecture components in section 2.4.2.2. Findly, in section 2.4.2.3 the policy representation
approach taken in FAIN is described. This section contains both the FAIN Information Mode
(partitioned in several domains of interest) which is based on the PCIM and PCIM extensions
proposals([17] and [30] respectively) from the IETF; and the mapping of this proposed Information
Modd to XML and XML-Schema and [33].

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 50

2.4.2.1 Functional Capabilities of the System

2.4.2.1.1 Configuration Management

The configuration management functionality implemented in the PBM system will be basically, that
offered by the PDPs and PEPs instantiated in the system. However,theresources offered by the policy
targets limit the potential management functionality. Idedlly, either the network operator or the users
could manage all the resources.

The configuration management functionality could be carried out in three different ways. provisioning,
sgndling or sdf-adaptation. In the provisioning scenario either the network operator or the users send
policies that should be enforced in the network to configure their resources. In the signalling scenario,
a signaling protocol enabled policy target receives a reservation request (e.g. an RSV P packet) and
passes this request to the element manager (this scenario is element level specific). Finally, in the saf-
adaptation scenario it is the same PBM system that reconfigures the resources after detecting a change
in the network status.

The management system designed should be able to configure the resources of the managed network.
These resources fall into two categories: communication and computational resources.

The communication resources are the bandwidth of links and the buffers’queues which store the
packets while they are being processed and forwarded in the nodes. Using the PBM approach we want
to assure that certain flows get the recessary qudity of service, by alocating sufficient bandwidth and
using priorities for the queues. This aso means that the management system must be able to identify
different flows based on certain fields of the packet header (source/destination 1P addresses, protocol,
source/destination ports).

The computationa resources of the node are the processing power (CPU cycles), the memory and the
disk storage of the Active Network Nodes deployed in the network. An active node may have multiple
Execution Environments. These EEs are competing for the resources of the node and therefore the
administrator must setup the corresponding policies to partition the computationa resources of the
node as needed. There is aso a need to assign packet flows to EES in concrete ANNs. The
management system is aso responsible for the creation, deletion and modification of EEs whithin
ANNSs deployed in the network. When the creation of a new EE is requested in a concrete ANN, the
PBM system desgined should be designed to check existing policies to see if the user that made the
request has sufficient privileges and if there are sufficient resources in that node for that EE. There
should also be priorities for different EES, to ensure that the most critical EEs dways have enough
resources to execute. These priorities also depend on Service Level Agreements made between the
Network Infrastructure Provider and the Users.

In order to configure the devices, the Policy-based system must have an exact knowledge of the
capabilities - and possbly the limitations - of the managed devices. This becomes more important in
an active networking environment, where new services or execution environments may be
dynamicaly ingtaled in the network. New functiondity and capabilities may be added o the active
network, these changes have to be reflected in the management system.

2.4.2.1.1.1 self adaptationProvisioning Scenario

In the provisioning scenario, the User defines policies and sends them to the PBM System. The
Security Checks component first examines if the policies have been defined by an authorized user and
aso checks the syntax and any possible conflicts with other policies.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 51

The PDP gets the policies, after they have been validated by the Security Checks component. Before
registering the policy conditions and downloading the necessary actions to the PEPs, the PDP should
check if the policy targets of the policy have the necessary functionality to support its actions and
conditions. This means that the PDP should maintain information about the capahilities of the policy
targets. If apolicy target does not have the capabilities to enforce a given policy, then an error message
should be produced and the policy target should be enhanced. If the policy target can support the
policy, then the PDP should aso check if the existing PEPs have the required functiondity. If not, a
new PEP should be installed on the node.

The necessary information model is defined by the IETF, dthough it may require extensions to alow
the configuration of AN-specific resources, like resource reservation for EEs, scheduling agorithms,
assign priorities to certain EES etc. The resources which goinghave to be managedable also depend on
the FAIN Resource Control Framework (see Deliverable D2 [104], which should provide an interface
to manage and configure AN resources.

2.4.2.1.1.2 Signalling Scenario

At the element level, resources can be configured using a signalling protocol. The signaling requests
cannot be directly resolved by the PEP, because this component does not have the capability to make
decisions on its own. So when such arequest is encountered by a PEP, it is passed to the PDP, along
with related information regarding the state of the PEP. The PDP then checks if there exist policies
which can affect this request and sends the final decision back to the PEP.

2.4.2.1.1.3 Self-Adaptation Scenario

In the provisoning scenario, the administrator sets some initia configuration policies, or creates new
policies after monitoring the network. The new policy is immediately downloaded to the PBM system
and enforced, if needed. In the self adaptation scenario, the management system must be able to
automatically set new policies, depending on the status of the managed resources, without requiring
the manual intervention of the administrator.

The PBM system should be able to respond to certain events, or changes in the status of the nodes or
the network. This can be accomplished by setting up the appropriate policies to define the response of
the PBM system in such situations. Such policies however are distinct from other system policies,
because when their conditions are true, they don’'t lead to the execution of commands by the policy
targets, but to the deployment of new policies. This can be done by having an association between
policies. However, this requires the modification of the policy core information modd. Additionaly,
we can take advantage of the active network technology and request the dynamic injection of code,
which will reconfigure the node to adapt to the new Situation.

The format of tese policies can be smilar to that of the norma policies, however their conditions
will be the status of the managed resources, or a particular event. The corresponding actions of these
policies will include the creation, withdrawa or modification of another policy, or the ingtalation of
an active code module.

To evauate the conditions of these palicies, information (events) are required from the monitoring
system. When the conditions are fulfilled, the PBM system must retrieve the corresponding policy
from the database and execute its actions. This will result in the deployment of a new policy to the
policy targets to deal with the changesin the status of the devices or the network.

2.4.2.1.1.4 Information model

A framework for the policy information model has been defined by the IETF. There aso exist
extensions to this protocol, mainly to support QoS services (DiffServ, IntServ). For usage in the FAIN
Policy-based Management architecture, the information model should be extended to support active
network specific capabilities such as computational resources and execution environments.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 52

More extensve modifications to the Common Information Modd will be needed to support the
policies needed for the sdlf-adaptation scenario. A new mechanism must be defined to dlow the
associ ation between policies, so that one policy can control the deployment of another.

2.4.2.1.2 Fault Management

In a first classfication, we distinguish two main fault types that should be considered when defining
the management architecture:

- Criticd resource faults: which limit the node or network operability and lead to to a network
collapse and therefore have a severe impact on network behaviour. This kind of faults endangers
the local fault management itsalf.

- Non-critical resource faults: which do rot imply a serious damage in node or network working, so
that the loca management system is able to proceed with the control functions and autonomoudy
recover from the failure. For example, this type of faults could lead to a performance degradation.
Severd policy types could be defined in such a case to give priority to certain activities, normally
those ones that are essentia to avoid network a collapse.

In both cases, it is necessary to implement the appropriate mechanisms for fault notification and loca
decision dissemination. In this way it is possible to modify the globa policies that could be affected as
a conseguence of the local node anomalous behaviour.

Active networks aso provide a means to enhance critical resource fault management since tey
provide the intelligence to foresee the predictable faults and take rapid decisions as required. It
possibleeven to dynamically and autonomously modify the policies to reassign resources to promote a
‘smooth’ trangtion. Traditional network management imposes inherent delays that prevent this kind of
procedures.

2.4.2.1.2.1 General fault management architecture

To tackle with the fault management issue in active networks we should consider four essential
aspects. Firstly, the mechanisms that alow detecting the gopearance of a fault in an active node or
network should be established. Once detected, the second mission of the system is to notify such
situation to the points in charge of its handling. Those points will include functions specialized in the
fault correction which isthe last task assigned to the fault management system.

The fault detection consists of two basic activities: the detection of events that warn about the rise of
an abnormal condition and the correlation of these events to find out the cause, determining whether it
might be considered as a fault. The distinction between the events that signal the symptoms of a
problem and the root cause is suitable for the active networks case, since the active network itself has
enough processing capability to identify the fault by noticing the symptoms. The event detection could
be achieved following the polling model. For example, threshold events could be detected by checking
the vaue of the relevant variables stored in the router MIB. Or the push model that would impose
certain requirements on the policy target components. These components should be able to inject
events asynchronoudly in the event detection layer.

The fault notification must be realized exclusvely on the components in charge of resolving it,
avoiding the neccesity of including filters in the managing components. A subscription model, smilar
to the one used in the CORBA event channel could be used. Those eements interested in the
management of a fault will register themselves in the chamnel, so that they will be notified when its
presence is detected.

In this way, severa entities in charge of different fault relating tasks —such as starting corrective
actions, storing the information associated with the fault, propagating the fault notification to other
network nodes, etc- can coexist.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 53

The local automatization of the fault management is one of the interesting aspects that arise from the
joint use of a PBM fault management system with the active node capacities. The autonomous
correction d a fault implies the specification of policies that point out the actions, which should be
taken in each Stuation.

When the system is unable to re-establish a proper working of the node, it should disseminate the
appearance of the error and the fault correction paolicies that have been applied.

Fault Correction

f

< Channel >
f

Fault Detection

event event | ... | event
source source source

Figure 24 - Locd fault management system blocks

Following, the distribution of the respongbilities between the different PBM architecture components
will be analyised.

The event sources will correspond to what the IETF refers to as *devices', understood in awide sense
as manageable hardware or software components. In the architecture we will follow the directive of
isolating the fault management logic from the device specific characteristics.

At the dement level ,the managed router may offer us a MIB with vauable information, useful for the
fault detection process. If the management elements incorporated in the NodeOS access to the MIB
variables, they could become aso event sources for the PBNM system. Likewisg, it is necessary to
know the APIs that the NodeOS offers for accessing to the self-diagnostic procedures available within
the managed device.

The PEPs, responsible for the fault management policy enforcement, will take care of monitoring the
specific events generated by its corresponding policy target, mapping them to events understandable
by the system. Since the PEP has no globa knowledge of the loca events, they are not able to detect a
fault, unless there exists a one-to-one relationship between an event and a fault.

The PDP will contain the fault treatment logic, being capable of taking corrective actions, modifying
the active policies in different PEPs associated to the policy targets affected by the fauilt.

An event channel will be added to the local system. The PDPs interested in taking decisions regarding
a concrete fault would subscribe to the channel to be notified of the fault rise. Several PDPs could be
forced to modify the applied policies, which is the main reason to add the channd. The possibility of
using a composite event channel as described in [50] will be evaluated.

In any case, the PDP will have to diagnose the fault. To help in this process an event database has been
added to the system. This database will store the event history and could even be a means to obtain a
basic event correlation adequate for demonstration purposes.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 54

ManagementVE
P —— PDP
———
event DB
< Composite event channel >
PEP
Monitoring
pal
NodeOS /‘““'“"“"“'“““'“".
A Device' !
hardware SNMP —M B H
monitors Agent | !

Figure 25 - Local fault management architecture

Another issue that has a deep influence on fault management is the definition of the fault management
policies. The policies that seem to be more suitable are described in [51] as policy-policy target
associations that contain new conditional associations with other policies. That is to say that the policy
would inform of the conditions under which the new policies would be ingtaled. As it is pointed out in
[6], this would drive to a modification of the Common Information Modd defined by the IETF, which
will be undertaken during the implementation phase.

What seems to be clear is that the fault management policies should have a high priority, so that the
corresponding actions will be preferably executed.

Detection as well as corrective policies will be defined.

2.4.2.1.2.2 Conclusion

The proposed architecture takes advantage of the PBM features (flexibility, extensibility) bringing
them together with the active networks capabilities to provide an autonomous fault management
system, which favours a quick solution to the problems, avoiding the falure to progress in its
importance.

The specification of fault management policies is approached considering that conditions and actions
both relate to policies currently active, e.g. a fault management policy could promote genera policy
updates based on the detected fault, the resources status and the active policies.

2.4.2.1.3 Performance Management

The PBM architecture described in this document bases its performance management functionality on
the information obtained from the monitoring system and in the setting of adequate policies to manage
the shared resource usage fairly. That is, anew customer would be able to reserve resources, aslong as
they have rights to do so and there are sufficient resources without affecting other customers.

Concretely, performance management functiondity will be based on the monitoring policies domain,
how these monitoring policies are to be treated by the architecture designed, and the monitoring
facilities provided by the policy targets.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 55

2.4.2.1.4 Security Management

The security management functionality developed in the PBM system can be divided into two main
subtasks: controlling the access to management functionality itself and controlling the access to shared
resources.

In the first casg, it is the credential check sub-component that checks the credentia given by the actor
who wants to set a policy in the node in order to manage some resources. Whilst in the second casg, it
is the correspondingent PEPs that configure the resource access control layer to provide access to
resources to customers. As such, security checks are done at both the management system, e.g. to
check the credential supplied by the User dong with the associated policies, and at the ANN, eg. to
check the credentias given by active code modules installed in EEs on behaf of the users, in order to
access their assigned resources. Only the former is whithin the scope of the management system.
However, security management is not whithin our focus, so the security and cryptographic algorithms
necessary to check the credentia will not be addressed by the management system.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 56

2.4.2.2 Description of the System Components

2.4.2.2.1 Credential Check Component

The credentia check component will be in charge of checking the privileges for specific active
network management functionality granted to any actor.

Each actor that wants to fulfil the management functionality, such as VPN establishment, should also
submit a credential. The Credentiad Check Component then takes this credential and looks in the meta-
policy database for a meta-policy related with that credentia. The Credentia Check component
retrieves the policy and checks if the intended management actions (policies) are available to the actor
that presented the credentia. Findly, if the credential is correct and the actor has the corresponding
privileges these policies are passed to Policy Conflict Check component.

Since the working flow has been given previoudy, here we focus on the components and 1DL-based
interface.

The sub-components comprising the credentia check components are depicteds as in Figure 26, whilst
their detailed specification are shown in Figure 33.

credentialCheck

Credential Metapolicy

Figure 26 - Credential Components

The IDL presentations are shown in the section 2.4.3.1.1

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 57

2.4.2.2.2 PDP Component

Within an IETF compliant PBNM architecture, the Policy Decison Point plays a fundamenta role.
document Here we present the main structure and functionality of that component defining and
analysing its different subcomponents. The requirements that the active network concepts impose on
the interaction with other components are highlighted.

The Policy Decision Point attends to two main aspects of the policy based network management. On
one Side, it takes charge of the retrieval of the policies coming from the User or from the active
applications, proceeding to their distribution to the appropriate PEPs. On the other side, it determines
the policies to be applied in every moment depending on its knowledge of the node status. A set of
components has been identified as essentia for the PDP to accomplish these responsibilities.

Once a policy has been transferred to the PDP, severa actions are necessary in order to ensure that the
policy is carrectly deployed to the locations in which it has to be gpplied. Before actually proceeding
to its distribution to the PEPs, the PDP should be sure that the policy could be correctly interpreted —
i.e. it is syntactically correct- and that there are no conflicts with other policies currently running.
Moreover, it has to be able to resolve such conflicts, which is an essentia condition to provide support
for application-specific policies.

Local conflict detection and resolution is one of the maor functionalities of the PDP. Including the
‘Conflict detection block’ in the PDP is an essentia condition since loca conflict detection requires
understanding the semantics of the policies’ (conditions and actions). Since several PDPs could coexist
in the same active node, distribution of policies among the PDPs is a prerequisite to detect the conflicts
that affect each of them. Since not every policy has to be distributed to each PDP, different PDPs
could have been provided with different sets of policies.

Since a PDP could be associated to one or several PEPs, to which certain kind of policies should be
gpplied, a name service storing the PEP references must dso be available. Further information
regarding the PEP specific features could aso be stored together with the PEP reference so that the
PDP is able to provide the appropriate policies.

Loceating policies in the policy database is another required function. This functionality is used both
when analysing the policy conflicts and when examining the policies to be deployed to each PEP
under demand.

The modules for parsing and interpreting the policies together with the decision logic blocks form the
PDP core. Developing syntax independent policy parser interfaces could be helpful during the
implementation process since the consolidation of the syntax selection may take into account several
aspects not considered yet, that can only arise as the project evolves. In a more fine-grained vision,
policy interpreters could be subdivided into condition interpreters and action interpreters. Both will
use policy objects coming from the policy parser.

® Note that policies are dependent of the functionality being managed and so a policy could only be interpreted
by its corresponding PDP.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 58

PDP Component Par ser

Conflict | | Conflict | [
Resolution | Detection &
:)
E
g
external events R) @©
Evaluation » O

NameService |« Didribution

AINANL

bovo

Figure 27 - PDP Internal Components

The functionality of each block is further described presenting the expected interactions with other
inner modules.

2.4.2.2.2.1 Policy Parser

The policy parser isin charge of identifying and extracting the policy objects that constitute a policy. It
also checks that there are no policy syntax errors, being a filter for policy acceptance. Since policy
objects are going to be managed in severa PDP subcomponents the parser should generate tree-like
objects containing the parsed policy elements. Policy objects should provide navigation methods to
alow accessing the information.

The parser must aso provide methods for retrieving specific information contained in the policy
without requiring cresting the whole policy object. This feature would be specially useful during
conflict analysis, when looking for concrete conditions or actions.

Provided that the policy information model could be extended, the parser should be designed so as to
dlow the extensbility of its parsing capabilities. Following a factory pattern would be a way to
achieve such requirement.

2.4.2.2.2.2 Policy Conflict Check

Large distributed networks may well have policies that are specified by more than a single individud,
possibly coming from various organisations. Authorisation policies specify what activities a manager
is permitted or forbidden to do to a set of target objects while obligation policies specify what
activities a manager must or must not do to a set of target objects [8]. Since a request may traverse
through multiple domains governed by these various palicies, conflicts of policies may arise

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 59

The policy conflict check sub-component is responsible for checking that the new policies that want
are to be introduced in the management system do not cause any conflict with the existing ones. Two
types of conflicts will be checked: syntax (or modality) conflicts and semantic conflicts. Syntax
conflicts occur when the conditions are the same but the actions are opposite, i.e. “if <a> then
<access>” versus “if <a> then <no access>". To redise this type of checking the policy conflict check
component will need to access the loca policy database in order to compare existing policies with new
ones.

Semantic conflicts occur when two incompatible actions might be set at the same time. Metapolicies
might help to perform this task by establishing which actions are incompatible and which are not, and
to determine if the conditions for these actions might occur at the same time or not. If the metapolicy
database and loca policy database are physicaly different the policy conflict check component will
also need to access the metapolicy database to be able to realise these tasks.

User requests ANN to add,
modify, and remove
specific policy

Policy-based authorisation
effected

y

User manipulates specific
objects in policy database

y

QNN checks for policy conflictsj

ANN resolves situations where new or
modified policy is in contradiction with

existing policies

y

[When conflicts are resolved, policy is]

saved in an ANN for future references

Figure 28 - Palicy conflict check sub-component

2.4.2.2.2.2.1 Local Conflict Detection Block

This block is assumed to provide conflict detection functionality far application-specific policies.
Particularly, a the element leve, in fact, athough policies coming from the Network Management
Block have been previously checked for global conflicts they need also to be compared against the
gpplication-specific policies that only the active node is aware of.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 60

The CDB (Conflict Detection Block) performs an evaluation of the conflicts that could arise between
the incoming policy and other policies previoudy deployed promoting incompatible actions over the
same devices. Once detected, two main strategies could be followed. The first one is the immediate
cancellation of the deployment process, notifying the error to the entity that requested the operation.
The second dtrategy is to resolve the conflict localy postponing the error notification until it is
confirmed that it can not be trested by the PDP autonomously®.

The block operation comprises severa actions. First, the module must identify the PEPs to which the
policy is being sent. After finding the actua policies currently running on those PEPs it is necessary to
perform the conflict analysis. Finally, the result of the analysis should be reported.

Modality conflicts’ would be recognised by inspecting the policy type but detecting semantic conflicts
requires the knowledge of the policy fields meaning and possible vaues [9]. Therefore, conflict
andysis will need additional information® about the policies themselves.

The conflict check interface should check for static conflicts derived from Policy Rules whose
conditions are smultaneoudy satisfied, but whose actions conflict with those of currently existing
rules [6]. An important point to note is that rules may be ‘time-based’ (specifying an effective vdidity
period in the future) or based on dynamic state information. These rules may indeed conflict with
others. However, these conflicts may only be detected at the time that the rule becomes valid and
enforcement actions are attempted.

2.4.2.2.2.2.2 Local Conflict Resolution Block

This module is in charge of resolving the loca conflicts that appear when trying to deploy application-
specific policies. Applying precedence on the policies is one means to resolve certain kinds of
conflicts. Another way is to make use of the metapolicies that would specify the set of actions to be
taken to resolve each kind of conflict. The last one is the more extensible mechanism but requires a
complete metapolicy framework to be developed.

2.4.2.2.2.3 Database Access Interface

The Database Access Interface main aim is to provide a smple query interface. Efficient policy
database searching functions are critical to avoid a penalty due to unnecessary database accesses.
Severa components will ask for policies that possess specific conditions, being the responsbility of
the module implementing the interface to locate such policies in the database, retrieving them and
returning them in an appropriate format. Therefore, the module needs to know the structure being used
to store the information.

® Thefirst approach is simpler to implement while the second is more powerful. It should be taken into account
that inthefirst stagesit is preferable to implement the basic functionality and so we prefer the first strategy to
develop an application prototype.

" Examples of modality conflicts include inconsistences between policies expressing authorisation —or
unauthorisation- to perform an action and policies expressing obligation of doing—or not doing- that action. For
example, apolicy might oblige a PEP to perform an action it is not authorised to, because of the constraints
imposed by another policy.

8 which could be provided in the form of metapolicies.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 61

2.4.2.2.2.4 Policy Evaluation Block

The Policy Evauation Block takes the responsibility of deploying the policies as necessary. It consists
basicaly of a Decison Making module and a Policy .Interpreter, which are analysed further in the
following paragraphs.

external events Decision database
...................... » Maki ng >
< Module
name service
A 4
Interpreter

Figure 29 - Policy Evaluation Block components

2.4.2.2.2.4.1 Decision Making Module

In this document, a decision is considered a means to adapt the set of policiesinstaled in a PEP to the
circumstances. The PEP will only require a decision when its configuration changes in a way not
covered by the installed policies [11].

In such a case, the decision-making module is responsible for evaluating the node status and decide
whether there are high-level palicies that fit the situation, and should be taken to the Policy Interpreter.
For this purpose the policy data received from the PEP (for example, its current policy configuration)
will be taken into account. The PDP should also have enough knowledge of the node status and
capabilities to avoid delivering policies that cannnot be implemented, for example, due to resource
unavailability.

This behaviour can be triggered not only by PEP requests, but aso because of external events received
by the PDP by any other means (for example, collected from the event channdl). In this case, a cal-
back interface is used to be notified and acquire the information associated to the event.

2.4.2.2.2.4.2 Policy Interpreter

The policy interpreter becomes a core evauation component, being in charge d trandating the high-
level palicies into appropriate policy objects for its actual enforcement. In a finer-grained view, the
policy interpreter will consist of a condition interpreter and an action interpreter. Among the
condition interpreter functionalities, its ability to evaluate whether the rule conditions may be treated
by the PEP itself or not, is a main requirement. In the former case, trandating them according to the
condition evauation mechanisms would be realised either by creating policy objects as defined in the
corresponding Policy Information Base or by including specific parameter values into previoudy
exiing policy objects. In the later gStuation, the Decison Making Module would teke the
responsibility of evauating the policy conditions based on the corresponding low-level conditions
returned by the interpreter.

The action interpreter will execute the specified actions would receive the high-leve policy actions
and would map them into the corresponding PIB Policy Classes, creating the appropriate policy
objects. Thus, to correctly interpret a policy, appropriate condition and action interpreters should exist
for each kind of condition and action included in the policy.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 62

In order to tacklewith policy criteria noteven known at PDP design time (e.g. those coming from active
applications) we intend to use an active approach. The active packets containing the -level policies
(data) will also contain the condition or action interpreters (code) required to execute the policy which
are not in the system yet. These interpreters will be treated as the pieces or “building blocks’ of the
policy interpreter. Thisway, the PDP can acquire knowledge about the policy classes used by the PEP.

Using this scheme, the same PDP type can be used for managing different types of enforcement
clients.

2.4.2.2.2.5 Name Service

The PDP needs to keep track of the PEPs that it is serving. To issue this requirement the name service
will provide information about the PEPs location and type. This service will be used to choose the
policies that are to be delivered to each PEP depending on its role. The name service interface should
contain methods to insert PEP information, and to retrieve a list of PEPs matching a certain role or
type. Whether to use internal or external’ name services is to be considered.

The CORBA name service interface definition could be used to support the interactions described
formerly. The PEP role and associated target would be used as Naming Contexts to structure the
information. At the leaves of the tree we would found the PEP identifier. Therefore, the PEP
references would be obtained resolving the Name that contains the required role.

The Name Components included in the Name would contain the PEP identifier in the id field whereas
the kind attribute could contain additiona information about the PEP functiondity.

The list() method can be effectively used to retrieve the list of PEPs matching a certain role, and the
Bindinglterator interface provides the means to browse the list. Refer to the Interoperable Name
Service Specification [57] for more information on these methods.

rol @/roIeBN?oleC

targetl target2 targetl target3
pep_id 11 pep_id 2 pep_id_3 pep_id 4

Figure 30 - Hierarchical naming structure

2.4.2.2.2.6 Policy Distribution Module

The Policy Didribution Module will be responsible for the PEP admisson and dynamic binding
functiondlities. Once bound, it interfaces with the PEPs, distributing the policy objects in the agreed
format. Therefore, this module could be considered as implementing the COPSrelated logic
functiondities.

The policy objects that come from the Policy Interpreter do not have a specific destination, but the role
or type of enforcement clients to which they apply. It is the policy distribution module mission to find
the PEPs playing the selected role and proceed to actualy transfer the policy components. For this
purpose, it will access the name service.

% Such asthe CORBA name service.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 63

2.4.2.2.2.7 Conclusions on PDP Architecture

The PDP architecture presented in this section conforms to the IETF specifications, but it also extends
the basic PDP capabilities by the use of active code attached to the policies being distributed. This way
PDPs provide the framework to make decisions based not only on the policy data but also on external
knowledge carried in active packets.

Note that it is assumed that PEPs are able to interpret the policies ddivered to them. Also, it is
expected the PEP will store the set of policies to manage a given configuration. As a consequence, the
proposed model does not compromise the active node performance since the decision processes do not
run frequently.

2.4.2.2.3 Monitoring System

In order to define a highly integrated monitoring service, we propose the use of specidized policy-
controlled monitors. These monitoring enforcement points interact with the policy target metering
components and other facilities to extract the useful information which is defined in the configuration
provided by a set of policies.

The objective of this architecture is to take advantage of the knowledge PEPs have about the devices
they control. So monitoring information is collected, not aly from specific monitoring PEPs but aso
from every PEP included in the system.

Event propagation is one of the key advantages of this architecture. Using an event channd allows
information collected by a PEP to be distributed to PDPs interested in the events, athough they could
even not know of the existence of such a PEP.

The proposed monitoring service adapts to a policy-based architecture. It has been realised that the
capabilities offered by the PBNM systems alow to takeing advantage of the existent framework for
monitoring purposes.

The components directly involved in the node monitoring functionaities are depicted in Figure 31
The policy target will provide a set of metering blocks, as well as access to the dtatistic functiondities
and MIBs included in the router (for the element level). The mechanisms to interact with the hardware
monitors will be device specific and therefore should be isolated from the higher layers of the PBNM
sysem. Following this directive, monitoring enforcement points alow to configure and collect the
information provided by the metering blocks. Severa parameters are to be adjusted, such as the
polling interval or the event reporting frequency.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 64

. S ——
Mor_ut_orl N9 ——| policy DB
S — Decision

i e ——
0
< event channel >

: Monitoring
T | Enforcement
Point

f \ Virtual Environment

/ \ NodeOS

metering hardware
block monitor
A 4 y
HARDWARE

Figure 31 - Monitoring system architecture

All actions over the metering blocks are to be expresed on via monitoring policies (e.g. increasing or
decreasing the polling interva depending on the device status). Speciaized monitoring PEPs will be in
charge of enforcing such policies on the policy targets they are assigned to. Also, general PEPs can act
as amonitoring information source as part of their normal operation.

PEPs deliver the monitoring information to the PDPs through the defined PDP-PEP interface, which
supports its transference either synchronoudy or asynchronously. General PDPs will use this
information to create a picture of the resources status in order to make accurate decisions.

Monitoring decision points will be responsble for deploying the monitoring and notification policies
to the specidized monitoring enforcement points. They must know the list of available monitoring
elements and the type of resources under control.

Event capture and propagation is another of the PEP functions. Once an event coming from the
metering blocks is detected, the PEP maps it to an appropriate format and delivers it to an event
channel. PDPs will subscribe to the event channel waiting for specific event types and will provide a
calback interface to the channel in order to receive notifications. This behaviour is appropriate since
several PDPs could be interested or be affected by such events, even athough they came from PEPs
that do not relate with them. Those events signal resource status changes, which in turn are the key to
determine whether the conditions for policy deployment are met.

The PBNM concepts and framework can be reused to develop a monitoring architecture. Using this
approach, device-specific features are isolated from the rest of the system. At the same time, the
PBNM system is enhanced with the addition of an event channe that helps the PDPs to be notified of
the events they are interested in.

The monitoring system takes the advantages associated with the active network PBNM, including the
extensibility through the addition of new monitoring components as required (for example, to monitor
an gpplication).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 65

2.4.2.2.4 PEP Components

The Policy Enforcement Point component has the responsibility for the correct enforcement of the
system policies. However, the PEP is not involved in the decision process. The decisions are made by
the PDP and then they are downloaded to the PEP. The PEP aso has to communicate with the policy
targets, in order to enforce the actions that derive from the policies.

The PEP will have the following components:

PEP M anager

f
v

Policy Client PEP
Policy Trandation PIB
Enforcement
Policy Target Policy Target

Figure 32 - PEP Internal Components

2.4.2.2.4.1 Policy Client component

This component has the necessary functionality, to support the communication with the PDP. It
implements the client interface for the PEP-PDP communication.

2.4.2.2.4.2 Policy Translation

The policy decision received from the PDP will be in a format that may be not understandable by the
Policy Targets, for example when the PEP functions as a proxy for a policy unaware device. This
component will convert te decisions to a set of commands, according to the API provided by the
underlying policy targets.

2.4.2.2.4.3 Enforcement component

This component communicates with the policy target. It actually enforces the policies, by using the
appropriate target operations. It dso has a discovery mechanism, by gathering the capabilities of the
underlying targets, which will be reported to the PDP.

2.4.2.2.4.4 Policy Information Base (PIB)

This base stores the capabilities of the PEP component, which depend both on the underlying policy
targets as well as the functionality coded into the PEP. It can also store the policy classes downloaded
by the PDP to the PEP. The PIB can aso be accessible by the PDP. The Policy Information Base can
be structured according to [13]. A framework PIB is aso provided in [14]. This modd will probably
require extension, in order to be used in the FAIN framework.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 66

2.4.2.2.4.5 PEP functionality

The functionality supported by the PEP can be the configuration of a policy target, the enforcement of
security/access policies or the reservation of resources. To accomplish this, the PEP should know the
interface of the policy targets, as well as the capabilities of the underlying managed elements. This
information should also be sent to the corresponding PDP, so that it knows the conditions and the
actions which can be supported by a particular policy target. In this way the PDP will be able to check
if acertain policy can be applied to the policy target.

2.4.2.2.4.6 Reporting Device Capabilities

The capabilities and the limitations of a policy target determine the policy functiondity that can be
supported by this policy target. A PEP which is responsible for a policy target should report these
capabilities to the PDP, so that it can check if a new policy can be deployed to a specific policy target.
So when a session between a PEP and a PDP isinitiated, the PEP aso passes the information related to
the capabilities and limitations of the managed element.

These capabilities and limitations depend either on hardware specific issues of a managed element or
on statically configured parameters. However in active networks, where services can be dynamically
installed, these capabilities may dso change. For example, an active node may initidly not support
DiffServ, but a basic DiffServ service can be installed later. In this case the PEP should aso report this
change in the capabilities of the node, something that could not happen with a traditiona node.

2.4.2.2.4.7 Downloading Policy Decisions

The PEP does not have the ability to evaluate policy conditions. This task has to be done exclusively
by the PDP, which uses known state information of the PEP as well as data obtained from the
monitoring service to make the decision. Then the policy decision has to be downloaded to the PEP.

The enforcement of policies can be accomplished in two ways:

Initiated by the PDP. The PDP, using the monitoring service, finds that the conditions of a
policy are true. It retrieves the corresponding policy actions from the policy database and
downloads the relative decision to the PEP.

Initiated by the PEP. Usudly this happens in the case of an incoming signdling request. The
PEP receives a reservation request, but it is not capable of making a decision on its own.
Therefore the request is passed to the PDP, aong with information about the state of the PEP,
which will help the PDP to reach the decision. The PDP evaluates the request and downloads
the decision to the PEP. Optionaly the PEP may include a Loca Policy Decison Point
(LPDP), to evaluate certain policies localy. However the final decison must be made by the
PDP and it may override the one made by the LPDP.

It is possible that an existing PEP may not be able to enforce the policies on a target. This is likely to
happen in an active network, since new services can be deployed dynamically and new types of EEs
can be ingtaled in the nodes. In this case a PEP with the desired functionaity (or even a PDP-PEP
pair) should be dynamically ingtaled. This can be done using the Active Service Provisoning
infrastructure, part of whose functionality isto act as a code distribution mechanism.

2.4.2.2.4.8 Policy Enforcement

After receiving a policy decision from the PDP, the PEP proceeds with the actua enforcement of the
policy. The policy targets will execute the actua commands that implement the policy actions. The
PEP should be able to convert the decision made by the PDP to the necessary commands for the policy
target. This is dependent on the interface offered by the policy target. For example if the policy target
isatraditiona router, the PEP might use the necessary SNMP operations to configure it.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 67

2.4.2.2.4.9 Policy Enforcement Feedback

After the enforcement of the policy decision the PEP should provide feedback to the PDP about the
result of the actions taken, if the policy was successfully enforced or if a problem was encountered.

2.4.2.2.5 Database Components

The metapolicy database and the loca policy database will be logicaly different, because they store
semanticdly different policies, but theree will be a unique physical database that can be accessed by
the components of the PBM system. Metapolicies are policies that will control the access to
functionality and the behaviour of the PBM system, while policies control the access and behaviour of
the active network resources managed by the management system.

2.4.2.2.5.1 Policies Database Components

Since meta-policy database and the local policy database are just logically different, they can provide
the same interface to PBANEM as long as both of them use the same database technology. We expand
upon some of the different database technologies that could be applied in FAIN.

2.4.2.2.5.1.1 RDBMS-based policy Database

If the Java programming language is used, JDBC can be used for the interface. If other languages or
platforms is are used, ODBC can serve as the interface. Both of them focus on executing raw SQL
statements and retrieving the results. We expect that higher-level APIswill be defined as well, and
these will probably be implemented on top of this base level but not in this document. This document
doesn’t specify whether it is JIDBC (Java DataBase Connectivity) or ODBC (Open DataBase
Connectivity), focusis on the functionaity of the interface needed by the PBM, which basically is for
creating SQL statements which can add new policy to the database or retrieve the results (Policy) by
executing those statements against relational databases.

2.4.2.2.5.1.2 Directory-based Database

Besides LDAP, Java Naming and Directory Interface (JNDI) can aso provide applications writtenin
the Java programming language with a unified interface to multiple naming and directory services, and
more powerfully. INDI enables seamless connectivity to heterogeneous enterprise naming and
directory services. Developers can build powerful and portable directory-enabled applications using
thisindustry standard. JINDI aso supports LDAP v3.

2.4.2.2.5.2 Metapolicies Database Components

As mentioned previoudly, it is assumed that the metapolicies database and loca policies database are
physicaly unique and may have the same architecture.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 68

2.4.2.3 Policy Representation

This section describes a proposal for the FAIN Policy Core Information Model and Policy Syntax. The
proposal Syntax is based on the IETF PCIM extensions draft [30], with afew exceptions. In this draft
a sat of extensions are suggested to the PCIM modd suggested in [17]. These extensions provide a
model with a higher degree of flexibility for the definition of policy rules. On the other hand, this
flexibility might, in some cases (e.g. PolicyRulelnPolicyRule aggregation) cause an increment in the
complexity of the policy framework. However, this proposa alows for the level of flexibility and
complexity that we want to give to the system, and eases the interoperation of the whole management
system (e.g. through the definition of classes for variables and values). However, in our proposa we
follow a mixed PCIM-PCIMe modd for specifying actions (just one policyAction class), instead of
following he PCIM extensions model (each policy action has to be specified with severa classes
depending on the number of variables that have to be changed). The reason for that decision is because
we fed that the way in which policy actions are defined in the PCIM extensions draft might be
unnecessary cumbersome (eg. a quite smple policy action like the ipvpnPolicyEncryptionAction
proposed needs 66 classes to be expressed with the PCIM extensions model). The FAIN Information
model follows the smplePolicyAction and CompoundPolicyAction structure proposed in PCIMe but it
does not have the PolicyVariableinPolicyAction and PolicyVauenPolicyAction classes, since
variables and values are smply expressed as properties of the specific fainSimplePolicyAction
subclass.

The policies themselves will be expressed in an XML document that will contain the necessary classes
that describe the policy rule. This XML document will be carried by a Mobile Agent, which will carry
other important information, e.g. security related information. Necessary parameters that need to be
carried by the Mobile Agent are:

Level of security: which indicates whether the XML document is ether authenticated,
encrypted, none or both of them.

Security parameters: which alow the PBANEM system to authenticate and decrypt the
received XML document.

Other parameters that might be interesting are:
PDPId: Identifier of the PDP that has to process the policies described in the XML document.

PDPUpdate: Boolean that when set to TRUE indicates that the PDPidentified by the PDPId
should be updated with a newer version before passing it the palicies. This ability may provide some
more flexibility to the system.

2.4.2.3.1 Advantages of XML for Policy Representation

Using XML as language for expressing policies has several advantages [34]. XML is ided for
transferring information between heterogeneous platforms because XML parsers are available for
many platforms. Another advantage is that XML policy documents can be vdidated against an XML
policy schema that resides on a remote, trusted server. This is possible because XML documents can
carry a reference to their XML Schema, instead of the Schema itself. Moreover, the policy syntax
checking functiondity, is done intrindgcaly by the XML parser through the validation of the XML
policy against its XML schema.

The mapping approach followed is based on usng XML-Schema specification to define the
vocabulary an XML policy will need to be vaidated against. All classes (eg. PolicyVariable,
PolicyVdue, fainSimplePolicyCondition, fanSimplePolicyAction, etc. subclasses), properties, and
even possble values, that conform to the FAIN Information Modd, in dl domains, would be
expressed in one or severa XML Schema classes. With this approach, we are able to specify and
check the correct policy syntax of any possible fainPolicyRule, and even to check given property
values are within some specific, valid range. As more details are given to the XML schema, more
syntactic checks can be done to the policy by the XML parser.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 69

One important issue about the mapping approach taken, is how the associations are done within the
XML policy instances. In order to ease the readability and reduce the complexity and size of policy
rules we map association classes as references to e ements in the XML-Schema. This alows the policy
to be more compact, smple and comprehensible than mapping al association classes.

Moreover, no information is lost, due to the use of this approach since al properties of aggregation
classes are included in the reference as attributes. Therefore, al the information needed to trandate the
XML instance to objects (aggregation objects included) in a database is available.

The way, in which naming information is given, in an XML policy instance, is based on the proposal
made in the CIM Core Policy Model specification [35]. That is, concrete properties of classes are used
as keys for identifying instances. The only difference with the approach suggested in [80] for naming
and the one adopted by FAIN, is that since we use references, instead of aggregation classes, there is
no need to repeat the keys of the containing class in the contained class as suggested in [80].

The detailed specification of the initia FAIN management information model and its relation to the
IETF modd are given in appendix 8.1. We note that it is likely that thisinitial information modd will
undergo refinements and extensions as the work in FAIN progresses and particular requirements are
discovered. Appendix 8.2 gives an example of how the mapping of the FAIN information model to an
XML-Schemais done, and how the mapping of afainPolicyRule, of the mapped information model, to
an XML ingtance is done. To better understand these examples see [33], [36].

2.4.3 Physical Architecture of the System Components

Throughout this section details necessary for the physica implementation of the architecture proposed
are given. These details are distributed amongf three main sub-sections. In the Communication
Between Components sub-section (2.4.3.1) the internal interfaces between the main components of the
architecture are described. The interface definition is given in IDL.The Interface Definition Language
(IDL) has been chosen as language for the definition of the interfaces because of its huge popularity in
Object Oriented technologies. Section 2.4.3.1.10, Externa Interaction Requirements, provides
requireeriments to onrequirements to the interactions between the management system described in
this document, and other FAIN systems that interact with it (e.g. the RCF interface of FAIN ANNS,
the ASP system, and between the Network and the Element Level). Although the interactions between
the Network and the Element Leve are internal from the management point or view, they are included
in this section because they are external from the “genera” architecture presented point of view.
Findly, in the appendix section but related with this chapter, the Description of Tools section, provides
an overview of tools and technologies that could be used in the implementation of the architecture
proposed.

2.4.3.1 Communication Between Components

2.4.3.1.1 Credential Check Interface- Intl

For an active network node (ANN), the ANN Manager must govern the ANN to restrict who can
install active code or how much of the node resources they are dlocated (via a policy) [60].
Additionaly, the ANN Manager must aso dlow a packet to prove that the latter is a bona fide
‘requestor’ (a credentia), and it must enable the ANN Manager to specify who (two best-known
certificate systems are those of PGP and X.509) may issue such credentials (a trust relationship).

To describe the credential check interface, we note that each interface defines a new object type.
Operation signatures are the essence of the interface, which are entry points for service request. As
such the interface forms an opague boundary between client code and object implementations. 1DL
declares what is exposed by this interface, and all other details are hidden.

Based on the sub-components given in Figure 26 and Figure 33, the credential check interfaces, in the
form of IDL, are shown as Credential.idl and Metapolicy.idl.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 70

<<Interface>>
Credential

wpublickey : publicKey

WgetType() : String

Wequals(another : Object) : Boolean
%verify(pbkey : publicKey)

"_“verify(pbkey : publicKey, signer : String)

T
1
1
1
[}
1
1
1
1
1

\
<<Interface>>
Metapolicy

BretrievePolicy(assigner : String)
checkPolicy(assigner : String, policy : Object) : Boolean

Figure 33 - Two interfaces used in credential check

Depending on the implementation, the Public key can be embedded in the credential or be stored in
specific key base, or stored in policy repository with the meta-policy relating to the assigner of the
credential. To make it more generic, we suppose that the public key is not embedded in the credential,
therefore a public readonly attribute called publickey is defined. If public key is defined in the
credential, an abstract method called getPublicKey can be defdined in interface Credential.

/I Credential.idl

#i fndef _ CREDENTI AL_DEFI NED
#define _ CREDENTI AL_DEFI NED

nmodul e credenti al Check {

interface Credential {

/1 the public key for the correspondi ng actor

readonly attribute publicKey publickey;

/1 Returns the type of this credential.
String get Type();

/1 Compares this certificate for equality with the specified object.
Bool ean equal s ((Obj ect anot her);

Il Verifies that this credential was signed using the private key

/1 that corresponds to the specified public key.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 71

/1 --- fulfil the functionality of credential check

voi d verify(publicKey pbkey);

/1 Verifies that this credential was signed using the private key
/1 that corresponds to the specified public key, and the signer.

void verify(string assigner, Chject policy);

}s
#endi f

/l Metapolicy.idl
#i f ndef __ METAPOLI CY_DEFI NED
#define _ METAPOLI CY_DEFI NED

nodul e credenti al Check {
interface Metapolicy {
/1 retrieve neta-policy fromthe meta-policy database based on
Il the signer of the credenti al

Coj ect retrievePolicy (string assigner);

/1 check if the entity (the signer of the credential) has the privil ege
/1 to do sone el enment |evel managenent

Bool ean checkPolicy (string assigner, Chject policy);

#endi f

The type of credentia usualy means the name of the algorithm used by the credential, which may
include message digest algorithms (such as MD2,MD5), key and parameter agorithms (such as RSA)
and digital signature agorithms (such as MD5withRSA).

2.4.3.1.2 Policy Conflict Check Interface — Int2

This conflict check interface should check for static conflicts derived from Policy Rules whose
conditions are smultaneoudly satisfied, but whose actions conflict with those of currently existing
rules . An important point to note is that rules may be ‘time-based’ (specifying an effective validity
period in the future) or based on dynamic state information. These rules may indeed conflict with
others. But, these conflicts may only be detected at the time that the rule becomes valid and
enforcement actions are attempted.

The CDB interface contains a function that performs conflict evaluation on the submitted policy
object. The function returns a result notifying the type of conflict —if any- found. Otherwise, the
function returns normally.

nodul e PDP {
enum conflict Type { MODALI TY,

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 72

PRI ORI TY_FOR_RESOURCES,
DUTY,
| NTERESTS,
MULTI PLE_MANAGERS,
SELF_MANAGEMENT} ;
exception policyConflict {
type: conflictType;
resol ved: bool ean; /1l true if the conflict was resolved.
}; [/l fal se otherw se.
interface ConflictManager {
void verify(inout policy: PolicyQoject) raises policyConflict;
b

The PdlicyObject specifies the target of the policy. Therefore the CDB can use this information to
locate other policies applied on the same target using the Database Access Module services.
2.4.3.1.3 PDP — Conflict Check Interface — Int3

The IDL interface would include a function to evaluate and process properly the policy, once checked.

nmodul e PDP {
exception illegal Expression {
string reason;
b
excepti on not Found {};
interface PolicyEval uation {
voi d eval uate(in policy: sequence<octect>)
rai ses illegal Expression;
b
b

2.4.3.1.4 Monitoring Service Interface — Int4

2.4.3.1.4.1 Introduction

Policy based management systems cope with controlling a large range of devices™ by abstracting their
common functiondity and adapting the desired high level behaviour -specified by network operators-
to their specia features. However, monitoring has been traditionaly achieved through device specific
interfaces which limits the benefits that could be obtained from this technology.

9 The term deviceis applied to the managed components either hardware or software.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 73

This section discusses the development of a policy based monitoring system and describes the
necessary interfaces.

2.4.3.1.4.2 Policy-based monitoring

Current systems do not consider flexible ways of controlling heterogeneous monitoring components
but ad-hoc agorithms and interfaces suitable only for the tasks they have been designed for.
Moreover, the monitoring information consumer is frequently hard attached to the metering blocks
what complicates updating the monitoring mechanisms and makes it difficult to share the obtained
information.

To resolve these two problems the monitoring system has been designed following a policy-based
architecture. Monitoring policies will be used to control the monitoring components which play an
enforcement point role. A decision point will be responsible for their proper operation, retrieving and
deploying the gpplicable policies.

This way, monitoring domain PEPs become a source of synchronous and asynchronous messages for
other domain PDPs. Since these monitoring data are to be available for every PDP, efficient
distribution mechanisms have to be designed. For instance, fault management may require propagating
an event raised in one domain which is a symptom of falure in another, possbly involving a policy
decison. Mainly for this reason, an event channel has been though as the better aternative to
disseminate information across different domains. It has aso the advantage of decoupling consumers
and sources what makes it smpler to add, remove or change the monitoring components — making the
most of active network technology.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 74

Monitoring policy

Monitoring Service e Notification Interfece -

< I (IntServ)

PDP
(monitoring)

"1 Registration Interfage

< Event Channel >
_ _L Synchronous

| 4 _ Interface (COPS)
PEP Publish Interface

itori
(monitoring) PEP

(IntServ)
Metering

block Device

Figure 34 - Monitoring system and interfaces

Monitoring components are thus considered from two perspectives. as controlled elements they are
policy managed; As sources of monitoring data they provide interfaces suitable for accessing them in
an homogeneous way.

The proposed architecture complies the IETF standards requirements since only one PDP enforces
policies on each PEP at a time. Monitoring policies™ are delivered to the monitoring domain PDP just
as application-specific policies and thus, following the same interaction pattern.

Monitoring information can aso be retrieved by a PDP from the PEPs attached to it. However, note
that in this case we are not dealing with monitoring specialised PEPs but with a part of the PEP normal
working. The following sections describe these two modes of operation.

2.4.3.1.4.2.1 Monitoring Service Interfaces

Decision making processes often require knowledge, not only about the parameters appearing in a
given policy, but aso about the node or even the network state. Gathering this information may be
attained either through a pull or a push model. The former one is related to the synchronous interface
while the latter, often known as asynchronous interface, alows the notification of unexpected everts.
The operations supported by each of them is described following.

2.4.3.1.4.2.1.1 Synchronous interface

The synchronous interface alows the retrieval of monitoring data under demand. This can be
accomplished either using COPS or additiona pull interfaces.

In the first case, COPS DECISION messages will be used to ask subordinated PEPs for accounting
data on the controlled devices. The Command-Code will be set to the NULL vaue meaning that no
policy data is to be ingtalled. Setting the Request-State flag to true will make the PEP to return a
REPORT message containing monitored parameters in the format being specified in the policy
information base defined for the domain.

1 Note that for a not-monitoring domain PDP (for example, an IntServ PDP) monitoring policies express only
the way it wants to receive service, not being the decision point for such policies.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 75

Additiona pull interfaces alow a PDP to ask for information to the monitoring PEPs. However it must
be redlised that in this interaction their behaviour does not correspond to decision/enforcement points
and therefore it would have been inappropriate using COPS”?. The CORBA Notification Service IDL
interfaces fulfil al the requirements imposed to the event channel. Adapting these standard interfaces
to the PBNM system characteristics assures compatibility with existing event channel implementations
(aso improving the interoperability of the overal system).

The required operations are defined as followsin [65]**:

module CosNotifyComm {
/...
interface StructuredPullSupplier {
StructuredEvent pull_structured_event() raises (Disconnected);
/...

A monitoring domain PEP may require severd pull-suppliers, each implementing the
StructuredPullSupplier interface, in order to allow the synchronous retrieval of different types of
information. The pull_structured_event method will be used to obtain the required data (which will be
included in an StructuredEvent) from aproxy supplier provided by the channel. As a consequence the
behaviour of this method will be dightly different from the specified in [65], since the event becomes
just a means to pass the monitored data from the PEP to the PDP loosing its asynchronous facet.

2.4.3.1.4.2.1.2 Asynchronous interface

The monitoring system can also provide information in an asynchronous way by notifying event
occurrences. The CORBA Noatification Service interfaces are suitable for this purpose. Next sections
andyse how the functionalities and interfaces described in the standard can be used in the PBNM
system.

243142121 Registration interface

After obtaining a proxy supplier from the event channel, the PDP is alowed to subscribe to the events
it is interested in. Getting the proxy supplier involves two steps. first, the PDP gets a consumer admin
object from the channel and then the operation obtain_notification_push_supplier is invoked on that
object to request an structured event supplier. Finaly, the PDP connects itself to the channel using the
connect_structured_push_consumer method found in the StructuredProxyPushSupplier interface.

interface EventChannel {
/...
ConsumerAdmin get_consumeradmin(in AdminID id) raises(AdiminNotFound);

}

interface ConsumerAdmin {

12 Furthermore, COPS does not support the interaction of a PEP with several PDPs using the same client-type.

For clarity reasons, the inheritance references have been removed. The method definitions are only intended to
beinformative. Please refer to the CORBA Notification Service for acomplete description of the interfaces.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 76

I...

ProxySupplier obtain_notification_push_supplier(in ClientType ctype, out ProxylD proxy_id)
raises (AdminLimitExceeded);

/I The PDP should set the ctype field to the value STRUCTURED_EVENT

/...

}
interface StructuredProxyPushSupplier {

void connect_structured_push_consumer(in StructuredPushConsumer push_consumer)
raises (AlreadyConnected);

Therefore, the PDP must implement the StructuredPushConsumer interface which includes one
function to disconnect the PDP from the channel.

interface StructuredPushConsumer {
/...

void disconnect_structured_push_consumer();

The PDPs have then the possibility to know al the available event types, i.e. the events that could be
raised by the PEPs. The ligt is obtained by caling the method obtain_offered_types on the
ProxySupplier interface.

interface ProxySupplier {
/...
EventTypeSeq obtain_offered_types(in ObtaininfoMode mode);

The CORBA natification service implements event subscription through filter objects. The PDP
informs to the channgl about the events it wants to receive by configuring afilter and attaching it to the
proxy supplier. Only events matching the filter rules will be forwarded to the PDP.

Filter configuration will be redlised by the PDP depending on the conditions appearing in the policies
whose deployment it is responsble for. The FilterFactory and Filter interfaces [65] will dlow
specifying the structured events to be filtered.

Once the filter has been set up, the PDP attaches it to the proxy supplier by calling the add filter
operation on it. PEPs are not involved in any of these procedures and do not have to implement any
filtering related mechanisms.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 77

24.3.1.421.2.2 Publication interface

Publishing events is a means to inform to the PDPs about the available monitoring information. The
PEP will be connected to the event channdl by means of a proxy consumer. This object is obtained
following the same steps as described formerly. After getting a supplier admin reference from the
event channel, the PEP must invoke the method obtain_notification_push_consumer. Caling
connect_structured_push_supplier on the returned object will connect the PEP to the channel.

interface EventChannel {
/...
SupplierAdmin get_supplieradmin(in AdminID id) raises (AdminNotFound);
I...
}
interface SupplierAdmin {
/...
ProxyConsumer obtain_notification_push_consumer(
in ClientType ctype,
out ProxyID proxy_id) raises (AdminLimitExceeded);
/...
}
interface StructuredProxyPushConsumer {
/...
void connect_structured_push_supplier(in StructuredPushSupplier pushSupplier)
raises (AlreadyConnected, TypeError);
/...

The PEP must then announce the event types (and relevant information) it is prepared to deliver. Since
the proxy consumer returned by the channel implements the NotifyPublish interface, it is enough to
cal the method offer_change on that object.

interface NotifyPublish {
void offer_change (EventTypeSeq added, EventTypeSeq removed)

raises (InvalidEventType)

Publishing an event does not imply it will be autométically delivered. The notification service offers
services that alow the PEP to know whether there is any PDP interested in the events it is capable to
produce. Only in such a case the PEP will actually generate the events.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 78

2.4.3.1.5 PDP - Monitoring Service Interface — Int5

2.4.3.1.5.1 Notification interface

The notification interface allows the delivering of events to PDPs through the channel. In fact, the
event will move through severa objects, beginning from the PEP to the proxy consumer and, after
dissemination through the event channel, to the proxy supplier reaching finally the PDP. However,
fortunately this processis mainly hidden.

The only requirement for the PDP to be &ble to receive events is to implement the
StructuredPushConsumer interface. This interface contains the method push_structured _event, that
will be cdled directly by the event channdl.

interface StructuredPushConsumer {
void push_structured_event (in StructuredEvent notification)

raises (Disconnected);
/...

}

2.4.3.1.5.1.1 Event Format

The CORBA Notification Service provides what is called structured events. While not being untyped
events, they enable to map a wide variety of event formats. In our case, it would be desirable the event
fields to correspond to the defined in the policy information base for the domain.

Mapping PIB events to the structured event format is still to be defined for each management domain.

2.4.3.1.6 PDP — PEP Interface

In the PDP-PEP interaction two main scenarios can be distinguished depending on their distribution
among the network nodes. In the first case, the PDP and the PEP appear in different network nodes
whereas in the second one both components are integrated into the same node. Selecting any of the
previous configurations will depend on the functiondity that is to be provided, being both likely to
appear in the FAIN project. Within the IETF framework, the defined PBNM architecture proposes
severad solutions to implement PDP-PEP communication depending on the considered scenario.
Nevertheless, it is our am to develop a framework providing a high degree of location transparency,
accessing the same interfaces both for local and remote interaction.

In order to support the extension of the policy information model as a means to include new types of
policies when necessary, we have based the interface definition in the COPS-PR proposals. This model
aso alows the PEPs to dynamically bind to the existent PDPs, which becomes essential if dynamic
instalation of new components —i.e. elastic management- is to be provided.

The interface definition comprises the policy server interface and the policy client interface
definitions. The PDP should implement the policy server interface whereas the PEP should provide the
policy client declared methods.

2.4.3.1.7 PEP Interface — Int6

The PEP and the PDP components have to interact, in order to evaluate and successfully enforce the
system policies. The COPS-PR protocol, which has been defined by the IETF RAP workgroup, can be
used for the communication between those two components.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 79

COPS-PR dlows for the establishment of a session between a PEP and a PDP, the reporting of PEP
status information to the PDP, the request of a policy decision from the PEP, the download of policy
decisions from the PDP to the PEP.

The operations that need to be supported by the PEP interface are the following:

interface Policydient {

void decison(in ClientType clientType,
in Handle clientHandle,
in PolicyDecision decision,
in boolean solicited)

This operation is used by the PDP to download the policy decision to the PEP. The parameters of this
operation are a client handle, which identifies the request state of the PEP , the policy decision, and the
solicited flag, which indicates if the decision is sent as provisoning and not after a request from the
PEP.

The decison() method can be called synchronously by the PDP in response to a previous request
issued to the policy server interface (outsourcing scenario), or asynchronously to provision policy data
(provisioning scenario) either because of receiving a new policy or as a consequence of detecting a
system state change. The solicited flag distinguishes each of these scenarios.

void synchroniseState(in ClientType clientType,
in Handle clientHandle)

With this operation the PDP requests from the PEP to update its state

void clientAccept(in ClientType clientType,
in Timer KA,
in Timer ACCT)

The communication between the PEP and the PDP is initiated by the PEP, usng a Client-Open
message. The PDP responds with Client-Accept message to confirm the establishment of the session.
The two timer parameters define the maximum intervals for the keepAlive messages and accounting
state updates sent by the PEP.

void clientd ose(in dientType clientType,

in Error errorlnfo)

The PDP may send a Client-Close message, to inform the PEP that it cannot be supported any longer.
This message may aso come as a negative response by the PDP to a Client-Open message previousy
sent by the PEP. The Error parameter specifies the reason that caused the end of the communication.

void keepAlive(in ClientType clientType)

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 80

}

The PEP hasto send KeepAlive messages to the PDP, after specified intervals. When the PDP receives
such a message, it responds by sending a KeepAlive back to the PEP. This mechanism validates that
both sides of the communication are ill functioning, when no other messages have been exchanged
for atime period.

2.4.3.1.8 PDP — PEP Interface — Int7

In this document an outline of the communication interface between the Policy Decision Point and the
Policy Enforcement Point is provided. The interaction based on the methods defined in the interfaces
is depicted in sequence diagrams.

In the PDP-PEP interaction two main scenarios can be distinguished depending on their distribution
among the network nodes. In the first case, the PDP and the PEP appear in different network nodes
whereas in the second one both components are integrated into the same node. Selecting any of the
previous configurations will depend on the functionality that is to be provided, being both likely to
appear in the FAIN project. Within the IETF framework, the defined PBNM architecture proposes
several solutions to implement PDP-PEP communication depending on the considered scenario.
Nevertheless, it is our am to develop a framework providing a high degree of location transparency,
accessing the same interfaces both for local and remote interaction.

In order to support the extension of the policy information model as a means to include new types of
policies when necessary, we have based the interface definition in the COPS-PR proposals. This model
aso alows the PEPs to dynamically bind to the existent PDPs, which becomes essential if dynamic
instalation of new components —i.e. elastic management- is to be provided.

The interface definition comprises the policy server interfface and the policy client interface
definitions. The PDP should implement the policy server interface whereas the PEP should provide the
policy client declared methods.

2.4.3.1.8.1 Policy Server Interface

The policy server interface contains session management functions as well as policy information
exchange methods. The session concept is a means to identify concurrent interactions which relate to
different client types —as defined in COPS PR— implemented by the same policy enforcement point.

A policy client initiates a session by issuing an open() cal. The parameters identify the client type
and provide a unique identifier that designates the PEP within a domain. Additional information about
the policy types the PEP supports, default policy configuration, etc, can be included in the client
specific information fidld**. All these data is registered locally by the PDP.

The policy server can either accept or reject the open request. Regjection is explicitly signalled by
rasing the rej ect ed exception. If the function returns normally, the open request has been
implicitly accepted. Ther ej ect ed exception provides an error code pointing out the reason.

t ypedef unsigned short CientType;
t ypedef sequence<octet> CientSl;
typedef sequence<ClientSlI> CientSlList;
struct Error {

unsi gned short Error Code;

1% The client specific information format depends on the client type and should be provided as an interface
definition extension.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 81

unsi gned short Error Subcode; };

exception rejected {
Error reason; };

interface PolicyServer {
/1 1f not rejected, it has been inplicitly accepted.
void open(in clientType CientType,
in PEPIdentifier string,
inclientinformation CientSlList)
rai ses (rejected);
void close(in clientType CientType,

in reason Error);

The cl ose() method is invoked by the policy client to inform that the specified client type is no
longer supported. As a consequence, the session for that client type is closed. Additiond information
about the reason is provided.

The methods r equest () and report () reate to policy digtribution. The method r equest () is
invoked by the policy client when it is unable to manage a detected configuration change with the

previoudy provisoned policies. The field r equest Type identifies the kind of request, while the
cl i ent Handl e isan opaque identifier used by the PDP solely to keep track of the request state.

The PEP should call report () inresponse to a decision coming from the PDP. Ther eport Type
informs whether the directives have been successfuly followed or not. The r eport () method can
aso be asynchronoudy called to provide monitoring information

Finaly, the method deleteRequest() has been added to alow the client to remove a request state kept
in the server.

voi d request (in clientType CdientType,
in clientHandl e Handl e,
i n request Type Request Type,
inclientlInformation CientSlList)
rai ses (rejected);

voi d report (in clientType dientType,
in clientHandl e Handl e,
in reportType Report Type,
inclientlInformation CientSIList);

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 82

voi d del eteRequest(in clientType CientType,
in clientHandl e Handle); //reason?

2.4.3.1.8.2 Policy Client Interface

The policy client interface contains the cl ose() method that allows the PDP to close a session for a
given client type. Therefore, a session can be closed either by the PDP or the PEP.

The deci si on() method can be called synchronously by the PDP in response to a previous request
issued to the policy server interface (outsourcing scenario), or asynchronously to provision policy data
(provisioning scenario) either because of receiving a new policy from the Network Management Node
or as a consecuence of detecting a system state change. The sol i ci t ed flag distinguishes each of
these scenarios.

Both methods have been further described in section O.

2.4.3.1.8.3 Complete IDL definition of the interfaces
Complete IDL definition of the Policy Server and Policy Client interfaces.
nodul e PBNM {

typedef unsigned short Cient Type;

/1l Several request types could be defined dependi ng on
/'l requirenents

typedef enum { CONFI GURATI ON} Request Type;

typedef enum {DECI SI ON, ERROR} Obj ect Type;

typedef enum {NULL, | NSTALL, REMOVE} ConmandCode,;

t ypedef enum { SUCCESS, FAI LURE, ACCOUNTI NG Report Type;

/1l The actual Policylnformation structure MJST be given for
each

/'l client type.

t ypedef sequence<octet> Policylnformation
typedef sequence<octet> Handl e;

typedef sequence<octet> dientSl;

struct Decision {
CommandCode command;
unsi gned short fl ags;
Pol i cyl nformati on policylnformation; };

t ypedef sequence<ClientSlI> CientSlList;
t ypedef sequence<Deci si on> Deci sionLi st;

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 83

struct Error {

unsi gned short Error Code;

unsi gned short ErrorSubcode; };

exception rejected {

Error reason;

interface PolicyServer ({

/1 1f not rejected,

b

it has been inplicitly accepted.

void open(in clientType CientType,

in PEPIdentifier string,

inclientlInformation CientSlList)

rai ses (rejected)

voi d cl ose(in clientType CdientType,

in reason Error);

voi d request ([
[
[

rai ses (rejected);

voi d report([

voi d del et eRequest (

b,

53 35 35S O

> 35 S S

clientType dientType,
cl i ent Handl e Handl e,
request Type Request Type,

clientiInformation CientSlList)

client Type dientType,

cl i ent Handl e Handl e,

report Type Report Type,
clientiInformation ClientSlList);

in clientType CdientType,
in clientHandl e Handle); //reason?

2.4.3.1.9 Policy Database Interface — Int9

Policy database access interface provides basic functions such as retreive and store data. In addition
from view point of authorisation each component might need to make connection with policy database
component before they access policy data. The definition with IDL below includes only basic

functional interfaces.

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 84

interface AccessPolicyDB{

PolicyDB open_policydb(in policydb_server); //AN operation to connect with policyDB
server

void close _policydb(in policydb); //AN operation to disconnect with policy database server

get_policyobject(in policy_id); //An operation to retrieve policy data object
set_policyobject(in policy_id); /[An operation to store policy data object
delete policyobject(in policy_id); /IAn operation to delete policy data object

In the following we just show two most important interfaces. PolicyContext and PolicyDirContext.

PolicyContext is the core interface that specifies a policy naming context. It defines basic operations
such as adding/deleting a policy, adding a name-to-object binding, looking up the object bound to a
pecified policy name, liging the bindings, removing a name-to-object binding, creating and
destroying sub-palicy etc. [56]

The PolicyDirContext interface enables the directory capability by defining methods for examining
and updating attributes associated with a policy.

public interface PolicyContext {
public void addPolicy(Name fainPolicyName) throws NamingException;
public void deletePolicy(Name fainPolicyName) throws NamingException,;
public Object lookup(Name fainPolicyName) throws NamingException;
public void bind(Name fainPolicyName, Object obj) throws NamingException;
public void rebind(Name fainPolicyName, Object obj) throws NamingException;
public void unbind(Name fainPolicyName) throws NamingException;

public void rename(Name fainPolicyName_old, Name fainPolicyName_new) throws
NamingException;

public Context createSubpolicy(Name fainPolicyName) throws NamingException;
public void destroySubpolicy(Name fainPolicyName) throws NamingException;

1

public interface PolicyDirContext extends PolicyContext {
public Attributes getAttributes(Name fainPolicyName) throws NamingException;
public Attributes getAttributes(Name fainPolicyName, String[] attrlds) throws NamingException;

public void modifyAttributes(Name fainPolicyName, int modOp, Attributes attrs)
throws NamingException;
public void modifyAttributes(Name fainPolicyName, Modificationltem[] mods)

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 85

throws NamingException;

2.4.3.1.10 External Interaction Requirements

2.4.3.1.10.1 Interaction Requirements Between the Network and the Element Level
(Int8)

The interaction requirements between the Policy-based Active Network Management (PBANM)
system and the Policy-based Active Network Element Management (PBANEM) system can be easily
split in two main groups of requirements. Those needed to alow the network level to send policies to
the ement level, and those needed to allow the network level to receive information from the network
level.

In the next two section, we will describe in detail how these interactions are done, and which
requirements are necessary to achieve interoperability between both management levels.

2.4.3.1.10.2 From Network to Element Level

The network level will send his orders to the eement level in the form of policies. Therefore, we can
clearly obtain two main requirements from here in order to achieve interoperation, these are, have a
common XML syntax of the policies, and agree in away of transporting these policies.

The first requirement, common XML syntax, can be further divided in two sub-requirements, have a
common knowledge of the FAIN Information Mode, and a common XML-Schema representing this
Information Modd. The information model, will determine which policy classes, eg. conditions,
actions, can be sent, while the XML-schema determines how an XML policy will represent the
information of these policy classes.

Both, the FAIN Information Model, and the XML-Schema, can be found within this document,
therefore, interoperation is achieved regarding the XML policy syntax.

However, to achieve complete interoperability from the network level to the eement leve we till

have to find a common way of transport. Several possibilities can be found for carrying policies
between different levels: mobile agents, active packets, XML-RPC [40], SOAPRPC [39]. In FAIN, the
mobile agents approach will be followed. The mobile agents approach has severa advantages against
the others, some of these are:

The mobile agent carries additional information regarding the policy as a whole. For
example, whether the policy is encrypted, authenticated, both, none, the security keys, information
about the PDP that has to process the policy, etc.

One mobile agent can carry severad policies and apply them atomicaly or in severd
PBANEM nodes.

The network level does not need to remotely access the element level interface, it just sends
the mobile agent and waits for an enforcement result (if needed).

Using mobile agents as transport of policies solves many interoperation issues as well. Basically, the
only requirement is that both levels make use of the same mobile agents platform.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 86

2.4.3.1.10.3 From Element to Network Level

The Network Management Level will receive dl the management information from the element level
in the form of event reports. Moreover, the network levd is able to determine which events it wants to
receive (by setting the appropriate policies within the PBANEM). For example: the network leve
sends a policy that indicates to the element manager that it should send to the network manager events
every time a policy is correctly enforced (or when the element manager can not enforce the policy for
any reason). Also, it can send a policy that determines that the element manager should send an event
when an specific fault occurs, then when the element manager receives that event it might react
realising the correspondent configuration changes.

Following this approach implies that we have one nain interoperation requirement, that is, specify a
common syntax for event reports and its mapping to XML and XML-Schema as we have done with
palicies. In the appendix (see R12-Appendix), an example of event report in XML and XML-schema
isgiven.

The structure of classes that represent the types of events that can be send between the element level
and the network level are described below. These are al abstract classes from where concrete,
instanceable classes have to derive from extending the properties of the abstract classes to its
necessities. As an example, an instanceable classis given as well.

CLASS fainEvent
Description:™

Abstract=True

Properties:
CreationClassName //String that identifies the name of the class of the instance
EventName /IString that identifies the instance of the event class
Resourceldentifier I/ list of strings identifying the resource that sent the event
CorrelatedEvents /st of strings that identify events that are somehow related with this one

CLASS fainFaultEvent:fainEvent
Description:™

Abstract=True

Properties:
probableCause /IString that identifies the probable situation that caused the event
perceivedSeverity /Istring that identifies the severity of the fault
affectedResources /llist of identifiers of resources affected by the fault

CLASS fainRCReportEvent:fainEvent
Description:™

Abstract=True

Properties:

resourceComsumption //This property carries a list of values regarding the consumption of resources per user

CLASS fainMonitoringEvent:fainEvent
Description:™
Abstract=True

Properties:

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 87

monitoredValue INlist of properties-value pairs monitored from the element level

/[Example of instanceable event class.

CLASS fainServiceDownEvent:fainFaultEvent

Description:™

Abstract=False

Properties:
relatedServiceComponents /st of strings identifying components that interact with this one to offer a service
AssociatedVE /Nist of identifiers that determine the Virtual Environment where that service run

Additionallnfo /Istring with additional information regarding with the fault occurred.

2.4.3.1.10.4 Interaction Requirements Between the NMS and the ASP (Int11)

The Network Management System (NMS) needs to interact with the ASP system under three possible
situations, to upgrade the management system itself, when a serviceis required and has to be installed
in the active network, and when an active packet needs some active code running in an ANN to be
processed correctly and request the downloading, or instalation, of this code.

In the first case, the NMS will ask the ASP to download the necessary blocks in the appropriate
interface that may be pointed by the management system. The interaction requirements imposed by
this situation are quite straightforward. The ASP needs to offer an interface to the management system
where a component download can be requested. We may give, as optional parameters, a pointer to the
“location” where the code has to be downloaded to, and a reference to an specific code server where
this code can be found.

The second situation where there will be an interaction between the ASP and the NMS is when a
policy of the kind: “if flow=X then treat it with service Y” has to be processed by the management
system. In this case, the NMS should reserve the computing (and probably bandwidth as well)
resources needed by serviceY and flow X respectively. The network management system will need to
interact with the ASP in order to determine which code modules should be installed, where, and which
resources should be reserved to each module.

In order to obtain this information, the NMS will need to access an ASP interface. It will pass to the
ASP the identification of the service, and optiondly, the resources it has requested (this information
can be useful to the ASP in order to provide one code verson more powerful but more resource
consumer as well, or another code version much lighter) and the type of VE that are available. The
ASP will answer to that request with the actual code modules that should be installed, the type of ANN
(or VE) where they should run, and possible dependencies between them and other modules.
Optionally the ASP can provide as well, information about the minimum resources that these code
modules might need. The NMS will use this information to find the appropriate nodes where the code
should be ingtalled.

Once the resources and the modules have been determined, the NMS will reserve the appropriate
resources (if there are enough resources and no conflicts with other policies). If the reservation of
resources have succeeded, the NMS will contact the ASP to request the installation of the service in
the node. In order to be able to make such a request the ASP has to offer an interface to the NMS
where active code can be requested to be downloaded in an active network node. The NMS will need
to supply a pointer and a credential, in order to alow the ASP to ingtall the service in the correct place
(pointer), and to allow the services to access their assigned resources.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 88

The third possible scenario where the NM S and the ASP system might interact is when a packet points
to (or carries) an active code to be processed with®. In this case, the active service provisioning
facilities within the Active Network Nodes will send a request to the NMS asking if the code can be
installed with the requested resources or not. The NMS will then make a decision and answer and
realise the appropriate configuration actions according to that decision (i.e. if the code is allowed to be
installed the appropriate resources have to be reserved to that code). Once the resources are reserved
the NMS will answer positively to the service provisioning facilities of the ANN, which will download
and ingtall the active code to process the packet.

This third scenario implies, basicaly, two interactions between the NMS and the ASP: the request and
the response. The NMS has to offer to the ASP an interface where the ASP can request for a decision
about the ingtdlation or not of some code with its assigned resources. The ASP has to provide
information about the code, the resources requested, and a credential of the user who sent the code, in
order to alow the NM S to make a decision.

The response from the NM S to the ASP, has to give information regarding the decision taken (yes/no)
and if the response is positive, it needs to provide as well, a pointer to where this active code has to be
ingtalled.

2.4.3.1.10.5 IDL- like required methods description
Thisinterface will be called by the NMS in the first situation (to upgrade the NM S itself).

interface ASP{

void downloadReq(in:CodelD string, in:Credential Credential, in:Pointer string);

The parameters that would be required for this method should carry information related with:
CodelD, which will be a string identifying the needed code package.

Credential: information regarding the principal associated with the principal who made the
request.

Pointer: is a string that just indicates to the ASP the place (e.g. a directory) where the
package should be downloaded.

For the second situation, the required method will be dightly different.

interface ASP{

void serviceMap(in:ServicelD string, in:Credential Credential, in:ReqResources ResourceList,
out:CodeModulesinfo CodelnfoList);

}

The parameters that would be required for this method should carry information related with:

Only when the active code requested will be used to process a flow of packets. In the capsule approach it is not
feasible, yet desirable, to be constantly requesting the NM S for a decision.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 89

ServicelD, which will be a string identifying the service about which we are requesting
information.

Credential: information regarding the principal associated with the principal who made the
request.

RegResources: this parameter will carry information about the resources requested to that
service.

CodeModulesinfo: this parameter will be a list of Codelnfo structures. Each of these
structures will carry information regarding: the code module that should be installed, the type of ANN
and the VE where it should be installed, dependencies with other code modules and optionally the
minimum recommended resources for that code module.

In the third stuation, we have to think in the method offered by the NMS to the service provisioning
facilities:

interface NMS{

boolean installACReq(in: Codeld string, in:Credential Credential, in: Resources ResourcelList, out:
Pointer)

}

The method returns a boolean that tells if the reservation has been done or not.

The parameters of the method are:
CodelD, which will be a string identifying the needed code package.
Credential: information regarding the principal associated with the principal who made the request.
ResourcelList: will be a structure reflecting the computing resources requested.

Pointer: A pointer to where the code should be installed.

2.4.3.1.11 Interaction Requirements Between the RCF and the NMS (Int10)

2.4.3.1.11.1 Introduction

The scope of this document is to provide the functiona requirements from the PBANEM framework
to the RCF and partidly to identify their interrelation. This is crucid because it will establish up to a
great extent the interface needed between the PBANEM and the RCF. One of the main goals of active
networking is to incorporate QoS-aware applications. This includes certain steps, such as admission
control, resource reservation, differentiated class of service, packet marking, congestion avoidance,
priority-based queuing.

In the remainder of this document, we will try to address most of these issues, from the scope of the
interface requirements.

2.4.3.1.11.2 Requirements

2.4.3.1.11.2.1 Management/Rcf Interface for accounting

The management framework uses high-level policies that describe certain actions, such as resource
alocation, access control etc. These policies are trandated into lower level instructions by the Policy
decision point (PDP), which feeds one or many Policy Enforcement Points (PEPS). In other words,
inside the PDP the policy istrandated into a set of commands that is understandable by the appropriate
PEP. The PEP communicates with the physical or logical resources of the active node through the
RCF interface. This interface will be described in this document as the Management-RCF Interface
(also see Figure 35-by courtesy of GMD).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 90

In RCF there is a hierarchical categorisation of resources. Resources are firstly allocated per VE, then
these resources are split to ones allocated per EE. There is adso the notion of resource allocation per
application, or per user.

The above implies that the granularity of resour ce monitoring that is responded from the RCF back to
the element management system differs. There should be responses per VE, per EE, per application, or
per user. This also means that the categories of resour ce accounting (based on IDs) inside the element
database must be per VE, per EE, and per application/user.

2.4.3.1.11.2.2 Fault Management

The Management/RCF interface must include methods that help to act against unexpected,
troublesome situations.

When an active node breaks down for example, (the active node is disconnected from the management
system), the RCF Resource manager should store the configuration status of the active node, and then
it must generate a recovery report to the PBANEM system when the connection is restored. A
necessity for the RCF component is also to make periodical backups of the resource alocation table,
in case the RCF itself brakes down.

When the monitoring facility of the RCF redlises that a particular portion of code misbehaves, the
monitoring mechanism of the PBANEM system should be notified immediately. Thus, a significant
requirement is that the RCF component(s) (Resource manager or policy targets), must be able to send
events asynchronously to the PEP. The PEP then informs the PEP manager of the PDP, and the
appropriate fault management policy is transferred from the database and applied to the faulty node.

For example, a policy might dictate that if the difference between the agreed level of resource usage
according to the SLA and the actua one is big (a threshold needs to be set), the RCF framework is
instructed to stop the code on the fly. If the difference between the agreed level of resource usage and
the one being used is not very big, the user on behalf of whom the code is running, could receive a
warning from the PBANEM system. As a note, in management parlance we regard the policy targets
identical to the logical-physical resources.

Moreover, the PBANEM must be able to specify to the RCF the situations (conditions) that cause an
event to be sent (from the RCF to the PBANEM).

The picture below shows how management is performed in al three levels (Network management
level, network element level, active node leve).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 91
Network
management
level
Customer |
domain ntl Pollcy-b&d Active
Network Element
Credential Management System
Check
Secwity | tTR2 /| O\ N
PDP (Domain n) i
i PDP (Domain 1) : PDP (Domain 2) i 5
: Policy Conflict Do
i Check i b Element
! i . management
i e F level
i PEP e PEP L
Monitoring Service
* o
(RCF Interface \)
i
Resource
. . Node
Monitor | manager Poli
module MIB | Torgas Oueves management
i s Routing
Control classifier | shaper table level
module scheduler [others 1
Figure 35 - Phase one scenario
Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 92

I
[
PEP
MEP
(RCF Interface)
I
Resource | = Node
Monitor | manager MIB Policy queues
module Targets management
R Routin
" 9 level
Control classifier | - shaper table
module scheduler | others 1

Figure 36 - Phase 2 scenario

In the second version of the management framework, the node management level may be similar to the
one shown in Figure 36. What has basically changed from the first version, is that the PEP now resides
at the node managemert level. Possibly, in an attempt to make the node even smarter, some basic PDP
components could reside at the node level as well.

2.4.3.1.11.2.3 Configuration management
The configuration management functionality could be carried out in three different ways:
Provisoning, signdling and self-adaptation.

In the provisioning scenario, either the customer or the network manager, send policies to the network
element in order to configure the active node’s resources. So the PBANEM system must support the
necessary mechanisms for QoS provisioning: IntServ, Diffserv. In the signalling scenario, the policy
target receives areservation request, (an RSV P packet) and passes the request to the element manager.
In the self-adaptation scenario, it is the PBANEM system itself that reconfigures the resources, after
detecting a change on the network status.

Considering the above we can conclude that the RCF system should (when suggested by policies of
the PBANEM) be able to identify different flows based on certain fields of the packet header such as
the source/destination | P addresses, the protocol used, or the source/destination ports).

Moreover:

The Interface between the PBANEM system and the RCF must allow the control of the
complete lifecycle of both the VEs and the EEs. This means that the PBANEM
framework is responsible for creating, modifying, deleting VESEEs.

The RCF system is responsible for the resour ce allocation to the VEs and the EEs.
By resources we mean both computational and communicational, physical and logical.

Thus the RCF should dlow the reservation of bandwidth resourcesto flows, aswell as
the assignment of flows to EEs. The RCF is aso responsible for the access and the
modification of the routing tables on a per flow granularity.

The RCF framework must be able to perform priority based/separate queuing, for
performance critical applications.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 93

The installing and removal of code within the VE can be thought of being a ASP
issue, so the interface must allow these actions as well.

The interface should bethe same for every VE.
When the authentication engine gives the OK, the PBANEM system

after checking the PBANEM database, can dictate the level of NodeOS
functionality each VE can have access to. After that is done, the VE does
not have to interact with the PBANEM system on that matter again, until

the session is over.

2.4.3.1.11.2.4 Performance management
The active node should offer information about the cur rent status of resour ces inside the node.

It should provide information about the status of the computational resources, both in total and per
flow. For example this includes the CPU use percentage, the used/free memory, used/free storage
space, the number of threads in the node, the number of threads per execution environment etc.

Also, information is needed about the communication resources and the forwarding status. This
includes, used/free bandwidth, queue status, dropped packets, per flow of packets.

The performance management can in that sense be very helpful in preventing congestions(congestion
management).

2.4.3.1.11.2.5 Security management

When a resource reservation is requested to the management system, the management/RCF interface
must provide authentication information of the requesting principal to the management system.

This is the so-called access control, and should be performed by the security framework which needs
to reside both in the PBANEM system (user-access management), as well as in the active node. (If
these are implemented in different physical nodes of course.)

2.4.3.1.11.3 Scenarios

The understanding of the whole procedure will be better through scenarios. Lets take for example a
signdling and an EE-creation scenario.

2.4.3.1.11.3.1 Signalling scenario

The goal of this scenario isto show how the node can reserve resources, say bandwidth, requested by a
signaling packet (i.e. an RSV P packet).

1.- An RSVP packet arrives at the active node(policy target). The signalling-reservation capable policy
target sends the query up to the appropriate PEP along with a credentia of the actor who wants to
reserve the resources. This credential ould encapsulate the ID of the user who wants to reserve
resources. As areminder, al users and al resources are represented by a well-known 1D, which are al
stored inside the PBANEM database.

2.- The PDP will check if there is any policy in the databese alowing that customer to reserve node
resources, based on the ID that the user possesses.

2.1.- If the customer is not alowed to reserve node resources an error message is sent back to
the PEP that sent the query. The PEP informs the node resource manager not to grand any resources
for that particular ID.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 94

3. - If the customer is allowed to grand resources, the PDP will then ask the PBANEM database about
the resources already assigned to that customer. The PBANEM monitoring mechanism will also ask
the RCF monitor module, which resides at the node level about the actua resource consumption of the
user.

3.1.- If the requested resources plus the resources aready assigned/consumed are higher than
the maximum resources alowed, an error message is sent back to the PEP. (Thus both the Monitoring
mechanism of the RCF framework and the PBANEM database need to be consulted).

4.- The PDP tells the PEP to realise the correspondent reservation actions.
5.- Finaly, the PDP informs the network manager of the actions taken in the resources of the node due
to the successful processing of the request.
2.4.3.1.11.3.2 EE creation scenario
The EE creation scenario is part of the configuration management and it is shown below:
1) A user requests the creation of an EE.

2) The PBANEM system checks existing policies to see if the user who has made the request has
the necessary privileges and if there are sufficient resources in the node for this EE. This
means that the functionality of the privileged EE, who had the task of controlling the lifecycle
of al EEs, is now performed by the PBANEM system.

3) If the user has no privileges whatsoever to install an EE, an error message is send back.

4) If the user has the necessary privileges, but there are not enough resources inside the node,
then an aternative node can be proposed by the PBANEM.

If the user has the necessary privileges and there are available resources, the EE is created.
2.5 R12 APPLYING THE ARCHITECTURE TO ELEMENT AND NETWORK LEVEL
2.5.1 Specific issues for the architecture at element level

2.5.1.1 Introduction

The purpose of this document is to remind ourselves of the PBANEM basic functiondlity and to
suggest some additional functiondity that will possibly be needed in the future.

2.5.1.2 Functionality of the PBANEM

PDP: Receives palicies from the customer or the NIP and trandates them into a PEP-understandable
format.

PEP: Receives policies from the PDP and transfers them to the policy targets.
Policy Targets: Physical and/or logica resources that reside at the node level.

Monitoring Service: Receives conditions from the PDP and monitors them in order to become true.
When they do, it notifies the PDP. The monitoring service is in close co-operation with the monitoring
module of the RCF.

Database: Stores policies, users credentials, etc.

2.5.1.2.1 Configuration management
The configuration management functionality needed is.

QoS-Provisioning: Either the customer or the NIP send policies to the network element in
order to configure the active node’ s resources.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 95

Signalling: The policy target receives a reservation request, (an RSV P packet) and passes
the request to the el ement manager.

Sdf-adaptation: It is the PBANEM system itself that reconfigures the resources, after
detecting a change on the network status.

2.5.1.2.2 Fault management
The fault management functionality needed is:

Asynchronous events are sent from the active node to the PBANEM, in the case of an
emergency.

Precondition: The PBANEM should be able to register conditions to the active node
through the RCF interface.

Event correlation and event filtering mechanisms can be included, in order to reduce the
management data and to optimise network performance dynamically.

Policy conflict resolution.

2.5.1.2.3 Delegation management

It will be the case when an active node will not be able to accommodate al the resource alocation
requests that may receive. In such a case, the management system will have to decide to accommodate
part or all of the requested resources to a neighbouring node. What is required now, is an entity that is
delegated the responsibility to enforce the policy to the other node. For example, an intelligent agent
can be delegated the access rights from an active node, so that it can instruct another node to accept the
incoming traffic.

Alternatively, the node that will be assigned the burden of accommodating the resource alocation
request, can be of adifferent physical domain. In such a case the network level framework needs to be
notified.

In any casg, it is clear that the active node cannot possibly have any knowledge as to whether the
neighbouring or any other nodes have sufficient resources. Probably, for nodes that are inside the same
physical domain, the PDP manager can resolve thisissue.

2.5.2 Specific issues for the architecture at network level

The generic architecture presented in the previous chapter has to be adapted to the specific
functionality needed at each management level. In this section, we are going to study how this policy-
based management architecture is adapted to Network Management Leve functionality.

In chapter 2.3, a number of functionality requirements to the network management level have been
stated. Most of them are intrinsically supported by the architecture proposed, i.e. dynamic extensibility
of the functionality, delegation, customer specific policies support, etc. However, there are some
requirements that are not intrinsically supported by the architecture proposed. These are, atomic set of
policies support, network topology and resources monitoring, QoS route calculation, interdomain
management, policy edition and network-to-element policy trandation. The adoption of these
requirements at the network level implies small additions to the functionality of the components of the
architecture, and sometimes the addition of new components.

In the next sub-sections we describe in detail, how the functionality of the different components of the
architecture have to be extended in order to support these network level specific requirements, and if
necessary which new components have to be added to the architecture.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 96

2.5.2.1 Policy Editor

The Policy Editor component has to be added to the architecture described in chapter 2.4, in order to
support the edition of policies. This component offers a GUI both to the User Domain and to the
Network Administrator. With this GUI the User (i.e. a NSP or another pincipal acting as a ANSP
through delegation) will be able to edit policies to configure its aready assigned resources (e.g. inject
new service components to reconfigure the behaviour of the node against an application) and introduce
them to the Network Management System with the appropriate format.

2.5.2.2 Monitoring System

The Monitoring System functionality specified for the architecture described, will fit basicaly the
requirements needed at the network level, with the particularity that the resources to be nonitored
now, are network level resources (e.g. network topology, available network resources and status: links,
routes, trunks...).

2.5.2.3 Resource Manager

The Resource Manager component supports a network level specific functionality (i.e. network
topology and QoS route calculation) that is why we add it to the architecture presented in chapter
2.4.3. The Resource Manager is responsible of checking whether there are enough resources in the
network as a whole for a new flow with QoS guarantees, and if so, which is the route for this flow. For
being able to develop its functiondity the Resource Manager will have to access the monitoring
system, in order to obtain information about the network topology (physicd and logica) and resource
consumption. The network operator uses this component to clarify whether or not he has the
appropriate resources for the execution of the service. In cases that it identifies that the consumer’s
request cannot be satisfied (lack of resources, low QoS etc.), he informs the User about the rejection of
the service.

Network Resource might hold physical resource and logical resource. Network service requirements
may first be considered as logicd resource, then mapped to physical resource with using information
of network topology and resource capacities.

2.5.2.4 Interdomain Manager

In a multidomain network, it is unredlistic and unscalable to assume a single point of administrative
control for the entire network. A scalable dternative direction is to add a new component in the model
that would be responsible for the interdomain interactions between the network operators of Fain
Enterprise Model. This new component is the interdomain Manager. Interdomain Managers must be
relied on bilateral communication for exchanging policy information between independent domains.

Each domain is placed under the administrative control of the Network Manager Node. Adjacent
domains negotiate in order to determine the nature and extent of traffic that will traverse across their
common boundaries. As part of this process, each domain describes its requested level of servicetoits
neighbor’s Network Manager Node through the interactions between the interdomain Managers.
Interdomain Manager provides an admisson decison based on its resource availability, bilateral
financid arrangements, and the set of adminigtrative policies in effect. In order to support the
interdomain management interactions he must be in charge of requesting other domains resources
(requester role) and answering to other domains requests (responder role) when interdomain services
should be provided.

Condder, for example, a service level agreement (SLA) between two neighboring domains that
specify a premium service, which guarantees packet ddlivery for a given traffic profile by reserving the
required resources for this traffic. In order to support such a premium service, the Interdomain
Managers in these domains should request form their PDPs to determine which PEP is going to
enforce the traffic control agreement (TCA) to the appropriate edge PBANEM node, regarding
resource reservation for the specific traffic that is represented by a set of traffic control parameters.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 97

In the conceptua hierarchy of the PBNM system an SLA is a network-level element, whereas a TCA
isanode-level element. In the interdomain context, edge PBANEM nodes that are at the

boundary between two domains play a specia role in the enforcement of the SLA between the two
domains. The TCA is essentidly the portion of the SLA parameters that relates to the role of a specific
edge PBANEM as the network front-end.

The Interdomain Manager is conceptualy a policy management entity located in a policy-enabled
domain. It negotiates SLAs with neighboring domains and ensures compliance of the administered
domain with the SLAs contracted. The Interdomain Manager performs three distinct tasks:

Negotiation of SLAs with Interdomain Managers of neighboring domains
Trandation of SLASs. (The SLA Parser will be used for the trandation)
Delivery of the TCAsto the PDP.

Consider the following network topology where domain 1 represents an intranet, domain 2 alocal SP,
and domain 3 a large backbone (tier-1) SP. If we assume that the needs of domain 1 toward domain 3
are satisfied by a 64 kb/s flow of premium traffic, the following operations take place.

First, PDP1 (PDP of domain 1) requests a 64 kb/s SLA agreement. Next, the Interdomain Managerl
(Manager of domainl) requests the SLA from Interdomain Manager2. The Interdomain Manager2
contacts with the PDP2 to perform admission control based on whether there are sufficient premium
resources available, and whether the commercia agreement alows such requests. The PDP will
contact the Resource Manager and tell the Interdomain Manager the result. If the request is admitted,
the Interdomain Manager2 requests from PDP2 to send(through PEP) a TCA derived from the SLA
requested to the edge PBANEM node (its administered edge element node2) and responds positively
to Interdomain Managerl, which forwards the decision to PDP1. This TCA models the traffic to be
transferred from domain 1 via element node2. A smilar TCA is sent by PDPL1 to its administered edge
element nodel, ingtructing it to alow the given traffic to flow out to domain 2.

If premium resources are unavailable, or the request is not supported with the set of agpplicable
commercia agreements and the domain’s policies, PDP2 may decide to regject the

Request and notice PDP1 though the Interdomain Managers .The same applies to the relationship
between PDP2 and PDP3. Such a process may be continued several domains further.

The edge node elements administered by the PDPs (such as element nodel, element node2) perform
severa tasksin order to implement the kind of services (differentiated or integrated services).

2.5.25 PDP

The PDP presented in chapter 2.43 has to be dightly enhanced at the network level. Since the PDPis
the core of the architecture presented, it needs to be enhanced to support the new components added to
the architecture.

Thus, the PDP should be enhanced to be able to ask the resource manager for aroute for a new flow
with a certain QoS. This will alow the PDP to take a decison about whether a policy should be
applied and in which nodes it should be applied.

The PDP has to be dightly extended to support interdomain functionaity as well. It needs to
interoperate with the Interdomain Manager component in order to be able to set Interdomain services
for its customers, or other domains customers. Once the Interdomain manager informs PDP that an
interaction with a different domain is going to take place PDP must assign the appropriate edge
PBANEM node and determine the PEP, which is going to enforce the policy task for the
implementation of the service.

Finaly, the PDP functionality has to be enhanced in order to support atomic set d policies. The PDP
has to recognise atomic PolicyGroups, and be able to treat them accordingly. That is, send the policies,
when appropriate, to the correspondent PEPs in order to enforce them, and wait for the
acknowledgement of the correct enforcement o dl policies. If this acknowledgement is not received,
the PDPisin charge of requesting to the PEPs the removal of al policies of the group.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 98

2.5.2.6 PEP

The PEP functiondity at the network leved is, bascdly, the same as the one described in the
architecture. That is, receive the policies to be enforced from the PDP and trandate them into
commands understandable by the policy targets. However, the policy targets of the network level PEP
are the element level management systems. Therefore, the commands have to be sent in the form of
the appropriate element leve policies.

Summarising, the PEP at the network level is particularised to enforce the actions in the policy targets
through the trandation of the network level policies received into element level policies, and sending
them to the appropriate element level management systems.

2.5.3 Interface of the Network Management Architecture to the Service

Management Level
In the following, we will identify functiona interfaces between Service Development/ Operations and
Network/Systems Management System or processes in FAIN. The idea is to concentrate on the
Fulfilllment and Assurance components and functions only. For a full description of the TMF TOM
functions and processes the reader is refered to [2].

The figure below depicts the various processes of the TOM.

Fulfillment . Assurance . Billing
i 1
Sales Order : Problem Cu;t;r;er : Invoicing/
Handling Handling Collections
1 Management 1
Custorther Care Processes !
e e S .
I 1
Service ; Service Service 1 .
Planningand | | F:"erwcs Problem Quality I Rating and
Development My e Management | | Management 1 EhECQLYTHAY
Service Develogment and Operations F'rnnessee'i
== =
N [ri N
etwaork Network atwork r_qemm: etwork
Planning and Provisioning Igventary Maintenance Data
Development MaFgement & Restoration M%nagernent
.
Nwwm :
Telulgernsat 1
ot GBIy 20

Figure 37 - Telecom Operations Map
The subprocesses of the Service level management are the following:

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 99

Service Planning and Development: this process encompasses the planning and
development of both unforecasted service requests and custom service requests. This
process is aso responsible for the planning and implementation of all that is necessary
to ensure that the Service Development and Operations process performs effectively
and efficiently: work center planning and redlization, workforce management,
training, etc.

Service Configuration: this process encompasses the design, ingtallation,
configuration, end to end service testing and activation of service for customers; it
also supports the re-configuration of service (either due to customer demand or
problem resolution) after initial service ingtdlation.

Service Problem Management: this process encompasses reporting on service
problems and trouble performance, isolating the root cause of service-affecting and
non-service-affecting failures and acting to resolve them.

Service Quality Management: this process supports monitoring service or product
quality and cost on a service class basis; it aso encompasses taking appropriate action
to keep service levels within agreed targets for each service class and to either keep
ahead of demand or aert opportune processes to slow sales.

Rating and Discounting: This process encompasses applying the correct rating rulesto
usage data on a customer-by-customer basis, as required for a usage based service,
applying any discounts agreed to as part of the ordering process, applying promotional
discounts and charges, applying outage credits, applying rebates or charges due
because SLAs were not met or exceeded respectively, and resolving unidentified and
zero billed usage cases.

For FAIN, Billing and Planning (for Fulfillment) are out of scope of the project. Therefor in Service
Management we will consider only Service Developmert, Service Configuration, Service Problem
Management and Service Quality Management.

Following interfaces to be provided by the Network and Systems Management (i.e. the Network
Manager component) will be used:

Open_management (out: sess id)

Set/get_configuration(in: sess id, in: { monitoring, resource, pdp, pep}, out: configuration)
Get_configuration_notification (in: sess id, out: configuration)

Digtribute (in: sess id, in: service _code, in: service policies)

Get_distribution_status (in: sess _id)

Close_management (in: sess id)

2.6 R12 - DESIGN OF TESTING ENVIRONMENT AND SCENARIOS

Active networks offer a means whereby new services and network management possibilities can be
dynamically supported by networks. The advantages of such an approach has been discussed in detall
in section 2.1. Having such dynamics is not without potential dangers however, eg. the possibility of
damaging or malicious code insertion, the potential for unforeseen side effects of the code insertion or
the possibility of the inserted code not achieving the desired effects. Various approaches might be
taken to help prevent such undesired behaviours, one that we investigate in this section is an gpproach
based upon testing.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 100

This chapter presents the design of atesting environment for PBANEM system. It is structured as
follows:. section 2.6.1 describes the objective of testing in order to demonstrate the advantages of AN-
based management solution. Section 2.6.2 presents the FAIN methodology, a guideline for designing
PBANEM testing system. Section 2.6.3 discusses an engineering scenario “ Delegated QoS
Management” and its test environment. 2.6.4 describes a Virtual Private Network scenario, proposing
both network level management architecture and element level architecture.

2.6.1 Objective and Scope

From network management viewpoint, FAIN aims to deliver a flexible and customisable solution to
ease management tasks. It enhances the IETF — Policy Based Networking (PBN) approach by Active
Networking technology. Previous chapters present the PBANEM architecture, which is the core of the
solution. Some benefits of such an active solution are explained in detail in previous chapters, eg.
flexibility, extensibility, Automation of management tasks, Delegation, Application-specific
management, Smplified service deployment, Benchmarking, etc. A design of testing system aimsto
demonstrate these benefits as compared to conventional node management.

According to the workplan, in current phase we focus on experimenting active technology, e.g. active
packets, to enhance existing policy-based network management approach. Management of Active
Networks is rather proposed as future work when the infrastructure, e.g. the FAIN active nodes, is
available. This restricts the scope of the current design as follows:

1. we focus on testing the implementation of the architecture and integration of its components into
active node prototypes as available today, such as the ORB-based DPE platform or ABLE.

we separate management of heterogeneous prototypes, leaving interoperability test a future task.
benchmarking with existing PBN products or other AN-based PBN is a pending task.

we focus on testing the feasibility of the PBANEM architecture to realise such benefits as
flexibility by active policies, gpplication-specific management, delegation. Other benefits are left
open, as they either require integration with another case study - ASP, or provision of a standard
network resource interface as P1520-L [7]. These requirements are still unable to fulfil a this
stage.

More specificaly, we will define:

® the test infrastructure that consists of existing AN platforms. Software, hardware, and network
configurations will be described.

" the test targets such as the management functions (e.g. configuration mgmt., performance mgmt.,
or fault mgmt.) and related policies (application-specific policy, QoS palicy, VPN palicy, security
policy, etc.). These functions may be used in particular scenarios, eg. QoS provisoning, to
evaduate the srength and/or weakness of using active technology for network eement
management.

® the test cases including testing individua components, internal/externa interfaces, the integrated
system as specified in the PBANEM architecture. Among the interface tests, external interfaces
will be the key focus. They include interface Int1, Int8, Int10.

® the added value tests, e.g. test the integration with PBNM, test the interworking and interoperation
of active nodes.

Based on this plan we should be able to implement and exercise the test system straightforwardly.
Scenarios will show how the PBANEM works in redity, and the benefits. However the ultimate goal
of designing such a test system is to investigate the aspects that help us to evaluate/revise the initia
PBANEM architecture, and the active node architecture as a whole. Some key aspectsto evaluate are:

1. key functiondity: trandation of high-level SLA information into policy, and then into device
configuration operations with no loss of semantics.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 101

2. condstency of policy decison-making and enforcement across heterogeneous active nodes and
execution environments.

3. interoperability among the deployed services to achieve router-independent PBANEM design
system/module extengbility by dynamic provison

system architecture that accommodates various policy provisoning means and a wide variety of
policy, for example, application-specific policies and operator-managed QoS control policies

usefulness and restriction of using active packets to carry policy data
comprehensive regquirements on the active node interface

security risk raised by alowing customer to manage a partia network via policy

© © N o

conflict between policies to ensure the robustness of system
10. benchmarking measures, e.g. performance, scalability, etc.

2.6.2 CORBA-based Test Methodology

Testing n the active networking domain might be chdlenging due to the high complexity, which is
introduced by risk-taking technical openness such as code injection, dynamic deployment, customer-
involved management., etc.

This core test framework will initidly be based around the testing of the CORBA based systems. This
choice is taken due in part to the wide body of literature [18]-[22] in this area and also due to the
expected technologies that are to be applied in FAIN. That is, it is expected that much of the
functiondlity of the active nodes and their management subsystem will be defined usng CORBA
Interface Definition Language (IDL) specifications. Further the usage of these specifications, i.e. in
implementations, will necessitate the adoption and usage of IDL. In addition, it is expected that the
reference points being developed between the different roles/actors in FAIN by WP2 will aso be
specified in IDL together with appropriate usage/interaction diagrams.

The development of a core-testing framework for CORBA based systems, requires at a minimum that
the testing of IDL interfaces can be achieved. IDL aone provides the basic syntax for communication
between CORBA objects. It does not alow for'® the specification of the ordering of operations,
concrete values and pattern matching of parameters used to test interfaces, i.e. the most basic features
required to test a system where the communication syntax is known. Various possibilities exist for
including such extra information, Message Sequence Charts, UML being two. These two languages
are developed primarily for reasons other than testing however, namely they were developed with
emphasis on requirements analysis and software development more generdly, and not explicitly with
the intention of being languages for testing. The only full-standardised testing language is Tree and
Tabular Combined Notation (TTCN) [23].

Testing can be regarded from numerous viewpoints depending upon how much informeation is
available to the tester during the testing process. On the one hand, the tester might know only the IDL
interface in which case, the system under test can then only be regarded as a black box. No knowledge
of the internal functionality of the system under test is known. Alternatively, if the tester has some
knowledge of the system under test in addition to the IDL description, e.g. knowledge of the alowed
operation ordering or internal decomposition of the system under test then a more detailed and useful
testing process can be achieved. This can be regarded as white or grey box testing depending upon the
additional knowledge.

16 Except for an informal support through commentsin the IDL specification.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 102

In terms of FAIN, the PBANEM under development can be regarded as white box testing. That is, the
interfaces and behaviour of the components are completely available to the tester since in this case, the
tester is the software developer. As aresult, it should be the case that all components should be tested
in FAIN. This includes components that are developed to run upon the active nodes, e.g. the
components that the active nodes support, and components/code to be dynamically deployed on the
nodes.

It should be noted that it is likely that the latter components will aways require testing to be applied to
them before being deployed. Whereas, the former components are more static and hence the testing
process might be complete once the node implementation is complete, i.e. the deployment of code on
the active node does not require that the whole node functionality is re-tested.

Put another way, testing an active node architecture might require ensuring that when a request on an
existing management interface to reserve node resources arrives then the associated node resources
can be successfully reserved’. Testing a component to be dynamically deployed who's functiondity is
to reserve node resources requires only that the appropriate node resource reservation management
interface is correctly invoked with the correct parameters etc.

In work package 4, we focus upon the reservation and monitoring of node resources etc through a
policy based approach. In addition, we extend the basic resource request scenario to multiple
(application specific) resource request scenarios where the policies that are applicable to the users and
applications are the deciding factors on the success of the resource monitoring or reservation requests,
i.e. there might be contradictory or competing policies in place for network resources.

To conclude this summary, the testing scenario and associated testing environment in FAIN emphasise
the testing of the active applications and not smply the testing of the active nodes themselves,
athough the testing of the active applications themselves necessitates a testing of a subset of the active
node also to ensure the active applications demands are met or not.

Interworking test among various scenarios is proposed as future work. A detailed test plan will be
proposed later to include testing internal/external interfaces, components, subsystems, integrated
system and interoperation among heterogeneous implementations.

2.6.3 Engineering Scenario 1 - Delegated QoS Management

2.6.3.1 Test Environment

We plan to use existing active network platform to trial the initial PBANEM prototypes. [24] presents
a state-of-the-art survey of such platforms. Among them, a DPE platform OrbAN is tentatively
selected.

OrbAN as a DPE platform represents an Execution Environment (EE) to deploy and execute new
network services or management functions. It is based on amodular ORB - Jonathan and runs on Java
runtime environment. The interface it offers to new active application developer include those for
resource access, code deployment, and QoS binding. In addition it implements an interface and GUI
for management/operation purpose, e.g. monitoring the resource usage or bandwidth utilisation,
deploying components, etc. The DPE platform runs on a proxy and controls the gigabit router
GR2000. Therefore the proxy and the router together form a virtua active router. The proxy is
normally a PC workstation running Linux, and aso called router controller (rc).

17 assuming of course that the request was avalid one, e.g. from a user allowed to reserve such resources

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 103

The platform is very flexible to implement a network/element management system. Firstly it provides
a life cycle control of components, enabling dynamic plug-in or de-install of new management
functions. With the policy-based interface for router control, it is quite straightforward to implement
new functions like monitoring or resource alocation, etc. The natively supported policy is rule-based
and can be mapped to XML-based policy format. As the interface provides rich features in configuring
the QoS functions, e.qg. packet classfication, marking, priority-based scheduling, it supports advanced
management functions other than mere MIB-based actions such as event trap or status polling. The
platform has been used to develop scenarios for managing network resources, such advanced resource
reservation, Diffserv-based bandwidth allocation, active IP metering, etc.

2.6.3.1.1 Software environment
- JDK1.2, Jonathan 2.0b5, Hypersonic SQL package (tested with hsgl_143)

- OrbAN software including packages ACM, QORB, Bootstrap, RouterResourceManager,
GenericRouter, tools, Wrapper, ReA, etc. For more information, refer to the API guide [25].

- GR2000 that offers a Command Line Interface for QoS configuration.

2.6.3.1.2 Network configuration

L. e e s s !
' Activei !
| 1961684111 poer 1961684122 . 196.168.41.85
i+ | router controller .| router controller | | Management
i (rc-A) (rc-B) ! station
196.168.41.42 : 196.168.41.12 © 196.16941.23 ! 196.168.41.84
! :
-

PC : GR2000 - A] GR2000-B ! PC
workstation ' ! workstation
| IR PR AN T 3 1

1
196.168!53.42 196.168.53.84
i |
1 1
1
; GR2000 - C i
1 1
1

! Active Testbed

__

Figure 38 - Network Configuration for DPE Test Environment

2.6.3.2 Network QoS Provision

According to the methodology described previoudy, we focus on testing the application scenarios
which implement the PBANEM architecture and demongtrates the tangible benefits. Therefore the
generic architecture need to be specialised according to requirements of particular problem domain.
Accordingly the component and interface specification are smplified and become more concrete to
execute reasonabl e test procedure.

Integrated Services (Intserv) and Differentiated Services (Diffserv) are the well-established paradigms
proposed by IETF to achieve end-to-end IP QoS for a wide variety of network applications. However
Intserv is more appropriate for small private networks, but not suitable for use in the core of the
Internet. In contrast, Diffserv was developed to scale well to large networks. They can be seen as
complimentary [26]. The two approaches must be able to coexist and effectively inter-operate.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 104

From the perspective of Intserv/RSVP, Diffserv regions of the network are treated as virtua links
connecting Intserv/RSV P-capable routers or hosts. Within the Diffserv regions of the network, routers
implement specific PHBs for aggregated traffic control. Intserv/RSVP network regions can be v
referred to as ‘ customers' of the Diffserv network regions.

Using Intserv with Diffserv brings some key benefits such as:

- explicit admisson control:. Diffserv networks can only provide ‘implicit admisson contral’,
which might waste resource due to configuration of aggregated traffic forwarding. With
interworking with Intserv, a network may accept or reject these requests in response according to
resource availability for each flow. Thisis *explicit admission control’, which helps to assure that
network resources are optimally used.

- traffic identification/classification: within Diffserv network regions, traffic is allotted service
based on the Diffserv CodePoint (DSCP) marked in each packet's IP header. This requires
classification by marking packet header fields. However, the classification criteria may change
frequently. Reservation signaling such as RSVP or others is ideally suited for propagating the
dynamic modifications.

A genera interoperation framework is depicted in Figure 39.

Diff Serv-capable network

&

IntServ-capable network IntServ-capable network

Figure 39 - Interoperatibility Reference Network Configuration

The reference network includes a Diffserv region interconnecting two Intserv/RSVP regions. In the
interest of simplicity, a single QoS sender in one of the Intserv/RSVP network regions and a single
QoS receiver in the other will be considered. Both sending and receiving hosts use Intserv/RSVP to
communicate the quantitative QoS requirements of QoS-aware applications running on the host. It is
assumed that RSVP signaling messages travel end-to-end between sender and receiver to support
reservations in the Intserv network regions. It is required that these end-to-end RSV P messages are
carried across the Diffserv region.

Intserv/RSVP signalling requests specify an Intserv service type and a set of quantitative parameters
known as a ‘flowspec’. Admission control agents for Diffserv network regions must map Intserv
service types to a corresponding Diffserv service level (DSCP or PHB) that can reasonably extend the
Intserv service type requested by the application. The admission control agent can then approve or
reject resource requests based on the capacity available in the Diffserv network region at the mapped
service level.

Routers at the ingress (entry) and egress (exit) points of the network are known as Edge Routers in
Intserv and Border Routers in Diffserv. In Figure above, ER1 and ER2 are edge routers residing in the
Intserv/RSVP network regions. BR1 and BR2 are border routers, residing in the Diffserv network
region.

One big advantage with active networking is that functions can be dynamic provisioned. This implies
that they can be dynamically instaled, de-installed, configured or even programmed. The actors who
initiate the provisoning procedure can be traditiona roles like network operators and service
providers, or more risky roles such as end-users. Moreover they have more control of the execution of
these functions than today. A life cycle control of the code segment is possible, going far beyond static
software management. This enables a more flexible control and management of networks, either
resources or services. It aso supports delegation of management overhead.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 105

Active Network

Customer Management Node

@ dynamic provison _.%".

IntServ Region DiffServ Region IntServ Region

Figure 40 - Active Network for Intserv & Diffserv Interoperation

The Intserv/Diffserv interoperation framework may be enhanced with AN as depicted in Figure 40. In
this case, the network equipment such as edge routers and core routers are enhanced with dynamic
provisoning capability and can be controlled by end hosts or network management centre. They
become active network element. Thisimplies many benefits such as:

- new admission control algorithms can be ingtaled, experimented, old agorithms can be updated.
- customised or advanced reservation protocols can be deployed where it is need
- PHBs can be updated, re-configured, or de-installed

- bandwidth brokers can be built as the management centre has the either static or dynamic
knowledge of topology, services, resources, network load status, etc., to support network-wide
admission control. Network resource usage/allocation may be optimised.

- gpplication-specific requirements can be respected by re-configuration
Obvioudy it dso implies many risks, for example:

- code from customers may be harmful for network security, e.g. it is malicioudy representing
denial-of -service-attack.

- resource access (computing resources and communication resources) need to be carefully
controlled, as a number of functions share the access with potential conflict.

- code distribution mechanism need to be very flexible, and should not unnecessary restrict the size,
language or capability of code.

For this reason, a strict control by the owner of infrastructure, e.g. network operators, should be
enforced regarding the provisioning procedure, e.g. who is alowed to control which part of networks
and how. In case other actors may control the network, a kind of SLA between network operator and
them is required to be respected and enforced.

Policy is being widdly used as a scalable and interoperable solution for managing network resources.
QoS expectation of applications/end users can be achieved via carefully defined policies. The policies
are enforced inside the network element and customise network state/mechanisms to deliver certain
QoS. However, due to various requirements of QoS from a wide range of customers and their
gpplications, it is unredlistic for a public network operator to define policies and enforce them in the
network in a consistent and interference-free way. That pstifies the observation that policy based
network is currently popular for private networks. For large scae networks, delegation of QoS
management is needed and described in next section.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 106

2.6.3.3 Element-Level Management Architecture

Network Management Node

Customer
domain

2.6.3.3.1 Delegation of Management Task

Int8
Intl

Credential Monitor Service

Check
Security
: Delegation PDP : Intserv Diffserv :
i Lo PDP PDP -—
: Policy Conflict : : Conflict Conflict !
: Check : : rhacle rhacle :
= EE '
Operator PEP :
: Domain | PEP | (eg. ~||Customer | |l
! < classifier] | Domain |

Registration I nt &
Event Channel

Figure 41 - Architecture for QoS Delegation Scenario

Int10

Management delegation is developed to ease management overhead of network administrators and
centralised management system. A few technologies are used for this purpose such as automation by
mobile agents or active packets. Routine tasks are thus moved and performed close to the device, eg. a
router. Redundant information transfer like SNMP status message is thus avoided. For the similar
reasons, we need new technologies for delegating network resource management from network
operators to customers, i.e. corporate users. One of the challenges we face to deploy quality of service
on alarge scale is to accommodate the diverse QoS requirements from different users, applicationsin
a single end-to-end QoS framework. A feasible management model should enable network operators
to be free of this overhead by, for example, securely delegating QoS provision process to those who

require it.

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 107

A secure way of delegation should be based on virtual customer networks, a group of virtua network
resources that is either dtaticaly or dynamicaly alocated to a customer. A customer is then
authorised to allocate/use the resources to its users applications in a customised fashion. A network
operator would be responsible for provisioning these virtua resources and leaves managing of diverse
QoS requirements to customers. More dynamicaly mechanisms can be developed to enable
multiplexing of virtual resources by resource partitioning. Additiondly, the network operator should
ensure that in each network eement, restricted access control is enforced to ensure different
customers QoS mechanisms do not interfere with each other. It is therefore a customers task to
provison QoS mechanism, define policies and enforce them for the applications. The risk failing to
meet a QoS requirement will be limited to a customer’ s resource domain.

2.6.3.3.2 Functionality

Element management address managing the element resources, services, state, etc. The element
management functions can be seen as active application components. They may be dynamic
provisoned to perform FCAPSIlike management tasks. Figure 41 depicts an example of such
functions to deliver end-to-end QoS by interworking Intserv and Diffserv. This architecture represents
an active edge router which sits on the boundary of Intserv and Diffserv. Therefore it contains resource
reservation functions on the Intserv side, and per-hop behaviour on the Diffserv side. These comprises
the PEP group which accesses the ANE to enforce the policy, e.g. set queuing priority on certain
output port for a flow. A unified monitoring module contains generic functions such as timing service
(timer) and metering block. Regigtration of conditions and event triggering are done through a
registration interface and event channel. Both Intserv part and Diffserv part may have access to the
monitor module. Policies are processed separately for Intserv and Diffserv domain. Potential conflicts
and service mapping are resolved inside Intserv PDP and Diffserv PDP. The PDPs basically conduct
admission control tasks.

A privileged delegation PDP controls the virtual network set-up, and configures the device to enforce
access control. It is administrated by network operators via policies which trandates a service leve
agreement of delegation into configuration commands.

Note that this architecture can be smplified as the active core router by keeping Diffserv functions, or
anormal RSV P-capable router in the access network by keeping Intserv functions.

The internal interfaces among the security check block, PDP group, PEP group, and monitoring block
need to be aigned with the design, at least partidly. Additionally, we consider the local repository and
access protocol an implementation decision, thus do not specify them here.

Meta-policy manager is implicit in the architecture. Its task is mainly checking the policy requests
agangt existing meta-policies, which specify who is alowed to degploy what type of policies. It is a
key function in the security block.

The resources inside an active network element are policy targets. They may have internal policy-
enforcement mechanisms, in which case a mapping from XML-based policy representation to device-
specific policy representations is necessary. Control the targets is through interface Int-10 as specified
previoudy.

2.6.3.3.3 QoS Policy Information Model

A policy domain is designed to support the QoS Mgmt. Delegation scenario using the multi-PDP
PBANEM architecture. It is derived from the core FAIN information modd by adding class
definitions which is scenario-specific. As a policy definition specifies the actions to take for particular
functional elements when certain conditions are met. Therefore it is prerequisite to have a standard
definition of functiona elements, and parameters applicable to them. For this the "RSVP Poalicy
Control CriteriaPIB" [72] and "Diffserv PIB" [73] are our reference specification.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 108

The scenario makes use of active technology and tries to manage the resource alocation on a per-
customer basis. Overhead of the management is delegated to individua customer to fulfil individua
users bandwidth need. Policy system modules (e.g. a QoS PDP) can be dynamically provisioned via
interface with the service provisioning framework. It aims to demonstrate the advantages of active
networking to ease network bandwidth management procedure.

In this scenario, a policy domain is supposed to support the following functions:

QoS provisoning: Intserv and Diffserv will be supported, therefore the QoS policy information
model [83] is considered a standard model and will be reused and extended, if necessary.

Delegation: a network is partitioned into virtual networks, management of virtual resources are
delegated to customers according to SLAS. Policies will be defined and transferred from network
managers to network elements, and perform partitioning and set-up delegation parameters, e.g.
customer credential for authentication.

Provision: the mlicy system modules will be dynamicaly downloaded and updated, if possible.
Policies need to specify how this can be done for those QoS modules such as an Diffserv PDP, its
traffic conditioning blocks, metering block, etc.

In the following, classes are defined according to these function categories.

2.6.3.3.3.1 QoS Policy

The class hierarchy of QoS policies within FAIN policy core information model is depicted as below.
The proposed extensions are highlighted.
[ManagedElement] (abstract)

I
+--Policy (abstract)

I
---PolicyAction (abstract)

I
+---fanSimplePolicyAction

| |
| +---fainQoSPolicyRSVPSimpleAction

|
+---fainQoSPolicyDiscardAction

I+---fai nQoSPolicyAdmissionAction

| I+---fai nQoSPolicyPoliceAction

I |-|----fainQoSPoIicyShaqoeActionAction

I I+---fai nQoSPolicyRSVPAdmissionAction
I+---fai nQosPolicyPHBA ction (abstract)

I
+---fainQoSPolicyBandwidthAction

I
+---fainQoSPolicyCongestionControl Action
---fainQosPolicy TrfcProf (abstract)

I
| +
| |
| |
||
| |
||
| |
||
||
| |
| |
| |
| |
||
| |
||
| |
||
| |
||
| |
||
| +
N . |
| | +--fainQosPolicy TokenBucketTrfcProf
||
||

I
+-
I
+-

--fainQosPolicyIntServTrfcProf

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 109

---PolicyVariable (abstract)
I
+---PolicylmplicitVariable (abstract)

I
+---fainQoSPolicyRSVPVariable

I
+---fainQoSPolicyRSV PSourcel Pv4Variable

I
+---fainQoSPolicyRSV PDestinationl Pv4Variable

I
+---fainQoSPolicyRSV PSourcel Pv6Variable

I
+---fainQoSPolicyRSV PDestinationl Pv6V ariable

I
+---fainQoSPolicyRSV PSourcePortVariable

I
+---fainQoSPolicyRSV PDestinationPortVariable

I
+---fainQoSPolicyRSV PI PProtocol Variable

I
+---fainQoSPolicyRSVPIPVersionVariable

+---fainQoSPolicyRSVPDCLASSV ariable

I
+---fainQoSPolicyRSV PStyleVariable

I

+---fainQoSPolicyRSVPDIntServVariable

I

+---fainQoSPolicyRSV PMessageTypeVariable

I

+---fainQoSPolicyRSV PPreemptionPriorityVariable

I
+---fainQoSPolicyRSV PPreemptionDefPriorityVariable

I
+---fainQoSPolicyRSVPUserVariable

I
+---fainQoSPolicyRSV PApplicationVariable

I
+---fainQoSPolicyRSVPAuthMethodV ariable

---PolicyValue (abstract)
I
+---fainQoSPolicyDNVaue

I
+---fainQoSPolicyAttributeVaue

——— -

Figure 42 - QoS Poalicy Class Hierarchy

Most of these classes is same with QoS Policy Information Model (QPIM). For a more detailed
description of each class and its properties, refersto [38].

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 110

2.6.3.3.3.2 Delegation Policy

2.6.3.3.3.2.1 fainNetPartitionAction
NAME fanNetPartitionAction

DESCRIPTION This class specifies the partitioned network configuration to
be

allocated to a customer
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES topologyVirtuaNet, bandwidthVirtualNet

2.6.3.3.3.2.2 fainElementPartitionAction
NAME fainElementPartitionAction

DESCRIPTION This class specifies the partitioned element configuration to
be

allocated to a customer
DERIVED FROM fainSimplePolicyAction

ABSTRACT FALSE
PROPERTIES idVirtuaNet, idInterface, idOutputQuque, bandwidthPercentage,
priority
2.6.3.3.3.2.3 fainDelegationAction
NAME fainDelegationAction
DESCRIPTION This class specifies the delegation parameters to be
configured for a
customer
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES customerCredential, accessControl Enabled

2.6.3.3.3.2.4 fainCustomerIDVariable
NAME fainCustomer|DVariable
DESCRIPTION The identifier of a customer.
ALLOWED VALUE TYPES: PolicyStringVaue
DERIVED FROM PolicylmplicitVariable
ABSTRACT FALSE
PROPERTIES credentid, certificate

2.6.3.3.3.3 Provision Policy

2.6.3.3.3.3.1 fainQoSPDPProvisionAction
NAME fainQoSPDPProvisionAction

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 111

DESCRIPTION This class specifies the additional parameters for deploying,
updating and reconfiguring QoS policy decision modules redizing QoS management

DERIVED FROM fainServiceCodeUpdateAction
ABSTRACT FALSE
PROPERTIES customerCredential, idPEPgroup, idMonitor

2.6.3.3.3.3.2 fainQo SPEPProvisionAction
NAME fainQoSPEPProvisionAction

DESCRIPTION This class specifies the additional parameters for deploying,
updating and reconfiguring QoS policy enforcement modules realizing QoS configuration

DERIVED FROM fainServiceCodeUpdateAction
ABSTRACT FALSE
PROPERTIES customerCredentia, idPDP, idMonitor

Here we will give some examples of policy and explain how it is used to provide network-level QoS.
They are tentatively specified as below, and will be represented using XML.
2.6.3.3.4 External Interface Int-10

In addition to the interface specified in chapter 24, we propose the following resource abstractions
which represents more service-specific abstractions [70] to support Intserv and Diffserv:

QoS control function

TransmissionController Determines the queue mode, thereby Component
controlling package precedence on the
interface output queue.

Field: queue_mode (PRIORITY, ROUND-ROBIN,
BANDWIDTH)

QueueController When there is a backlog on the output queue, | Component
packets remaining on the queue are
transmitted or discarded depending on priority.
Field: queue size, enable priority
FlowController Identify input IP packets by their flow-control | Component
settings, determine priority, rewrites TOS, and
manages reserved bandwidth, among other
operations.

IP routing
Filter The function relays or discards packets that | Component
match a specific condition and relays dl
packets that do not match the condition. This
feature helps maintain the security system.

Table 2 - Resource Abstractions Table

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 112

2.6.4 Engineering scenario 2— VPN

2.6.4.1 Overview

In this section we describe the network level of the VPN scenario developed within the FAIN project.
The VPN Scenario uses Policy Based Management technology in order to establish, monitor and
cancel a VPN for a customer using mobile agents and active networks technology. The management
system developed in the FAIN project and demonstrated with this scenario is decomposed in two
network levels, the network management level, and the element management level.

In this scenario, the main functionality of the network level VPN PDP and PEPs introduced within the
PBANM, isthat of receiving, through the offered GUI the policies from the customers, check whether
this palicies can be gpplied, and when they should be applied, trandate this network leve policies into
element level policies understandable by the edement level, and findly send these policies to the
appropriate PBANEM nodes in the form of an XML file.

The functionality and components of the element level PDP and PEPs devel oped for the VPN scenario
will be described in the next section.

2.6.4.1.1 Mobile Agent

The mobile agent paradigm intends to bring an increased performance and flexibility to distributed
systems by promoting "autonomous code migration” (mobile code moving between places) instead of
traditional RPC (remote procedure call). With code migration, the actual code or script moves from
place to place and executes locally, achieving lower latency, little need for remote interactions and
highly flexible control.

Most of the communicative mechanisms such as CORBA may be able to actualy change the behavior
of other agents by sending messages. But mobile agents move their data and code (especially the code)
to a remote site and execute localy. Mobile agents can adso be used to modify or introduce new
behavior by executing the control carried by code in mobile agent.

Mobile agents are widely used in telecom and network management. They are very effective as they
can take over the burden of the complex interaction mechanisms between different network players,
such as negotiations or new service injection. Mobile agents can easily represent one of the business
roles such as backbone operator, access provider, service provider or end-user, and act on their behalf,
based on established policies.

Mobile agent technology is aso used in FAIN project. Examples of mobile agent platforms are
Odyssey (Genera Magic), D’agent/Agent TCL (Dartmouth College), Voyager (ObjectSpace), Aglets
(IBM) and Grasshopper (IKV++), of which Grasshopper will be used in FAIN.

Grasshopper [42] is a mobile agent development and runtime platform which is built on top of a
distributed processing environment. This achieves an integration of the traditiona client/server
paradigm and mobile agent technology. Grasshopper is mplemented in Java, based on the Java 2
specification. Mogt importantly, Grasshopper has been designed in conformance with the first mobile
agent industry standard given by OMG, namely the Object Management Group's Mobile Agent
System Interoperability Faciity (MASIF) [43], which alows interoperability of different mobile agent
platforms and the deployment of mobile agents on CORBA environments. In addition, the latest
Grasshopper version is aso compliant with the specifications of the Foundation for Intelligent
Physical Agents (FIPA) [44]. Grasshopper is also the agent platform of choice in multiple international
research projects within the European CLIMATE (Cluster for Intelligent Mobile Agents for
Telecommunication Environments).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 113

Here in this architecture and scenario, Grasshopper based mobile agent technology is used to transport
policies from PDP to PEP and aso initiate the enforcement of policies in PEP. Policy transport from
network level to dement level can aso been implemented by mobile agent. But XML-RPC is used
here for the XML-based policy transport between network level to element level, according to the
suggestion from UPC who is responsible to the network level management.

2.6.4.1.2 XML syntax for Policies

The policies between the network level and the element level are expressed in XML [36]. The XML
document will contain the necessary classes describing the policy rule This XML document will be
carried by aMobile Agent, which will carry other important information, basicaly security related
information. However, in a first implementation stage of this scenario, the policies will be moved from
the network leve to the element level using an XML-RPC approach for smplicity reasons.

XML-RPC is a Remote Procedure Calling protocol that works over the Internet, using HTTP as the
trangport and XML as the encoding. XML-RPC is designed to be as smple as possible, while alowing
complex data structures to be transmitted, processed and returned. An XML-RPC message is an
HTTP-POST request. The body of the request isin XML. A procedure executes on the server and the
vaue it returnsis also formatted in XML.

Using XML as language for expressing policies has several advantages [34]. XML is idedl for
transferring information between heterogeneous platforms because XML parsers are available for
many platforms. Another advantage is that XML policy documents can be vdidated against an XML
policy schemathat resides on a remote, trusted server because XML document can carry areference to
their XML Schema, instead of the Schema itself. Moreover, the policy syntax checking functionality,
is done intrindcaly by the XML parser through the validation of the XML policy againg its XML
schema.

2.6.4.2 Network-Level Management Architecture

The architecture of the PBANM with the VPN PDP and PEPs developed for the VPN scenario at the
network level is given in the figure below. It conforms with the PBANM architecture described in
chapter 2.4, with the network level specific functionalities discussed at chapter 2.5. The components
are discussed in subsequent sections.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 114

User

Policy Editor

Intl
Credential
Check

Security 2
: 3

S TR ! Local
| Monitoring : I — | DB
1 System —1

Resource

M anager I
PEP
Policy
translation
AN
/ XML -RPC¥
PBANEM PBANEM

Figure 43 - VPN PBANM Scenario Architecture
2.6.4.2.1 Functionality and Components

2.6.4.2.1.1 Policy Editor

This component offers a GUI both to the Use. With this GUI the User will be able to edit policies to
establish and cancel a VPN, and introduce them to the Network Management System with the
gppropriate format. The GUI will be guided to ease the introduction of the necessary data.

2.6.4.2.1.2 Credential Check Component

The Credential Check Component receives the policy and a user’s credentia from the policy editor. It
is the responsible of checking the privileges of the user for requesting the creation of a VPN with a
certain QoS. In order to develop this task, the credential check component takes this credential and
looks in the metapolicy database for a metapolicy related with that credential. The Credential Check
component retrieves the policy and checks if the intended management actions (policies) are available
to the actor that presented the credential. If the checking is successful the policy is passed to the PDP.
In afirst stage of the implementation the policy conflict check component is not included.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 115

2.6.4.2.1.3 Monitoring System

The Monitoring System will be responsible of monitoring network level resources (e.g. network
topology, available network resources and status: links, routes, trunks...). As described in chapter 2.4
the PDPs will be able to register in the monitoring system the events they are interested in. The
Resource Manager will need to access the monitoring system as well to recompile information from
the network resources.

2.6.4.2.1.4 Resource Manager

The Resource Manager component supports a network level specific functionality (i.e. network
topology and QoS route calculation). The Resource Manager is responsible of checking whether there
are enough resources in the network as a whole for a new flow with QoS guarantees, and if so, which
is the route for this flow. For being able to develop its functionality the Resource Manager will have to
access the monitoring system, in order to obtain information about the network topology(physical and
logical) and resource consumption.

The Resource Manager will receive arequest from the VPN PDP to find the needed resources and the
route for creating the VPN.

The implementation of the whole Resource Manager functiondity will be progressive through the
different implementation scenarios for smplicity reasons.

2.6.4.2.1.5PDP

The VPN PDP will receive the policy from the Credentiadl Check component. Then, it has to decide
when this policy should be gpplied. In order to redise that, the PDP will ook the conditions of the
policy and decide whether it needs any information, in the form of events from the monitoring system,
in order to make a decision. We pretend to use ILOG Rule software as decison module within the
PDP [41], at least in an advanced stage of the implementation. If so, it registers the conditions in the
monitoring system. Otherwise, e.g. the condition is a filter condition, it asks to the resource manager if
there are enough resources to apply this policy.

If the answer from the Resource Manager is positive, the PDP stores the policy in the database and
pass it to the appropriate PEP the policy dong with the PBANEM nodes where it should be applied
(these nodes are obtained from the Resource Manager response).

2.6.4.2.1.6 PEP

The PEP functionality at the network level is, basicaly, the same as the one described in the
architecture. That is, receive the policies to be enforced from the PDP and trandate them into
commands understandable by the policy targets. However, the policy targets of the network level PEP
are the dement level management systems. Therefore, the commands have to be sent in the form of
the appropriate eement level palicies.

The PEP will receive the policy from the PDP along with the PBANEM nodes where it should be set.
Then, the PEP will trandate the network level policies into the corresponding eement level policies in
XML. Moreover, it will send the element level policies to the correspondent PBANEM nodes using
XML-RPC in afirst stage, and mobile agents afterwards.

2.6.4.2.1.7 Database

The meta-policy database and the local policy database will be logicaly different, because they store
semanticaly different policies, but they will be a unique physical database that can be accessed by the
components of the PBANM system. Meta-policies are policies that will control the access to
functionality and the behaviour of the PBANM system, while policies control the access and
behaviour of the network resources managed by the network management system.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 116

2.6.4.2.2 Working Flow
The steps shown below describe the interaction between different components in the scenario:
Step 1: The User edits the VPN network level policies using the offered guided GUI.

Step 2: Once the palicy edition is finished, the Policy Editor component passes the network level
policy to the Credentia Check component aong with a credentia of the user who introduced the

policy.

Step 3: The Credential Check component checks whether that user is allowed to request those
VPN resources, using the metapolicy database. If the User is not allowed an error message is sent
back to the Policy Editor component that will reflect it in the GUI; otherwise the policies are
passed to the VPN PDP component.

Step 4: The VPN PDP component will look if any information from the monitoring system is
needed in order to decide when the policy should be gpplied. If any information is needed, the
PDP registers the event in the monitoring system and stores the policy in the database. Otherwise,
the PDP requests to the Resource Manager whether there are enough free resources to set that
policy.

Step 5: The Resource Manager will receive the request from the PDP and look for an available
route with the requested resources. If successful, the Resource Manager returns a positive response
along with the route found. Otherwise, it returns a negative response.

Step 6: The PDP sends the VPN policy aong with the calculated route to the appropriate PEP.

Step 7: The PEP trandates the network leve policy into element level policies and sends them to
the corresponding PBANEM nodes, according to the calculated route. The policies are expressed
in XML and sent using XML-RPC for simplicity reasons. In more advanced stages of the
implementation the XML policies will be transported using mobile agents.

2.6.4.3 Network Element Management Architecture

The architecture of mobile agent based PBNEM s depicted as Figure 44, which fully conformsto the
PBNEM structure in FAIN given in chapter 2.4.3. The components are discussed as follow.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 117

PBANM node
XML-RPC XML-RPC
PDP PDP
Policy Receiving Module Policy Receiving Module
— —
h¥—’_’/—')
Credential Check Credential Check
~
= ' _— Metapolicy DB | +—] ' %
S [| Element Level Policy Element Level Policy S
g Decision Module T Decision Module 5
é' Local policy a
© Mobile Agent DB Mobile Agent g
<. || Generating Module — Generating Module =
3 ~ ®
%
/’)//’ZO
%%, A Element Manager Agent
Y 20,
%, ®
PEP J/ PEP '
Res_our_ce Resource
Monitoring Monitoring
Daemon \ Daemon
SNMP NMP
IPsec
Tunnel

Router Router

Figure 44 - Mobile Agent Based PBNEM Architecture

2.6.4.3.1 Functionality and Components

2.6.4.3.1.1 Policy Receiving Module

This module is implemented as a daemon for receiving XML-based policies given by network leve.
XML-RPC [40] protocal isused for policy transferring between two levels.

XML-RPC is a Remote Procedure Calling protocol that works over the Internet, using HTTP as the
trangport and XML as the encoding. XML-RPC is designed to be as smple as possible, while alowing
complex data structures to be transmitted, processed and returned. An XML-RPC message is an
HTTP-POST request. The body of the request isin XML. A procedure executes on the server and the
vaue it returnsis also formatted in XML.

2.6.4.3.1.2 Credential Check

The credential check component will be in charge of checking the privileges for VPN establishment
and cancdllation granted to any actor.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 118

Each actor that wants to setup or shut down VPN should aso submit a credential. The Credential
Check Component then takes this credential and looks in the meta-policy database for a meta-policy
related with that credential. The Credentiadl Check component retrieves the policy and checks if the
intended management actions (policies) are available to the actor that presented the credential. Findly,
if the credential is correct and the actor has the correspondent privileges these policies are passed to
Element Leve Policy Decison Module. Policy Conflict Check component is omitted in this scenario
for smplicity.

2.6.4.3.1.3 Monitoring Service

The monitoring service component receives the registration of resource monitoring according to the
requirement of policies and make sure that all the resources registered can be monitored. If the
necessary metering block (daemon) is not currently instantiated it will try to download it by making a
guery to the Active Service Provisioning service and ingall it. But here in this scenario, al necessary
resources monitoring are initiated previoudy due to the lack of RCF from WP3. Monitoring Service
component just enquiries the Resource Monitoring Daemon to get the necessary information.

2.6.4.3.1.4 Resource Monitoring Daemon

The Resource Monitoring Daemons aways exist on active nodes. It can be provided by RFC from
WP3. In this scenario, these daemons are implemented by SNMP polling.

2.6.4.3.1.5 Element Level Policy Decision Module

This component can trandate network level policy into element level policies, with the information
from monitoring service.

After receiving the policiesin XML file which aso has passed the credentia check, the Element Level
Policy Decison Module extracts from the XML file the element level policies; then, it has to decide
when this policy should be applied. In order to redise that, the module will look the conditions of the
policy and decide whether it needs any information, in the form of events from the monitoring system,
in order to make a decison. If so, it will ask Monitoring Service to register the conditions in the
Monitoring Daemon. Otherwise, it asks the resource Monitoring Service if there are enough resources
to apply this policy. If the answer is positive, the policy will be passed to Mobile Agent Generating
Module to be fulfilled.

All the policies are based on fixed schema so that they are understandable by different levels.

2.6.4.3.1.6 Mobile Agent Generating Module

Based on the parameters given by Element Level Policy Decison Module, this module can generate
corresponding mobile agents to transport the policy to relative PEP and fulfil the policy.

2.6.4.3.1.7 Mobile Agent and its Platform

Based on the element level policies generated above, mobile agents bearing the PEPs that are in charge
of corresponding policy as destinations are created automatically. These mobile agents migrate
themselves to the specific PEPs to enforce the policy.

After arriving at the PEP, mobile agent, also served as SNMP wrapper at this moment, uses SNMP to
set up the IPsec VPN.

After getting the return code of SNMP command execution, mobile agent goes back to PDP to inform
the result, then removes itsalf automatically.

Here al mobile agent execution environment (i.e. Grasshopper Agency) needed for mobile agent life
cycle is pre-ingtaled on every PEP. If there is not mobile agent EE on the destination EE, active node
mechanism such as ABLE++ can be used to transfer and setup the MA EE. Agency residesin a
machine next to that element.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 119

A Region Server, which provides the agents with the necessary information and location of the
respective agencies, is also needed.

In addition, wrappers for the SNMP protocol had to be developed to enable the agents to communicate
to the managed eements via SNMP. For smplicity, the functionality of wrapper is aso implemented
by mobile agent in this scenario, in which Advent SNMP Driver is used.

2.6.4.3.1.8 Database Components

The meta-policy database and the loca policy database will be logicaly different, because they store
semanticaly different policies, but they will be a unique physical database that can be accessed by the
components of the PBANM system. Meta-policies are policies that will control the access to
functionality and the behaviour of the PBANM system, while policies control the access and
behaviour of the network resources managed by the network management system.

Plain files are used for policy database in this scenario.

2.6.4.3.2 Working flow

The structure depicted in Figure 44 shows the normal behavior of our policy based management
system for setting up VPN, where the network manager node sends a set of provisioning policies to be
set in the active network node.

The working flow and interaction between components in this scenario will be:

Step 1: The network manager sends a set of policies to the network element manager (actual PDP
in element level) dong with a credentid.

Step 2: The Policy Receiving component receives the policies and checks if the actor with that
credentia is alowed to set policies, using the meta-policies database. If the credentia isincorrect then
an error message is sent back to network level; otherwise the policies are passed to the Element Level
Policy Decison Module.

Step 3: After receiving the policies in XML file, the Element Level Policy Decison Module
extracts from the XML file the information for element level, therefore getting the eement leve
policies, which are transferred to related managed elements. All the policies are based on fixed schema
so that they can be understood by different levels.

Step 4. According to the policies generated in step3, mobile agents bearing the PEPs that are in
charge of corresponding policy as destinations are created automatically.

Step 5: These mobile agents migrate themselves to the specific PEPs. Here al mobile agent
execution environment (i.e. Grasshopper Agency) is pre-installed on every PEP. If there is not mobile
agent EE on the destination EE, active node mechanism such as ABLE++ can be used to transfer and
setup the MA EE.

Step 6: After arriving at the PEP, mobile agent, also served as SNMP wrapper at this moment,
uses SNMP to set up the IPsec VPN.

Step 7: After getting the return code of SNMP command execution, mobile agent goes back to
PDP to inform the result, and removes itsalf automatically.
2.6.4.3.3 Testing bed

A test bed consisting of severa |P routers, switches and machines was set up, which depicts the large
scale network scenarios in some extents.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 120

XML-RPC
daemon

Jjorg-g
192.168.1.88

reblochon
. 128.40.42.180

pluto
128.40.38.94

Router Router

g-ee.ucl.ac.uk
£ —— —192.168.83.0) 0 { To7 - T84

sec Tunhel I—l
charlie-lars
192.168.3.2

charlietr §
192.168.3.3 |\ A

r.ee.ucl.ac.uk uddﬁ
aaly. 1

aynsley-r
192.168.11.11

192.168.11.

1

frank
192.168.11.12

mick brian i
102.168.3.4192.168.3.5)g; 1g5.1.

. 192.168.14.15
jari
192.168.22.24

strat.net metallica_net stones_net mothers.net

Private Private

Figure 45 - Test bed for PBVPN

Both EM station and Region server reside on public network. EM station can receive XML-based
policies from network level via XML-RPC daemon (here we use one EM station to receive two
probably different element level policies for the sake of smplicity), then it creates two mobile agents
which move themselves to george in g.ee.ucl.ac.uk private network and john in r.ee.ucl.ac.uk private
network respectively. The mobile agent on george communicates with lars via SNMP to setup the right
end of VPN, whilst the mobile agent on john sets up the left end of VPN on Charlie following the
same procedure and method. Therefore, the IPsec based VPN is set up between lars and Charlie.

The cancellation of VPN follows the same procedure as the establishment of VPN.

2.6.5 Conclusion

This section presents two engineering scenarios which specidises the generic policy system
architecture. We propose to implement these scenarios and use them to evaluate and justify the design
of active node design and management system architecture.

2.7 R12 - CONCLUSIONS

Through this chapter, the initiad Management Architecture designed in the scope of the FAIN project
has been presented, both at the element and the network level. The approach taken is that of atwo-
level Policy based management system. The architecture has been designed in order to face Active
Networks specific issues, and furthermore to take advantage from them.

The initiad management architecture defined in this document ma be refined as the FAIN project
evolves. Severd issues may be further discussed and subject of discussion and, maybe, refinement.
Some of them are summarised below.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 121

- FAIN Roadmap: As a first step we should try and enhance the aready existing routing
solutions (GR2000, Cisco) and then try and provide active management solutions to active
routers. Thus, we should include the PEPs at the element management level. In the second
phase however, we may need to include the PEPs in the active routers. To make them even
smarter, aloca PDP module can aso be part of the active router in the future.

- Multiple PDPs granularity: The need for multiple PDPs can be seen as the need to
accommodate a rather complicated scenario that requires the combination of policies from
different technical domains. For example an end-to-end QoS scenario needs both Intserv and
Diffserv PDPs, as suggested by GMD. This is the case where one PDP exists per technical
domain, but because there are more than one technical domains per management system,
overdl, we have multiple PDPs. Ancther possibility is the need for multiple PDPs per
technical domain. For instance insde the Diffserv technica domain, another PDP may
handle the access control (i.e enforce security policies). But nether of these cases is
mandatory. There may be situations where the use of only one PDP per management system
can be sufficient. What is needed however, is the ability to install new PDPs upon request.

- PDP manager: It is quite open at this stage to discuss the functionality of PDP manager.
Obvioudy itsroleis to co-ordinate the PDP to support integrated scenarios, and resolve
possible conflict. But it appears very scenario-specific, and there is no need to address this
issue in FAIN, whose god is to demonstrate how policy can be used to flexible manage the
complexity of active network elements. With respect to policy conflict, PDPs for different
scenarios/technol ogies manage different set of physical/virtua resources. A resource control
framework on the node level will provide required access isolation, thus eliminate the
conflicting probabilities. As a conclusion, thisis aresearch issue for next phase of FAIN. As
said above the PDP manager will:

0 Resolve inter-technical domain conflicts.
0 Assist in the management by delegation.

- PDP Interoperation: Again, inter-PDP communication is needed, but may be very technical
domain-specific. The interaction very likely involves trandation of policy behavior between
different domain, e.g. maximum bandwidth guarantee in Intserv domain and code point in
Diffserv domain. We won'’t expect a policy to be transferred through the communication. As
another domain won't understand a policy from another domain anyway. Therefore Policy
Behavior Trandation will be the key part of the communication, and need to be managed
both on element and network—wide level.

1) Interoperation between PDPs inside the same technical domain.
Helpsin resolving conflicts that exist in the same technical domain.
2) Interoperation between PDPs of different technical domains

Done through the PDP manager. Helps in resolving conflicts that exist between different
technical domains.

- Dynamic Provisioning of PDPs; We believe it is a straightforward design decision to let ASP
care about the deployment process, be the component a PDP or PEP, or whatever. They
naturally are active components. ASP will provide an interface to activate the provisioning. It
will implement a node-loca interface to PBANEM for activating code downloading. But
PBANEM only does this routine task on request from PBNEM, without local decision.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 122

- Dynamic Provisioning of PEPs: Extensibility is provided by the ASP festure. As long as we
provide a modular architecture. The PBANEM design does not impact the extensibility of
the system. The complexity of dynamicaly deploying compostion of module is outside
FAIN scope. Theinitid fedling isthat PDP will be close coupled with PEPs to support policy
behavior, and need to be deployed together. Address individua extensibility is missing the
point.

- Conflict resolution: If there were no multiple PDPs inside the single technical domain or
insde the PBANEM in generd, the situation would be straightforward. There would be no
chance of policy conflicts-at least at the element level. But in the case of multiple PDPs, this
danger arises. Thisis because the different PDPs can send controversial policies to the same
policy targets (physical or logical resources). The conflict possibility insde the technical
domains, can be accommaodated by communication between the PDPs. The inter-technical
domain policy conflicts can be accommodated by an entity such as the PDP manager. For
conflicts that involve physica domains, the need for the PBANM (network level
management) to resolve them is necessary.

- Event granularity: PDP s can subscribe to events, ok, but ¢who sends the monitoring policies
to be enforced?. Probably, the user will. However, the PDP has to subscribe to the event of
its interest, we have to discuss the level of granularity at which the PDP can choose an event-
> as higher less event types but the PDPs will receive more uninterested events, which will
make them consume resources. We have to think carefully on how the monitoring system
will work. Another possibility is that PDPs themselves are able to set monitoring policies,
with the particularity that the events are exclusively send to them. It is true as well that we
can specify amixed approach of both.

- Monitoring Module Extensibility: We expect each PDP has its own information model. But
they may share a monitoring module. The reason to have a shared monitoring service is that -
it is possible and adequate to abstract al those conditions we need to monitor, due to limited
resources on a network element. The second reason is that monitoring is normaly
independent of policy semantics.

- User, services and resour ces database info: It might be interesting to have in the database of
the element management system information regarding users, services and resources and
relations between them. Moreover, it will be interesting that all PDPs within the PBANEM
would be able to access this information.

- Legacy routers support: Should the Interface include methods for legacy routers, i.e. SNMP
Support, MIB support, etc?

- Dynamic Policy enforcement checking: Before the policy reaches the PEPs, the PBANEM
must be sure that the policy will be enforced. The PEPs can return a message for verification
pUrpoSes.

- Security and Credential Checking system

3 R13-ACTIVE SERVICE PROVISONING

3.1 INTRODUCTION

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 123

Telecommunications technology is rapidly evolving and new protocols and services are being
developed, to satisfy the increasing user demands. However the deployment of these new protocols in
the network is not a trivial task, as the nature of the Internet does not encourage the introduction of
new services. The globa network spans across multiple domains and includes thousands of routers.
The deployment of a new protocol would require the software update in al these routers worldwide.
As a result, although new protocols, such as IPv6 are being developed, the difficulty in their
instalation in the existing network infrastructure prevents their usage network wide.

The introduction of active networking aims to encourage the dynamic deployment of new network
services. Active nodes provide a dynamic infrastructure that enables the introduction of new services
network wide, while minimizing the overhead required. The FAIN project aims to develop such a
flexible active infrastructure and to provide a mechanism for the dynamic instalation of new network
services.

In this context, the task of Active Service Provisioning (ASP) in FAIN has the objective to develop a
framework for the distribution and ingtallation of active services in the network. Taking advantage of
the FAIN active infrastructure, the ASP architecture will demonstrate the ability to introduce new
network services by the users of the active network. The users of the active network will be able to
inject application-specific code, in order to provide-application specific network services The term

user does not necessarily imply the end-user, but any user specified in the FAIN Enterprise Model, for
example it can aso include a service provider, who uses the active node infrastructure to build his own
services and provide them to the end-user.

The FAIN ASP system will deal with the provision of service code components, as well asthe
provision of active code modulesin general. The ASP infrastructure will aso be responsible for the
dynamic ingalation of new components of the FAIN Policy Based Network Management (PBNM)
system, for example the PBNM system will use the ASP to dynamically install the code for a new
Policy Enforcement Point.

The god isto provide a single ASP architecture, which will be able to operate on al different types of
active nodes that will be developed in FAIN (high-performance, DPE-based, Mobile Agent-based).
The ASP architecture should also be generic and independent of the services that are being
provisioned.

One of the goals of FAIN is to provide an active infrastructure, which enables the management of the
network to be done on a per-customer and per-service basis. The Resource Control Framework (RCF)
of the active node provides the ability to partition node resources in Virtua Environments VES),
where the active services are instantiated. The FAIN Policy Based Network Management system also
provides the opportunity to delegate management facilities to the user of the active network and uses
the RCF to configure the resources of the node. For this reason, in order to effectively provide new
services and to have the ability to configure the network on a per-service basis, it isimportant that the
ASP system co-operates with the PBNM system.

In this chapter we identify the generic requirements for the provision of active services and active
code, in general. We aso make an overal description of the interactions required in the FAIN active
network, in order to dynamically provide active services and to give the service (or its user) the ability
to configure itself using service-specific policies.

In section 3.3, after the requirements analysis, we propose an architecture for the provision of active
services. The components of the architecture are described and the corresponding interfaces are given.
In section 3.4 we describe an information model that will be used by the ASP system.

In section 5.5 we describe the requirements of ASP from other FAIN sub-systems, mainly the PBNM
system, the security framework and the active node API. Wherever possible we provide some interface
functions required by the ASP.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 124

In section 3.6 we provide some overal scenarios covering the interactions inside the FAIN
architecture required for the dynamic provision of a service and we describe the involvement of the
different ASP components.

Section 3.7 contains the mapping of the ASP mechanisms to the FAIN Enterprise Modd ..

Findly, we mention some issues regarding ASP, which should be taken into condderation in the
implementation phase and will likely be further investigated in the next two years.

3.2 REQUIREMENTS ANALYSIS

3.2.1 General Issues of Requirement Analysis

The am of this section is to find and define high-level requirements for ASP. Basically we understand
ASP framework as collection of mechanisms and services, which will enable users to provide new
services or protocols in the Active Network (AN).

In the document we will use the term service instead of the protocol but do not make any distinction in
between them.

High-level requirements for ASP are as follows:
1.1t must support on the fly provisioning ofan arbitrary services in Active Nodes'®

Service provisoning means that we can provide, remove, replace or modify a service on an
ANN.

Arbitrary serviceand multiple different services should be supported and coexist in ANN.

Service provisoning must support al planes, eg. user plane, control plane and management
plane.

2.Request for service provisoning must be recognized and either realised or rejected for specific
reasons.

Requests can be explicit or implicit:
Explicit request: user*® can request or provide a service®
Implicit request: a service can be provisioned because of the network conditions, etc.”*
3.ASP should be independent of the type of the service.

There should be no difference between the provisioning of different services, for example
between Reliable Multicast and VPN service provisioning.*

4.ASP should be interference free.

18 See FAIN TA, [p.75].

P yuser: all possible users, defined in FAIN enterprise model, end user, (active) network operator, service provider, solution
provider, management service provider, ...

20 By an explicit request in a packet, or through an out-of-band request by the management system.

2 Eor example in the case of reliable multicast; if the node seestoo many NACKsin the return path to the source, specific
codeisrun to enable NACK suppression and content caching. More examples are also possible, e.g. VPNs (ABLE demo),
detection of the IPv6 packets and automatic tunnel setup, ETH media shaping demo ...

22 \We don't think to be wise to differentiate servicesin the way they are provisioned. Common mechanism should be
provided for all active code (AC); functionality that enables AC to get executed and access resourcesonthenodeandinthe
network should be the same for all AC. Of course different services can be installed on the ANN in different ways.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 125

The provisoning of any single service should not affect the correct/secure operation of other
H 23
services.

5.ASP should be supported by arbitrary sets of active nodes.

The constraints are a matter of policy not a matter of the system.
6.ASP should provide dependency resolution when necessary.

Some services will have specific requirements that will have to be fulfilled to run the service.
Some services depend on several distinct protocols, which by themselves do not provide
complete services. Some services will depend on suitable services available in the environment
for execution.

7.ASP should provide service discovery mechanisms.**

In order to enable a user to choose an appropriate service (protocol) for their application, a
service discovery mechanism should be provided.

Service discovery mechanisms must support fully automated procedures without user
intervention.

8.Sarvices must be controlled for their resource usage.
Needed resources should be given explicitly or they are extracted implicitly from the request.”®
The availahility of needed resources should be checked upon request.
Control for local and network wide usage of resources should be provided.

9.Mechanisms should be available for composing several services to provide composite services”®

New, complex services can be composed by combining several independent services, which by
themselves aready provide complete services. In generd it requires interaction among services.

10.ASP must be secure®

Secure provisioning means that we know where we get code from, the code has been transferred
securely and request for provisioning has to be authorized regarding the node/environment
policy.

Code has to be verified and policy enforced, so that the code execution and operation has to be
monitored. If requested, code policies could be inserted in other policies database.

Code communication and message exchange with other code should be restricted and monitored
to be in line with the node/environment/other-code policies.

Access to communication data (packets) should be checked and secure code termination and
removal from the node should be possible.

2 nthis requirement we do not initially consider interference while code is running on the node; we have limited our scope
only to serviceinitialization. But there can be also interference during code operation (running on the node); for example
different or the same services requested by different users which compete for scarce node resources or limited resources
available to one user.

2 Mai nly for out-of-band code. In-band code is transparent in this regard when thinking where/how to find code.

25|t can be seen also as dependency information, e.g. a service needs some resources and therefore cannot be run on this
node, but maybe it can be can run on some other node.

26 Notethat thisisan optional requirement, which will not be extensively covered at this stage, it is mentioned for the sake of
completeness

27 For more broad discussion see[1] and [2].

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 126

11.Interoperability between different nodes and different environments for execution should be
provided.

Interoperability between different nodes, eg. two differently designed and built ANN
implementing the same service should interoperate in the context of the service.

Interoperability between different environments for execution, e.g. two different environments
hosting/running the same service should interoperate in the service's context.

Interoperability between different implementation of a service, eg. two different
implementations of the same service should interoperate.

12.1t must be possible to disable on the fly operation of certain active code.”®
13.Upgrading or replacing existing services should be dynamic.”

14.The end-to-end communication should not be interrupted when a protocol or service is removed
(replaced, enhanced).*

3.2.2 Service Independent ASP Use Cases

This section attempts to identify a number of service independent use cases concerning Dynamic
Protocol/Service Provision. The procedures followed for this identification is based on the use case
identification process used for the applications in FAIN WP2. We have to mention that this list is not
complete and the use cases mentioned here are not specified in full detail. The main objective of these
use cases is not to describe the overall ASP architecture, but mostly to serve as a basic requirement
analysis for the system.

In the following use cases we describe the generic interactions taking place for the provision of an
active service. We are not restricted to the process of downloading service code to the active node, but
we also take in mind issues about service configuration and resource management and allocation on a
per-application basis. Some of these will not be implemented inside the FAIN ASP system, but they
will be parts of the PBNM system and the node RCF architecture. We have chosen to include al these
Processes in our use cases, in order to provide a more complete view of the overdl system interactions
required for the provision of a service. To avoid confusion, we explicitly state which mechanisms will
not be implemented inside the ASP system.

3.2.2.1 Service independent ASP use cases hierarchy
In the figures below, five sets of Service Independent use cases for the ASP are given:

28 Has much to do with revocation, not only of the running code but also of the cached code, i.e.there should exist
mechanisms that should allow to revoke code from the network. On the other hand, the code revocation should not interrupt
end host to end host communication..

29 See for example[3].

% Thisisacurcia point if f wewant arealistic and scalable AN approach where AN applications should not break end-to-
end connectivity but help end-to-end clients to communicate in more efficientway. If servicesor protocolsarenot available,
end clients should communicate over their own protocol stacks (active/passive) and without additional active network
services.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 127

ASP-A Caching &
Withdrawal Policies

ASP-A.1Code Topology
Update

ASP-A.2 CachedCode
Replacement

ASP-A.3 Data/Space
Monitoring

Figure 46 — Set A (Caching & Withdrawal Policies)
ASP-B Code Request

ASP-B.2 Code Request
Authorisation

ASP-B.1Code Request
Authentication

ASP-B.3 Policy Check

Figure 47 — Set B (Code Request)

ASP-C Code Fetching
Installation

ASP-C.1 Downloading
mechanisms

ASP-C.2 CodeBinding
M echanisms

ASP-C.3 Code
Configuration

ASP-C.4 Code Loading
& execution

Figure 48 — Set C (Code Fetching Instalation)

ASP-D Obstruction
Clearance

ASP-D.1Versioning Chec ASP-D.2 Dependency Ch ASP-D.3 Interference Chec)

Figure 49 — Set D (Obstruction Clearance)

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 128

ASP-E Resources
Monitoring

ASP-E.2 Resour ces
Forecasting

ASP-E.1 Communication
with the RCF

ASP-E.3 Resource
Allocation Policies

Figure 50 — Set E (Resources Monitoring)

3.2.2.2 Service independent ASP use cases description

This Section discusses a number of use cases that are not bound to specific applications but rather
describe the generic functiondity that the ASP Architecture should provide. For categorisation
purposes we have use the following numbering: ASP-X.No.No where X is a letter for A to Z and the
Nos are a number starting from 1. In this way the use case hierarchy is shown.

ASP-A Caching & withdrawal Policies. This set of use cases covers al the operations which need
to be carried out by the ASP, either during code provisoning or in asynchronous manner
for locating and storing existing code in an efficient and rapid way.

ASP-A.1 *“Code Topology” update. After aservice/protocol withdrawa either in the node or in the
neighbouring nodes a code registry facility of the ASP should be updated. Alternatively, this
update could be either a synchronous event or a reactive action (after a code fetching false from
the code repository).

ASP-A.2 Cached Code Replacement. The processes and the policies for code replacement either
in the main memory of the system, in dedicated buffers, in possible caches or processor specific
memory (in the case of multiprocessors and/or multilayer memory hierarchy network nodes) are
described in this use case.

ASP-A.3 Data/Space Monitoring. Thisuse caseis strongly related with ASP-A.1sinceit describes
the way that the ASP should monitor free space availability on the system for code caching
before applying and code topology update or code fetching.

ASP-B Code Request. This set of use cases considers the preliminary operations that should be
carried out before the actual operation of code fetching will be performed. These operations mostly
concern security issues of the request. These issues will be handled by the FAIN PBNM system and
the security architecture. First, the necessary checks will ke performed and then the request will be
delivered to the ASP system

ASP-B.1 Code Request Authentication. Users requesting service provisioning access must be
authenticated to the FAIN security framework.

ASP-B.2 Code Request Authorisation. Upon user authentication and credentials provided, user
request for code provisioning must be authorized by security subsystem.

ASP-B.3 Policy Check. Apart from the typica authorisation/authentication a number of policy
enforcement mechanisms should exist during code request resolving. These policies will check
the potential capabilities of the system to host the new request and will possibly prevent
congested situations.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 129

ASP-C Code fetching/installing. This set of use cases considers the main mechanisms of
downloading, binding and executing the provided code. The ASP system is focused not only on the
download of code to the node, but also with other tasks like checking code dependencies, versioning
and interference during service provisioning, while the actua injection and execution will be done by
the NodeOS.

ASP-C.1 Downloading Mechanism. The operation of downloading code to the Node is a major
task for code provisioning. The ASP system downloads the requested active code module from
the network and passes it to the active network node, where it will be injected in the appropriate
VE.

ASP-C.2 Code Binding Mechanisms. Code binding is not described here, it is just mentioned for
stressing the fact that ASP is strongly related with the main operations of the NodeOS

ASP-C.3 Code Configuration. After service code is downloaded to corresponding nodes and
interfaces on which code execution depends upon are bound, often additional configuration of
parameters required before execution of service code is required. Please note that configuration
of service code can take place at every stage of active service provision: before downloading,
execution and during execution of service code.

ASP-C4 Code loading & execution. The operation of code loading and execution marginaly
belongs to this set of use cases. Thisis due to the fact that the loading and execution of the code
is considered as a main task of the core NodeOS and/or the EE, therefore it is for further study
from the related task groups of FAIN. Here is mentioned just for the sake of completeness.

The actua responsibility of the ASP system in this use case is to deliver the code module to
the NodeOS, using the interface offered by the active node.

ASP-D Obstruction clearance. By the term "Obstruction" we consider a number of difficulties of
that could be faced during code provisioning.

ASP-D.1 Versioning Check. Describes the necessary checks that should be carried out for
determining whether or not the requested code is up to date or an updated version is needed.
This issue could be considered essential in some cases (e.g. evolving protocols and services).
We can expect that multiple versions of the same code can be run on the system if thisis needed
for backward compatibility and is explicitly alowed by the security policy.

ASP-D.2 Dependency Check. It is certain that for a (large) number of code provisoning cases
there will be code dependencies from other software modules (e.g. a protocol dependency). This
means that the whole code provisioning process will have to be carried out again (and again).
Even though this is unavoidable we should be very careful in resolving these dependencies and
we should clarify the scenarios where we may act proactively, e.g. by checking code
dependencies before initial code downloading or by downloading the complete code stack with
minimal checking.

ASP-D.3 Interference resolution. Consders interference in terms of communication and
computational resources and is therefore strongly related with the Resource Control Framework
and management subsystem. We can consider three types of interference; the first category is
about the digtribution of limited resources to a set of requests stemming from the execution of
the provisioned code. The second category considers resources that can process one request at a
time (e.g. a video transcoder). The estimation of resources and the definition of resource
utilisation policies are considered essentia for the efficient operation of the whole node. The
third type is interferences checked by the security framework, e.g. checking user available
resources.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 130

The FAIN PBNM system, in cooperation with the node Resource Control Framework will
guarantee that each service running in the active node will be able to reserve its own resources,
which will not be accessible by other services. The security framework will take care of
security issues. The ASP system will not have to do any additional work to prevent
interference between different code modules.

ASP-E Resource Monitoring. For the proper functioning of most of the operations mentioned
above an adequate resource monitoring facility should exist. There should exist the ability to alocate
resources to the code, which is installed in an active node, and to monitor the resource consumption of
active applications, to ensure that the agreed limits have not been exceeded. Information about alowed
resource wsage is a matter of the supplied credentials and security policy. The security framework is
responsible for enforcement decision during service provisioning while the FAIN PBNM system is
responsible for the enforcement of these requirements during the service operation, in co-operation
with the Resource Control Framework of the active node. If resource conflicts or violations exist
during service provisioning, the security framework is responsible for cancelling the operation. The
ASP system does not have o deal directly with these issues, so we initidly omit the details of these
three individual use cases.

3.2.2.3 Tabular description of ASP use cases

In this section, the ASP use cases, briefly introduced in the previous section are presented. To be
consistent with the use case description process followed in WP2 we use the same tabular template.

Use Case Name: ASP-A Caching Poalicy

Summary: This set of use cases covers al the operations, which need to be
caried out by the ASP ether during code provisoning or
synchronoudly for locating and storing existing code in an efficient
and rapid way.

Basic Course of | The Course of events are described at the “child” use-cases (A SP-
Events: A.1t0 ASP-1.3)

Alternative Paths: Possible bypass of caching mechanisms for smplifying the ASP
Architecture.

Extension Points: N/A

Trigger: N/A

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark:

Use Case Name: ASP-A.1“Code Topology” update

Summary: After a service/protocol withdrawal either in the node or in the

neighbouring nodes the code directory service of the ASP should be
updated. Alternatively, this update could be either a synchronous
event or a reactive action (after a code fetching false) to maintain a
consgent view of the services/protocols ingtalled in the network.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 131

This information could be used for faster retrieval of active code.

Basc Course of | 1. Look-up the contents of the code stack
Events: 2. Look-up the contents of the code repository
3. Look-up request to the boundary Active Nodes

Alternative Paths: N/A

Extension Points: N/A

Trigger: Asynchronoudly after code (service/protocol) withdrawal
Asynchronously after a code fetching phase
Synchronoudly, in a predefined time or after a certain time
period

Assumption: This use case assumes three types of code storage:

1. Code Stack, where the contents of the stack are ready for
execution

2. Node Repository, where the code is available but needs to be
fetched into the Code stack.

3. Network Repository, There should be a central code repository
in the network. Alternatively, code stored at the repository of
the boundary nodes could be used as a distributed repository by
the node.

Pre-condition: Existence of a data/space monitoring mechanism.

Existence of Caching policies

Post-condition: N/A

Remark: Step 3 assumes that each node should provide the necessary
information. In a later stage we might need to describe this
mechanism as an additional use case.

Use Case Name: ASP-A.2 Cached Code Replacement

Summary: The processes and the policies for code replacement either in the
main memory of the system, in dedicated buffers, in possible caches
or in processor specific memory (in the case of multiprocessors
and/or multilayer memory hierarchy network nodes)

Basc Course of [1. A request for code installation arrives

Events:

2. Therequired free space in the code repository are computed
3. Free space isresolved (see a'so Use Case ASP-A.3)

4. In case of space unavailability a code replacement agorithm is
performed

A “ready for installation” message is produced.

Resolution of free space in the code stack is performed and code
replacement algorithm is also performed

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page 132

7. After code uploading to the code repository, the code is copied
from the code repository to the code stack and is ready for
execution

8. A request for code topology update is posted (see use case ASP-
Al)

Alternative Paths: N/A

Extension Points: N/A

Trigger: Use-case ASP-A.1
Upon code request when the code in unavailable in the node's
code buffers

Assumption: See assumptionsin ASP-A.1
In steps 4 and 6, examples of the predefined code replacement
algorithms could be FIFO, LRU, random etc.

Pre-condition: N/A

Post-condition: N/A

Remark: Due to a current lack of concrete node memory architecture, this

use-case will likely need further refinement

Use Case Name:

ASP-A.3 Data/Space Monitoring

Summary: This use case is strongly related with ASP-A.1 since it describes the
way that the ASP should monitor free space availability on the
system for code caching before applying code topology updates or
code fetching.

Basic Course of Fetch code that should be stored

Events:

1

2. Apply the replacement policy
3. Store new code

4. Update the code registry

Alternative Paths:

N/A

Extension Points

N/A

Trigger: Use-Case ASP-A.1
Asynchronoudly after fetching a new service/protocol in the
node
Synchronoudly after a predefined period

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark:

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page 133

Use Case Name:

ASP-B Code Request

Summary: This set of use cases consders the preliminary operations that
should be carried out before the actual operation of code fetching
will be performed. These operations mostly concern security issues
of the request. The necessary checks will have to be performed by
the PBNM system and the FAIN security framework. The ASP will
assume that the request has aready been authorised and all
necessary resources have been reserved.

Basic Course of [1. Resolution of the incoming service/protocol request in terms of

Events: requested code needed.

2. Authentication, authorisation, policy checks are done by the
security framework and the PBNM system.

3. Request transferred to the ASP system.

4. Code Availability check is carried out

5. Dependency Check is carried out (see Use case ASP-D.2)

6. Clearance for Service Execution is given

Alternative Paths: In the case that after the dependency check an additiona
service/protocol is required, the necessary security and policy
checks should a'so be made for the new code.

Extension Points. N/A

Trigger: An incoming service/protocol request

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark:

Use Case Name: ASP-C Code fetching/installing

Summary: This set of use cases consdered the man mechanisms of
downloading, binding and executing the provided code. The ASP
system will locate the requested code in the network, download it
and deliver it to the NodeOS/EE for the actua ingtallation.

Basic Course of | Thecourse of eventsis described in the following use cases

Events:

Alternative Paths: N/A

Extension Points. N/A

Trigger: N/A

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark:

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page 134

Use Case Name:

ASP-C.1 Downloading M echanism

Summary: The operation of downloading code to the Node is a mgjor task for
code provision.

Basc Course of 1. The ASP system first checks alocal code cache

Events:

2. If the code is not stored localy, the ASP searches the
network. It can either lookup in a neighbouring node, or in a
well-known code server.

3. A security mechanism in the code server should
authenticate the communication.

Code is downloaded to the node

Necessary checks have to be done by the security
framework.

6. Code is delivered to the NodeOS loader, to be injected in
the appropriate Execution Environment.

Alternative Paths:

If the code is stored in the loca cache, it is ingtdled immediately
without searching in the network.

Extension Points. N/A

Trigger: N/A

Assumption: In the smplest case, we have to assume that code cache is
code/service/luser dependent. If this is not a case, and other user
code in cache is used, al necessary security checks have to be
performed. In this case there is aso a need for a smart cache
manager to not reuse the code, which is unsuitable for the current
operation. For example the same code with wrong digital signature.

Pre-condition: N/A

Post-condition: N/A

Remark:

Use Case Name:

ASP-C.2 Code Binding Mechanisms

Summary: Code binding is not described here, it is just mentioned for stressng
the fact that ASP is strongly related with the main operations of the
NodeOS and therefore a number of interfaces and boundary
operations (such as code binding) should be addressed and designed
in an early stage.

Basic Course of | The implementation of the code binding mechanisms is not a

Events: responsibility of ASP.

Alternative Paths: N/A

Extension Points: N/A

Trigger: N/A

Assumption:

Copyright & 2000/2001 FAIN Consortium

May 2001

Page 135

FAIN Ddiverable D3
Pre-condition; N/A
Post-condition: N/A
Remark:

Use Case Name:

ASP-C.3 Code Configuration

Summary:.

After service code is downloaded to the corresponding nodes and
interfaces on which code execution depends upon are bound, often
additional configuration of parameters is required before the
execution of service code. Please note that configuration of service
code can take place a every stage of active service provision:
before downloading, execution and during execution of service
code.

Basc Course of

Events:

Not a responsbility of ASP. The service will interact with the
management system in order to do the necessary configuration.

Alternative Paths:;

N/A

Extension Points: N/A
Trigger: N/A
Assumption:

Pre-condition: N/A
Post-condition: N/A
Remark:

Use Case Name:

ASP-C.4 Codeloading & execution

Summary: The operation of code loading and execution marginaly belongs to
this set of use cases, since loading and execution of the code is
considered as a main task of the core NodeOS and/or the EE. As
such, it is for further study from the related task groups of FAIN.
Hereit ismentioned just for the sake of completeness.

Basc Course of | To be done by WP3. Implementation is specific to the type of

Events: Execution Environment that will exist in the node.

Alternative Paths: N/A

Extension Points: N/A

Trigger: N/A

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark:

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page 136

Use Case Name:

ASP-D Obstruction clearance

Summary: By the term "Obstruction" we consider a number of difficulties that
could be faced during code provision to impede the proper operation

Basic Course of | This use case is a set of diverse use cases therefore there is no

Events: genera course of events.

Alternative Paths: N/A

Extension Points: N/A

Trigger: N/A

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark:

Use Case Name: ASP-D.1 Versioning Check

Summary: Describes the necessary checks that should be carried out for
determining whether or not the requested code is up to date or a
version update is needed. This issue could be considered essentia in
some cases (e.g. evolving protocols and services)

Basic Course of | 1. Theverson of the requested service/protocol is resolved

Events:

2. During code availability look-up at the code registry a version
cross check is performed

3. In case of version incompatibility (previous version) the code is
considered unavailable and the code fetching procedure should
be performed.

Alternative Paths:;

If a previous version of the service is required for some service
operation, the new environment with new code should be dtarted if
this operation is explicitly alowed by security policies.

Extension Points;

N/A

Trigger: N/A

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark: The versoning compatibility is a mgor issue snce we consider that

only one verson of the code should exist on the node. This means
that:

Backwards compatibility is ESSENTIAL for supporting all
running applications in the node.

In case of versoning update, older applications should be
reconfigured to use the new code (e.g. a protocol update)

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page 137

Use Case Name:

ASP-D.2 Dependency Check

Summary:

It is certain that for a (large) number of code provisioning there will
be code dependencies from other software modules (e.g. a protocol
dependency). This means that the whole code provisioning process
will have to be caried out repestedly. Even though this is
unavoidable we should be very careful in resolving these
dependencies and we should clarify the scenarios where we may act
proactively, by ether checking code dependencies before initial
code downloading or by downloading the complete code stack
before checking.

Basic Course

Events:

of

1. A specific service request is given as an input

2. Look-up the dependency list to

dependencies

resolve possible code

3. Look-up for possible additional necessary code in both the code
stack and/or code repository

4. Return the results in code dependencies (both available and
unavailable in the node)

Alternative Paths:;

N/A

Extension Points:

N/A

Trigger: Step 5 of Use Case ASP-B

Assumption: A Dependency ligt is a required facility for this mechanism. The
update of thislist follows the code update mechanisms

Pre-condition: N/A

Post-condition: N/A

Remark: In this use case we do not foresee any information about code

dependencies coming with the service request, this makes the
service request simple and general but of course increases the
complexity of ASP architecture. It is under discussion whether or
not we keep this approach or we skip out the dependency check.

Use Case Name:

ASP-D.3 Interference resolution

Summary:

Consders inteference in tems of communication and
computational resources therefore is strongly related with the
Resource Control Framework. We can consider three types of
interference; the first category is about the didribution of limited
resources to a set of requests stemming from the execution of the
provisioned code. The second category considers resources that can
process one request at a time (e.g. a video transcoder). The third
category is interferences checked by the security framework, e.g.
checking users available resources.

The estimation of resources and the definition of resource utilisation

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Dedliverable D3

Page 138

policies are consdered essential for the efficient operation of the
whole node.

Basic Course of

Events:

1. Estimation of the resources needed for the execution of the
service instance

Security check for allowed resource usage.

Possible insertion of resource requests to the system (process
gueues, registers etc.)

4. Triggering mutex mechanisms for specific resources (e.g.
transcoders, dedicated processors €etc.)

5. Set the service to running or to waiting state

Alternative Paths:;

N/A

Extension Points.

N/A

Trigger: From Use Case ASP-C, before code execution

Assumption:

Pre-condition: N/A

Post-condition: N/A

Remark: There is dways the possibility of not having adequate resources for

serving the request. In this case we may having a Denia of Service
(DoS) or deays in service execution (based on the QoS
requirements from the service)

This use case will not be implemented by the ASP system, but by
the node Resource Control Framework.

Use Case Name:

ASP-E Resource Monitoring

Summary:

For the proper operation of most of the activities mentioned above,
an adequate resource monitoring facility should exist. The
interactions with the Resource Control Framework that will be
specified as a part of node infrastructure, resource allocation
policies need to be defined and the existence of resource-forecasting
mechanisms, will be useful in the improvement of the overdl
system. To avoid inserting redundant functiondity in the ASP
system, these tasks will be handled exclusively by the management
system

Basic Course of

Events:

In order to avoid having duplicate functiondity indgde FAIN, the
management system will configure and monitor the resources of the
node, using the Resource Control Framework.

Alternative Paths: N/A
Extension Points: N/A
Trigger: N/A
Assumption:

Pre-condition: N/A

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 139

Post-condition: N/A

Remark:

3.3 ASP ARCHITECTURE

This section describes the Active Service Provisioning Architecture (ASP). ASP is closely related to
the management system and comprises the installation, (re)configuration and removal of servicesin an
active network environment. Part of the functionality described in this section may be implemented in
the management system. Nevertheless it is included here to show the complete ASP functionality and
to ease the understanding of the ASP architecture.

3.3.1 Services

Service Implementation

Service Service
Description | Requirements

Service-specific

Code Modules By
Policies

Figure 51 - Service Implementation

A service implementation consists of: a service description, service requirements, service code
modules, and service-specific policies. These service components are described in the following

paragraphs.

Service description specifies the functionality provided by the service aswell asits version (cf. use
case ASP-D.1). This information is entered into a database (the service registry). It is used for
service discovery.

Service requirements describe the Virtual Environment (VE) that the service has been written for.
Implicitly, this specifies the API that is required by the code modules. If the specification of a VE
dlows for optiona functionality, the requirements dso list which kind of VE functiondity is
mandatory for proper service execution. E.g. if 1Psec functionality is optional for a certain VE, but
the service relies on it, then the service requirements must state this fact. In this way dependency
of a service implementation on the underlying software/hardware environment is resolved (cf. use
case ASP-D.2).

Service-specific policies describe the (re)configuration of the active network environment that a
service requires for proper execution. Configuration of the active network environment includes
the reservation of resources as provided by the resource control framework (RCF). Please note that
thereis no direct interface between a service and the RCF. In fact, communication between service
and RCF is done via indalation of service-specific policies in the management system. The
management system decides on whether to deny or accept the ingtallation of such policies with the
help of the security framework. Moreover, policies alow not only (re)configuration of the
environment, but also of the service itself. This is an important property and alows taking full

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 140

advantage of the active network concept. Depending on service-specific policies, a service may
request the installation/removal of service code modules at runtime.

Code modules are service components that are supposed to be executed on the network nodes. The
FAIN cube model alows for the execution of code on the data path, control, and management
plane. Depending on the type of VE/EE, these modules may implement functionaity on one or
more planes. E.g. a code module for the data plane could implement a transcoding function
whereas a code module for the management plane might implement a Policy Enforcement Point
(PEP) that is required by a service-specific policy.

3.3.2 ASP Network Architecture

This section describes the functionaity of ASP with a network wide scope. The network wide ASP
architecture is presented in the following figure.

£= @ Uszer T§rrninal !
Meguork

Li=zer Tarminal Uzer T%rminal.l’
Mebfoo
‘__,_,-'—'_‘—\-__\
[
Setvice Service
Repositary Descriptian

SErvice —

Registry .

Service Carvice
Distribution] Requirements
Metwark —
Manager (&
Resource Mot
[
Dizpatch Service
Code to Rezerved
EE= on &ctive Modes
¥ \
Eletnent tgr
Aotive Mode
L Element har
Elemerit Mar Potive Hode

Potive Mode

[P Metwork

Eletnent Mgr
Aotive Mode

Figure 52 - Active Service Provisioning Architecture

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 141

In the network level the ASP contains the code repository, where the active code modules, which can
be dynamicaly installed in the nodes, are stored. A service registry contains information about the
available services and about their mapping to specific implementations. For this reason the registry
should maintain information about the requirements of each service. In addition, the service regidiry is
aware of the location of the code repository, where the implementation of the corresponding serviceis
stored. A service digtribution component provides the ability to initiate the network-wide digtribution

of aservicein agroup of nodes.

3.3.2.1 Service Repository

The repository contains the code modules that implement the active services offered in the network.
Active code can have various formats, depending upon the implementation of the Execution
Environment where the code can run. For example active code for an EE based on the Java virtual
machine can be stored as the corresponding Java classfile (asin ANTS). The service distribution
component can access the repository, to retrieve the necessary code modules and download them to
specific active nodes.

3.3.2.1.1 Interface functions
For the retrieval of the code modules the repository should support the following functions
getCodeM odule
Retrieves the specified code module from the repository
in: Codeld
out: Code

storeCodeM odule

Sores a code module in the repository
in: Codeld
in: Code

deleteCodeM odule
Deletes a code module from the repository

in: Codeld

3.3.2.2 Service Registry

The availability of a service implementation must be made known to the network users. Therefore one
or more service registries exist within the network. The service registry acts as a name server that
maps the (functionality) description of a service to one or more service implementations and their
respective requiremerts. The requirements of the service can include a specific type of node or EE,
dependencies on other services and on specific implementation versions. Moreover the service registry
is aware of the location of the code server(s) that contain the service code modules and the service-

specific policies.
3.3.2.2.1 Interface functions
The following component interface functions are proposed:

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 142

register Service

registers a servicein the service registry and stores the code modul es and service-specific
policies in the specified repositories.

in: service description

in: service repository_locations
in: service properties

in: service_implementation

findService

returns a list of service repositories where services matching the service description
(functionality) can be found.

in: service description
in; service properties (optional)
out: service list

unregister Service

deletesthe entry for a service fromthe serviceregistry and removes the service components from
the service repositories.

in: service_description
in: service_properties

serviceM ap

used by the management system, to obtain information about the implementation of a service and
its requirements

in: Serviceld

in: Credential

Information regarding the principal who made the request

in:ReqResources

Information regarding the principal associated with the principal who made the request
out: CodeModulesinfo

Containsinformation regarding: the code modul e(s) that should beinstalled, the type of ANN
and the VE whereit should be installed, dependencies with other code modulesand optionally
the minimum recommended resour ces for that code module

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 143

3.3.2.3 Service Distribution

Service distribution deals with the deployment of service code modules in the network. Therefore the
service components need to be encapsulated and shipped to the appropriate nodes. Different
technologies exist for this purpose. Some approaches (StreamCode [102]) make use of active packets,
where executable code and data are contained in the same packet. Another possibility ANN[101] isto
embed in a packet a reference to a code module. On receiving such a packet, an active node retrieves
the module from the local cache or — if necessary - downloads the module from a code server. It isaso
possble to embed service components in mobile agents visiting the nodes and requesting the
ingtalation of the service components. Findly, it has been proposed to use a Distributed Processing
Environment (DPE), relying on a CORBA-like infrastructure to deploy the service.
3.3.2.3.1 Interface functions
The following component interface functions are proposed:

distributeService

Initiate service distribution. A service_provision_session_id is generated. Distribution_gosis
either “ best-effort” or “ all-or-none” .

in: service_description

in: target_nodes

in: digtribution_gos

out: service provison session id

getServiceDistributionState

returns the state of service distribution (di, installed)
in: service provison_sesson_id
out: service digtribution_state

3.3.2.4 Network Manager

The Network Manager acts as a central component in the ASP architecture. It communicates directly
with al other components of the ASP architecture. The network manager has been specified in chapter
2. Therefore, we restrict the description of the network manager to the ASP related issues.

From an ASP viewpoint, the network manager provides the following functiondity.
Process service requests from users
Get service offers from one or more service registries
Install service-specific policies (includes mapping the service to the nodes and resource allocation)
Initiate service distribution

Modify service state (run, terminate)

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 144

A service consists of executable code and service-specific policies describing the requirements of the
service in order to run properly. After a service has been requested and the appropriate service has
been discovered in the network, the network manager is required to install the network wide policies
that come with the service. As a consequence, the Resource Control Framework will reserve network
resources for this service. In case the ingalation of the policies fails - e.g. because the network
manager discovers conflicts with other installed policies or the required resources cannot be allocated -
the service request is rejected.

All requests have to be intercepted by the security framework subsystem and on the basis of the proper
authentication and/or credentials granted or refused.

A service may reconfigure itself by requesting the installation/removal of service-specific policies on
the network level. However, these actions can only be performed under the condition that al security
framework checks are passed and that the management system did not detect any policy conflicts.

3.3.2.4.1 Interface functions

The network manager is not a part of the ASP architecture and for this reason we do not list here the
corresponding interface. For more detail, the reader is referred to chapter 2.

3.3.3 ASP Node Architecture

In this section we present the ASP architecture at the node level in more detail. The purpose of the
node-level ASP componentsisfirst of all to have a point in the node where the requests for installation
of aservice or a code module can be processed. Additionaly, in order to improve overall performance
the ASP should locally cache recently used code modules at the node, so that it will not be necessary
for every code request to have to download the corresponding code module from the network code
repository. In order to provide more distributed ASP functionality, we could also have aloca registry,
which will implement a sub-set of the network-level service registry.

The Node ASP architecture is described in the following figure

Metwork
Metwork L35P- Hetwark
Ilamager Lenvel
I_ _____________ -
Node | ASP |
|
|
: Code Local |
Ele raent || Ilanager Begistry | |
Ilanager I :
| -
! e | Victual
I Cache I 1::1
I T) | Emvironrnent
I — — | |
I ECF Security Code MNode 05 |
| |
| |

Figure 53 — ASP Node Architecture

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 145

3.3.3.1 Code Manager

The ASP code manager is the core of the architecture at the node level. The code manager acts as a
request processor, which receives requests for code indadlation or remova ether from the
management system or from the service distribution network component. When the request is received
from the management system, the ASP does not need to perform any additional checks for the
authorisation of the user request and for the reservation of the necessary resources. The management
system will aready have processed the request and will pass the necessary information for user
credentials and for the place where the code should be installed as parameters of the request.

Additionally, the code manager can aso receive a request to install code to upgrade the functionality
of the management system, for example it can ingtall the code for a new Policy Enforcement Point.

The code manager can consult the local code cache to check if the requested code is already present on
the node, or else it can lookup in the service registry and get access to the central code repository of
the network.

The manipulation of active code is done by communicating with the node loader, which will be a part
of the node operating system. For this reason, the node loader should support the appropriate methods
to install or remove an active code module, or to change the status of aloaded code module (suspend,
resume or stop it). When interacting with the node loader, the code manager has to provide the
credentias of the principal who initiated the request, so that the necessary checks can be made inside
the NodeOS.

3.3.3.1.1 Interface functions

downloadReq

A reguest for the installation of an active code module
in:CodelD
in:Credentid
in:Pointer

The parameters that would be required for this method should carry information related with:
Codel D, which will be a string identifying the needed code package.
Credentid: information regarding the principa associated with the principa who made the request.

Pointer: is a string that indicates to the ASP the place (e.g. a directory) where the package should be
downloaded.

changeServiceCodeSate

Change service code state to new state. State may take the following values:; “ running” ,
“ stopped” , “ suspended” .

in: service session id
in: new_state

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 146

3.3.3.2 Code Cache

Service code may be cached on a node. We propose the use of a simple caching scheme. If codeisto
be ingaled on a node, the local cache is checked for the code modules. The implementation of a more
complex caching scheme where the caches of other nodes are checked, are considered to be of interest
and may be addressed in alater phase of the project.

The simplest caching agorithm is to store recently used files, based on their last access. Because code
may be updated with newer versions, there could be an expiration timer for each active code module.
When a code module is cached for more time than specified, it can be removed from the node and it
will have to be downloaded by new from the code repository.

Due to security reasons, the code cache should be able to associate the cached code with the user, on
behalf of whom the code was downloaded to the node. In the case that the same code is requested by
another user, it will have to undergo the necessary security checks again, athough it aready exists in
the node.

3.3.3.2.1 Interface functions

getModuleL ist
returns a list of code modules available in the local cache
out: module list

getModule

checks whether the specified code moduleis stored in the cache. if thisisthe case, it returnsa
copy of the code module.

in: code_ module id
out: code_module
insertModule
stores a code module in the local cache
in: code_module id
in: code module

removeM odule

removes code module from the local cache
in: code_ module id
in: code module

3.3.3.3 Local Registry

The local registry component implements a sub-set of the network-level service registry at the node
level of the ASP architecture, in order to provide the necessary information locally. The local registry
may cache the descriptions and the requirements of recently accessed services, so that if a request
comes from the element manager, it will be answered without having to access the central network
registry. The same issues apply here as to the caching of active code, concerning the replacement or
refresh of cached information.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 147

Optionaly, the local registry may contain information about code modules cached in neighbouring
nodes, so that we implement aform of distributed caching to improve download performance. In this
case it is necessary to have a mechanism for the exchange of this information between neighbouring
nodes. Thisissue will be left for the next phase of the project.

3.3.3.3.1 Interface functions

The loca registry will implement the following functions, specified for the service registry in the
network-wide architecture.

serviceM ap
register Service
unregister Service

Additional functions may be needed in arder to perform distributed caching of code. If needed, they
will be specified as work progresses in FAIN.

3.3.3.4 Element Manager

The Element Manager is mainly specified in chapter 2. Therefore, we restrict the description of the
Element Manager functionality to the ASP related issues.

On a node loca level, service-specific policies are needed to reserve node resources and to
control/configure other relevant components of the node for the service to perform as intended. These
requirements are described by policies that must be installed on the same node where the service code
runs.

We note that a service code module may interact with the node resource control via the node element
manager. Therefore a service code module should be able to dynamically install, modify and remove
policies on the node. However, these actions can only be performed under the condition that security
framework subsystem checks are passed and that management system did not detect any policy
conflicts.

Service-specific policies should be ade to replace service code modules based on local state.

3.3.3.4.1 Interface functions

Asthe Element Manager is not part of the ASP architecture, we do not describe here the corresponding
interface. The interface that will be offered by the Element Manager to the ASP system isinterface 1,
as specified previoudy in chapter 2.

3.3.3.5 Code Loader

A code loader will handle executable code modules that were brought to the node. The code loader
will be specified in the node architecture document. The following section therefore serves as
requirements to the node architecture. This component allows code to be installed, started, suspended
and removed. Starting the code involves alocating the appropriate node resources to the code, loading
the code into the memory and executing it. Suspending code means blocking a certain process. If a
code module is suspended, packets are dropped. Code is removed by stopping a process and freeing
the node resources allocated to that process.

3.3.3.5.1 Interface functions

loadM odule
loads a service code module into the appropriate execution environment and configures it.

in: service session id

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 148

in: code_module id
in: code_configuration

removeM odule
removes a service code modul e from the execution environment.

in: service session id
in: code_module id

configureModule

(re)configures module on runtime
in: service_sesson_id
in: code_module id
in: code_configuration

getM oduleState
returns the state of the specified service code module (loaded, configured, running).

in: service session id
in: code_module id
out: module_state
changeM oduleState
change module state to run, stopped, suspend, terminate
in: service session id
in: code_module id
in: module_state

3.3.3.6 ASP Monitoring

ASP monitoring will be performed by using the monitoring facility from network management
architecture (please refer to chapter 2 for details). Any information on the changing status resulting
from using the ASP system is given according to the specified use cases (ASP-A: Caching Policy,
ASP-B: Code Request, ASP-C: Code fetching/ingdling, ASP-D: Obstruction clearance, ASP-E:
Resource Monitoring)..

3.3.3.6.1 Interface functions

For the monitoring of ASP-related information, the monitoring service of the FAIN Network
Management System will be used. A more detailed specification of the monitoring service interface is
given in chapter 2.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 149

3.3.4 Execution Environments and ASP

3.3.4.1 Dynamic Provisioning with the DPE-based approach

In the DPE-based approach there is no in-band signdling, i.e. al active code is deployed and managed
through a separate control plane.

The main task of the provisioned parts is to manage resources in a specific way to provide a service to
applications rather than implement a protocol and handle data packets directly. Thus one would talk
about a dynamic service provisoning athough it is true that a service also implements a protocol for
interacting with the service.

The provisioning of new components on a node when an application needs a specific service isn't
triggered by data packets but on a higher plane; the application sends arequest for a specific service to
the node or group of nodes dong a path and the service will be deployed on demand. This can be seen
as an explicit provisoning in comparison to the implicit provisoning triggered by data packets.

In the DPE-based approach an object-oriented view is supported where objects interact at interfaces
and communicate through bindings. This allows putting the interaction of the application with active
nodes insde the object bindings and thus providing an implicit and tansparent way for dynamic
service provisioning.

We note that in the DPE-based approach there is no in-band signaling, i.e. dl active code is deployed
and managed through a separate control plane.

The procedure to find the relevant active nodes where service components are needed to fulfil some
application’s requirements can be quite complicated. It depends on the needed service, the knowledge
available to the application, the complexity of the network, and so on. However there has to be a
specid component on every active node to manage the installed services and on a higher level, another
component managing several nodes to ensure the integrity of installed service components. For the
sake of scalability ahierarchical model should be adopted.

For clarity we consider one possible scenario with three entities involved: a network provider offering
some active services on some of its nodes (e.g. a flow-based reservation service), an application
service provider offering a service to applications (e.g. a video-on-demand service), and a client using
the application service and transparently interacting with active services to get some desired QoS.

The scenario could work like this: an object of the client’s application needs to use an application
server's interface. When it requests the possibly personalized interface specifying a desired QoS from
the server, the server will create a reference for that interface. Inside the reference, the server can
encode information necessary to interact with service components on intermediate active nodes. The
reference is passed to the client and decoded by the client’s DPE. The DPE will transparently extract
the necessary information from the reference and start the interaction with the active service
components as previoudy specified by the application server. Following this, the gpplication’s client-
server interaction can take place and the QoS can be established by active service components along
the path.

3.3.4.2 Dynamic Provisioning with Mobile Agents

Mobile agents are an additional approach for execution of services and related objects in Active
Networks. Most tasks and functions of mobile agents in active networks are located in the
management and control plane.

Their function is two-fold: (1) wel-controlled execution of commands as issued from (i.e.
programmed in) service objects and (2) automation and support of control and management tasks. In
detail the following tasks can be distinguished:

Detection/Anaysis of problems with different ingtalations of service componerts (inconsistency
in their versons, maconfigured instalations).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 150

Overview of ingtalation/configuration of service components
Delivery and deployment of new versions of service components (and increments of them)

Typicdly, the execution environment for mobile agents (MA EE) and as will be used for FAIN is
IKV’s Grasshopper, which is implemented in Java and based upon a Java virtua machine (Jvm). The
MA EE is or will be running in conjunction with the DPE in order to share the Jym and resource
control components. The DPE is described in detail above.

For service provisoning/deployment the ingtalation of service components will be performed in a
policy-controlled way from interna or external repositories. For description of service components the
OMG Components deployment submissions will be studied [OMG-Comp99]. The policies are defined
for resource usage, alowed behaviour of a component and the overal system. A Security Manager is
consulted for dl security critical activities. The level of granularity of security checks influences
directly the overall system and service performance.

A service component can itself be mobile (e.g. an agent) or can be transferred to an active node (AN)
by other third entities. An Active Component Manager (ACM) which is part of the MA EE allows AN
entities (e.g. users, administrators etc) to install service components on the node and make use of it or
possibly make it available to other third party entities viaa policy controlled way.

In the MA EE will be in addition to the Active Component Manager a Service Component Repository,
Security Manager (Policy Base) and an Audit Manager.

3.3.4.3 High Performance EE

As described previoudy, there exist two approaches — in-band and out-of-band - to load code into an
execution environment. This section discusses the two mechanisms from a high performance
viewpoint. In the high performance execution environment we focus on the maximisation of packet
throughput. Given the minimum packet size, the link bandwidth, and the clock frequency of the
network processor, we find the number of processor cycles available to perform computations on
packets at line speed, which is relatively low with currently available technology. Therefore it is
important to make efficient use of the limited number of processor commands that can be executed.

In the in-band (capsule) approach code and data are in the same packet. When a packet (capsule)
arrives a the node, it is classified and sent to appropriate execution environment. The code is then
extracted and loaded into the program memory of the network (co-)processor. For a network
processor, such as the Intel 1XP1200, this can be a time-consuming task [101]. In order to circumvent
this drawback, special purpose hardware [8] has been devel oped.

Many services suitable for active networking - such as active reliable multicast, virtual private
networks, media scaling, etc. - do not require code that is different for each packet. Therefore it is
more efficient to once load the code into the execution environment(s) before the packets the code isto
be applied on arrive. As a consegquence the out-of-band approach avoids bandwidth and computing
overhead the in-band approach is suffering from.

In the FAIN enterprise model, service provider and consumer are two separate entities. The service
provider deploys services in the network. A service consists of code that is to be executed in execution
environments. This model is best supported by an out-of-band approach. The service provider first
installs the service (code) in the appropriate execution environments. In a second step the consumer
injects packets into the network the service (code) is to be applied on. Using the in-band approach
(packets consisting of code and data) service provider and consumer need to work together for the
composition of each packet. This approach is reasonable if a single entity plays the role of the service
provider and customer or if the code is prebound with proper credentials and as such used by other
users.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 151

3.4 INFORMATION MODEL

This section will give an overview about how the information modd for deployment of
service/protocol code as used for ASP mechanisms will ook like

Priorities to achieve this are a naming system for services and code modules. We should support
different versions and description of dependencies (other services or specific EE type).

3.4.1 Overview on Deployment Descriptions

One effort to create a standard software deployment schema is called the Open Software Description
(OSD) format. This effort is a collaboration between Microsoft and Marimba to create a schema for
describing software systems for “push” technologies. OSD just alows for the description of multiple
coarse-grain variants of a single revision of a software system; dependent software systems may also
be specified. The descriptive information includes some identification information and pointers to
archives where the code is found. The resulting description is too smplistic to perform any significant
software deployment process automation.

The Desktop Management Task Force (DMTF) has created the Management Information Format
(MIF). It is a modelling language for describing various computing system elements. DMTF formed
a specific working group to create a standard schemain MIF for describing software systems.

3.4.2 FAIN Deployment Description

The ASP defines a syntax for the specification of service templates and service profiles. The ASP
requires this information for the creation, configuration and deployment of each service. The service
template contains the necessary common creation information of service instances, whereas the
information identified within a service profile is associated with a specific service instance and service
user. Both pieces of information serve as input for the ASP.

Since the service template is related to the information required by the ASP to build service instances
of a particular service type, this information must be provided by the service designer himself/herself.
However, the information isin genera, applicable to all service instances.

The figure below depicts the relationship between these two pieces of information and the ASP.

Service

Template
ASP
—

Service
Profile

Service Designer

Figure 54 — Input Information for ASP

The following sections provide detailed information about the service template and service profile.

3.4.3 Service Template

A service template specifies the information needed to create a service instance of a particular service
type. Among other related information and particularly within the defined scope of FAIN services, it
identifies the parts (agents, etc.) comprising a service type. Template descriptions are node
independent. Node specific information is maintained in service profiles, which are explained below.
At afirst glance, a service typeis characterised by:

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 152

A name which identifies the service type,

A code base identifying the location of the computational information for building the objects
composing the service type,

service objects/agents, i.e. computational entities that represent the service type

Name

The name is used to address a particular service type. This name shal be unique within a service
provider domain, and it is specified by the service designer. Once specified, such a name is associated
with the computational behaviour of a service type. As such, the name generaly contains the
identification of the components that represent the service, the set of interfaces, and the computational
semantic. By having such a name, an abstraction of the details is possible from a user’s point of view.
Different versions of a service (template) can be expressed either by choosing different names for
different versons or by introduction of a verson property which allow to differ between various
versions of a service template.

Code Base

The purpose of the code base is to identify the locations where the ASP can find the computational
specification (e.g. classes, of agents) that represent the service type specified within the service
template. A code base shal only be specified if the required computational specification cannot be
retrieved by the ASP using local means, i.e. if the required classes are not included by the search path.

Service Agent

All agents comprising a service have to be specified in the service template. The computational
specification of each identified service agent must either be retrievable by searching localy or via the
code base. If one of the specified service agents cannot be created, the entire runtime representation of
the service type will not be built by the ASP.

3.4.4 Service Profile

Whereas the service template covers information that is associated with a service type, the service
profile describes a single service instance in particular AN nodes through concrete configuration
parameter values and specific information about the initial location of the single service objectsagents.

The following information is covered by each service profile:

Instance ldentifier

This entry identifies the service instance uniquely.

Location Information

All agents belonging to a service type are identified in the corresponding service template. At least a
subset of these agents has to be deployed by the ASP when a new service instance is created. For those
agents that have to be initially deployed by the ASP, location information must be provided within the
service profile.

The location information is represented by means of a node or agency name. Additional node
requirements or dependencies can be expressed.

Note that those objects/agents, which are specified in the service template and which do not have a
location information entry within the service profile, will not be created by the ASP when the service
instance is created. This case may occur for agents created by service instance components during the
service provisioning phase.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 153

Customer Name

This entry represents the name of the customer®* who has subscribed to the service. This information
may be required for authentication purposes.

Customer Ildentifier

This entry specifies the identifier of the customer who has subscribed to the service. In contrast to the
customer name, this entry has to be unique. This information may be required for authentication
pUrposes.

Values of Initialisation Attributes

When creating a new service instance, the single service object/agent may require properties for their
initial configuration. The names of these properties are specified for each object/agent within the
service. Within the service profile, concrete values can be assigned to these properties.

Textual Description

The creator of the service profile may include a textud description, which provides additiond,
instance-related information. Note that this description is not interpreted by the ASP.

3.4.5 Node information/characteristics

Each node maintains a registry or database, which describes its properties or characteristicsin order to
find the right service code (i.e. code base) type for that node. The following properties are suggested:

Node OS Type and version (e.g. “Linux x.y.z", “Windows 2000 rev. X.y.z")
Software packages (e.g. ,JDK 1.3.1%)
Hardware/Network adaptors (e.g. “ATM Adaptor xzy”)

Please note that the last (Hardware) class of properties is “fixed” in contrast to the other property
classes, which alow updates and downloading if required.

3.4.6 Network Information/Characteristics

From a network perspective it must be possible to specify a group or graph of nodes on which service
code has to be made available in order to provide the service to customers. It is specified by the
Network Manager and implements service provisoning QoS in a best-effort or al-or-none
characterigtic.

A detailed specification of the information structures explained above maybe expressed using XML
and will be embedded in the FAIN overal management information model.

3.5 ASP REQUIREMENTS TO SUBSYSTEMS

31 A customer may be a subscriber or an end user.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 154

3.5.1 ASP Requirements on the AN Node

The ASP module deds with the provision of active code. The code is ddivered to the active node,
where it is injected and executed in the appropriate VE. Therefore the active node should provide the
facilities for the ingtallation and the execution of the code. In order to support the ASP process, an
active node should fulfil a set of requirements. Some of these requirements are expected to be
implemented as basic features of the active node.

Resource Control — Monitoring. The active node should have the ability to alocate
computational and network resources to an active service. In addition it should monitor the
resources consumed by a service, to ensure that the service is restricted to the predefined
resources.

Code Isolation. The active node should guarantee that there is no interference between
different code modules.

Multiple protocol stacks. An active node should be able to support more than one protocol
stack at the same time. Each stack could be associated with a specific user or service of the
active node.

Stack modification. When ingtaling a new protocal, it should be possible to specify the place
where the code will be ingalled. In terms of place we mean the corresponding Virtual
Environment, as well as the place of the protocol inside the stack of the active node.

Protocol/service remova. The ASP can remove protocol/service code, either after an explicit
user request, or because a fault has been detected during the execution of the code.

3.5.1.1 Required interfaces from AN Node

The AN Node interface provided to the ASP system should support the ingtalation and removal of
active code. Optionally, there could aso be operations to suspend and resume the execution of an
active code module on-the-fly, without necessarily uningtdling/reingaling it.

The following interface functions will be needed
installCode (in Code, in Pointer)

This function installs a code module in the active node. The Pointer parameter, which has been
obtained by the management system points to the place where the code should be ingtaled (identifies
the appropriate VE and the resources which have been reserved by the management system).

removeCode(in Codeld)
This function removes a code module from the code stack of the active node
suspendCode(in Codeld)

This function suspends the execution of an installed module, without uningtaling it from the code
stack of the active node.

stopCode(In Codel D)

This function stops the code while it remains installed on the node.
resumeCode(in Codeld)

This function resumes the execution of a suspended code module.
getlnstalledM odules(out Codel nfoList)

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 155

This function gets information about the code modules, which are currently installed in the node. The
CodelnfoList contains the identifiers of the instaled code modules and other related information, as
the status of the code modules (executing, suspended).

3.5.2 ASP Requirements to Security Framework

The security framework must ensure secure service provisoning. To achieve this the security
framework should provide the following features:

Access control, al requests should be properly authenticated, authorized and the security
policy should be enforced

Protect active requests while traversing the network, e.g. provide active code, active packet
and possible palicies integrity, protect against various network attacks like replay-attacks

Be able to uniquely identify users request (towards privileged interfaces, messages) while user
code is running on the node,

Be able to uniquely labd dl objectsin the system, including user services ingtalled via ASP,
Be able to track system state,

Send terminate requests if the security policies are violated and actualy terminate services if
particular EE don’t respond to terminate request properly,

Provide audit information, even for user installed services if required and alowed by security
policies.

3.5.3 ASP Requirements to Management System

The process of Active Service Provisioning is strongly related to the FAIN management system. The
active code that will be deployed by the ASP implements a network protocol or service, which is a
target for the management system. The management system is required to perform the necessary
checks for access and admission control. The management system will first perform the required
checks and then pass the code request to the ASP.

Access control

When arequest for the installation of code is received, the first thing that should be done is to
perform the necessary checks for the authorization of the request.

Resource Reservation

In the case that the service/protocol/code that will be installed has specific resource
requirements, the management system should take care to reserve these resources on all the
nodes that will be used by the service. In case that not enough resources exist, the installation
will not be possible.

Policy Checks

The Policy Based Network Management system should check all existing policies related to
the specific protocol, before giving clearance for the download of code from the ASP system.

Network Topology Information

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 156

Any information regarding the network topology, which may be needed by the ASP system,
should be obtained by the management system, to avoid building redundant functiondity in
both systems.

Request processing.

The user of the active network does not directly interact with the ASP system. A request for
the ingtalation of a new service should be sent to the management system, where it is
processed and then the ASP is subsequently requested to download the code.

The necessary checks will be performed by the management system before requesting the code
download from the ASP, but in the case the dependency resolution, it may decide that an
additional protocol is required. In this case, the ASP must request from the management
system the authorization and resource alocation for the new protocal.

3.5.3.1 Required Interfaces from the Management System

Typicaly, it is the FAIN Management System that processes an incoming request for the installation
of a new service or code module, reserves the required resources and then asks the ASP system to
ingall the code. In the case that the ASP decides that the installation of an additional code module is
required, the Management System interface should be able to receive a request from ASP.

installACReqg (in Codeld, in Credentids, in Resources, out Pointer)

This function receives a request from the ASP for the ingalation of a code module identified by its
Codeld. The Credentias of the user who will run this module and the required Resources are also
provided as function parameters. The Management System will return a Pointer which points to the
place where the code module will have to be instdled.

3.6 ASP SCENARIOS

In the following section we will describe a scenario for Active Service Provisioning The scenario itself
is much broader than that needed for only the ASP case, but we fed that it is useful to show the entire
picture of the code and service lifetime on the node. This can help to get broader understanding of the
system behaviour and position of the ASP in the system. The entire scenario is represented in the
figure Figure 55. The scenario tries to cover both cases, and in-band and an out-of-band code scenario.
On the drawing with numbers in red circles the in-band scenario is presented and with numbersin
ydlow boxes, in addition to stepsin circles, the smple out-of -band approach when the code is
referenced in the packet. Specific steps of the management-based approach are shown with numbersin
diamonds. The figure also shows the Security block and RCF block which are repeated three times to
help to keep the picture more readable. Interactions between these two subsystems are not shown in
the scenario. The dashed box in the middle of the diagram is the VE/EE area where many crossings of
the arrows over the box boundary can be understood as NodeOS API calls. Light, dashed linesin the
lower left corner indicate which parts of the system are in the network. Both approaches, in-band and
out-of-band, are valid for ASP scenario and are covered appropriately.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 157

—» R st
©— Reque

i~ processor

Security block S E— @ -------------------- > Security block
S @ o X
1 Y H
! QG :
@ RCF M Composition |« 5 +» RCF | @
User/inband i i !
network : :

Untrusted local

cache 4+ H
e/)
P
17
7
A

13 Suspend
Local/Metwork - {a
Remote storage or | __ Local registry

Service repository @ 10

’ t 4 . 90
Service Network Managemert| | Service <t>]

Distributior] I@ System ®— Registry

User request

v

RCF

h J

Security block

Figure 55 — ASP Scenario

3.6.1 In-band versus out-of-band

The first valid question is what should be considered as the in-band and what as the out-of-band
approach.

In-band means that the code is carried in the packet itself and these packets are sometimes called
capsules. The usua assumption for this approach is that the capsules are executed on al suitable
ANNs in the path. Code in the packet is executed in the suitable node environment and after preparing
suitable packet(s) to be send to the network interface(es) packet terminates. Usually the time of the
code execution is smal and even limited in some approaches. Because of the packet(code) small size
the usudly in-band approach has support functions in its native environment which should be
considered privileged. In this case the code is highly dynamic.

Out-of-band means that the code is not carried in the packets. Code is brought to the node from the
network. To carry out this task many solutions has been proposed, from referenced code, network
management approach, active agents, DPE ... In this study we will consider only the referenced code
and management approach.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 158

In referenced code approach, code to be executed is referenced in the active packet. The reference
could be to the previous node, to a trusted repository or €lsewhere. The code here can be highly
dynamic, asin the case of ANTS for example, when the code is ~“walking" through the nodes and is
installed from the previous hop network cache if it is not available on the node aready [95]. Though
the code behaviour is similar to the in-band approach we consider this solution as out-of -band. On the
other hand, code can be referenced in the packet but only allowed to run for the time of the certain
flow for example [96], or the referenced code can be installed on the node and running for a certain
period as defined by the network conditions, the type of the service code is offering, the management
actions etc [97]. Code dynamic is various from high to low. In first two cases we know when the code
will terminate and these cases can be seen as a very natural way to get the code in the network. In the
third case, we don't know how long the code will run on the node, but we have to control its operation;
this has to be done through the node and network management mechanisms. The same is valid for
code carrying dependency information, since we can get dependency loops. The sameisvalid for al
the other problems mentioned in the “ Obstruction clearance” section of this chapter. Possible scenarios
to solve problems mentioned in that section are not shown in the scenario but should be solved on
network level, probably by Network Management Subsystem. We will call first two approaches smple
and these two don’t need in general to interact with management system. The section “ Referenced
code” given previoudy will cover these two approaches, while the section “ Service initiated by the
management system” will cover the third case.

Management approaches differ in the previous solutions in the way the service is triggered and
installed on the node; management facilities can request code installation and will lookup upon the
code time of running, environment, termination etc. Management approaches can aso share many
similarities with the referenced code, as we will show later.

3.6.2 In-band approach

First the in-band approach will be studied. Code is carried in the packet itself. Active packet can be
generated in the user's machine,32 or by any other code running on the ANN.

Requests come from the network through network interfaces, so:

1. Requests have to be recognized. Thisisthefirst job of the Request Processor, alogical functional
block, which job is to recognize and process a request and available information about it. The
output from this block must be a validated request bound to a certain security context, which can be
sent to appropriate VE/EE.

2. Upon the request many security checks have to be made;

a. Istherethe right packet on the right interface policy check, check against network policies,

b. Authentication of the packets origin,

c. Check hop-by-hop active packet integrity,

d. verification check, check against system policies for genera access,

e. Assign the request on the basis of authentication to the proper Security Context (SC), and
Security ID (SID),33

f. Check the VE/EE policies for VE/EE governed access policies,

3. Demultiplexing of the packets to the appropriate VE/EE,

4. Pre-stageisthe state of the system when we can do various actions which are VE/EE specific, for
example actions that cannot be done at NodeOS level because information about them is not
available at previous stages or has no real meaning to the NodeOS itself.

Requests might have specific policies which can be bounded to active packets and have to be
dynamically inserted and checked for conflict with aready existing policies.

32 Machine or device, anything that can run active stack and generate valid active code.

33 3C should contain only the least privileges for the code, class of the service or type of the VE/EE; any other
request to privileged operations, API calls must be authorized when requested.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 159

5. Requests for resources can be checked at this stage. Request can be implicit in the example of the
SNAP code34 or explicitly defined in the request.

6. Thecodeis contained in the packet and is extracted and prepared for execution.
An environment suitable for code execution is set-up and the code will be run.

7. During the code execution code usage of the node resources has to be monitored and enforced
against node, VE, EE and code palicy.

8. Any request for privileged access has to be authorized and if granted, it has to be revoked when it is
not needed any more.

9. When the code has finished execution it will build active packet(s), which will be send to one/some
ANN(s) through the node's interface(s).

10. The code has arrived into the Post-stage state where a system does necessary checks which will
enable AC to send itself to one/some network destinations.

Sending the AC to one/some ANNS through the node's interfaces has to be checked against node,
VE, EE and code policy.

11. An active packet is sent to the network interface(s) and multiplexed with other packets.

12. The natural state of the code is termination. The execution environment is responsible for all clear+
up of the environment and all used resources must be reclaimed.

13. Packet hop-by-hop integrity information is added to the active packet.
14.Packet is sent to the wire.

15.Up until now all the steps were avalid life cycle of the active packet in the node. This step to the
stage of the Termination is added because we must be able to stop the code running due to:

a. resource issues. AC can use too many resources or it is running too long and
b. security issues. AC can try to violate security policy.

Actualy only the security block can send arequest for termination based on data or triggers from
RCF block. All terminated AC resources has to be reclaimed and the environment cleared by the
execution environment.

We could use the management block for the same task but due to scheduling issues and the
properties of the in-band approach we are assuming that thisis the right solution. The management
block can be used in the out-of -band scenario, where code has alonger life cycle to terminate the
service, see step 18, or change service state, see steps from 19 to 25 al from the management
scenario.

3.6.3 Out-of-band approach

The out-of -band approach as explained in section 3.6.1 will be studied in two stages, first when the
AC carries the reference to the code and then as a management initiated task. In addition a
management block can introduce in conjunction with the RCF framework implicit requests, which will
be explained in section 3.6.3.3 .

34 Thelength of the packet is proportional to the estimated max resource usage

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 160

3.6.3.1 Referenced code

In this case code is referenced in the packet an as such is not available at the step 1. We can have two
options; we can load the code immediately or process the request to the stage when we can see if the
code is dready available in the system (ANN). We have decided for the latter case because the code
might already be in the local cache or in the trusted network cache in the previous network hop. In the
cases when the assumption is not true we have to put the code for some amount of time in the
untrusted local cache and if needed, check its security properties and only then make code available

for execution, i.e.put it in the node local cache. There are few cases when the code can be assumed not
to be trusted: when the code is loaded from the user or any other network repository or when the code
is crossing a network domain boundary. How to deal with such code is shown in steps from 1to 5.

Steps from the section 3.6.2 , in-band approach, 1to 5 are repeated. Then we start from step 1,35

1. Inthe case of the referenced code, requests should be made to the Code Fetch block. Code fetch is
afunctiona block which receives requests for code and looks for it in appropriate places. Code to
be fetched, if not available in the loca or trusted network cache, is stored in the untrusted local
cache.

After performing the necessary steps from 2 to 5 the code fetch block will return code to the
requesting EE.

2. Lookup isfirst made in the local and then in the trusted network cache.36 Thereis no need to do al
security checks on this code, though revocation problems might still exist. Caches can be built per
user, or if the code can be uniquely named one cache can be used..

3. Inaready mentioned cases, firgt, when the code has to be loaded from the user local machine (or
referenced predefined repository), and second, on the network boundary, code has to be loaded
from remote repository. Loading can be protected by security mechanisms aready existing in AN
or by other mechanisms like IPsec, SSL ... From where the code can be |oaded can be governed by
anode policy.

4. Codeisstored in aloca untrusted cache.

5. The code has to be ddlivered to the EE and stored in the local cache. Before that some security
checks have to be made, e.g. verification checks to verify the code digital signature. Step 5 is not
shown in the scenario diagram, it is only marked with dashed box.

From here on we can proceed with steps 6 to 9 from the in-band scenario. Code can now actually
build an AC with referenced code and send it to one/some/allowed interface(s) through the steps
from 10to 11 and 13to 14 from in-band approach.

Code can terminate normally through the circled stage 9 and then proceed to the stage Terminate in
step 12. All used resources should be reclaimed at this point and the possible states of the code
cleared.

If the code is not behaving properly as explained in item 15, in-band approach, the security block
can request code termination. Also at this stage the system has to assure that all the used resources
are reclaimed and the states of the code are cleared.

35 Remember, these steps are shown with a number in abox

% Trusted ANN from previous hop.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 161

3.6.3.2 Service initiated by the management system

The management system should be used when it is not known exactly when the service will terminate
or the reasons to start the service are not as explicitly given.. On the other hand service provisioning
can be too complex to be handled by a simple referenced approach alone. In this case we have to
handle various problems described in “Obstruction clearance” use case like dependencies, versioning,
setup interference etc. Management actions can be explicit, e.g. when the user sends a request over the
network management system to install a new service in the ANN(s) or implicit, triggered by the RCF
block or, if based on more complex characteristics estimated from the RCF block data, by a
management based trigger and handled in the similar manner as the explicit request. We have divided
the scenario in two cases: in the blue diamonds case when the service is initiated by Network
Management System is shown and in the green diamonds case when the serviceisinitiated by Element
Management System. With black diamonds are marked steps that can change service state and are
mainly common to both cases.

An out-of -band AC life cycle can be summarized in the following steps:

1. User request. A user in the system makes the request to provide an active service in the network.
The user must be properly authenticated and authorized for such a request.

2. The Network Management system makes alookup in Service Registry to find suitable code
module(s) to fulfil the request.

3. Inthis step Network Management System sends a request to the Element Management System to
reserve needed resources on the ANN(S).

4. Therequest is checked by the security framework.

5. Avalilability of the resources are checked in Element Management System and Resource Control
Framework.

6. The Network Management System sends a request for distribution to the Service Digtribution
block. It depends on service distribution methods how the code will be delivered to the selected
ANN(S).

7. Inthis scenario only the method via referenced code is shown. The Service Distribution block will
build suitable request(s) with the reference to all needed data to the Request processor. Steps from
2 to 3 are repeated as given in the in-band scenario are repeated and then needed steps from 1to 5
from referenced code scenario (yellow boxes) are repeated. Then the code is prepared for
installation in the Pre-stage. Steps 4 and 5 from the in-band scenario in this case are optiond, since
resources are already reserved on the hode and hence there is no real need for policy ingtalation.
The service is then run and steps 7 and 8 (in-band) are vaid for this case. Normal service
termination is through Post-stage, when used resources are reclaimed and service goes in step 12
(in-band) to state terminate. Step 15 (in-band) is valid if the code is not behaving properly and
service will be forced in state terminate as is described in this step.

8. The Network Management System can control the service state through step 8 and set the service to
the state Stop, Suspend, Terminate or Run.

9. From this step on we will describe scenario when the service provisioning isinitiated by the
Element Management System. The trigger in the Element Management System can trigger and
actually request service provisioning. These steps are marked with green diamonds. For this
approach, the Element Management System should know where to find the triggered service and
optionally how many resources the service will use. Typical classes of such service are services for
congestions prevention, automated services for Reliable Multicast NACK suppression and cache
provisioning etc. In step 9 the security framework is queried for the validity of the request, for
example checking the time and node state.

10. The Resource Control Framework is checked for available resources and requests for resource
reservation can be made.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 162

11. A request for code modulesis sent to Code Fetch block with the location where the service can be
found. The following steps are duplicated from referenced code approach (1-5, yellow boxes)
because they are dightly different.

12. Firgt alookup for a code module is done in the loca cache. If this step is not successful we proceed
to step

13. The Code Fetch block will look in the Local regigtry if there is more information about the code
modules location. Code can be cached in the neighbour node.

14.1f the code is not available, for example if the cache time of the code module has expired, code has
to be fetched from the Service Repository.

15. The Code moduleis put in the loca untrusted cache.

16. At this time code is dready on the node. There can be many ways to actualy install and start the
code. In this scenario we will show only one simple way when the Element Management System
builds a request with a referenced code with reference to local untrusted cache and sendsiit to the
loopback interface of the node. The request is then intercepted by the request processor and all
necessary checksin step 2 (in-band) will be done because this cache is considered untrusted.

17.This step is only marked with dashed diamond. During this step the code module after being
checked is transferred from untrusted local cache to the local cache and the code modules
information in the Loca Registry is updated.

18.1n this step, the code module is transferred to Pre-stage and subsequently follows the same scenario
as described in part of the step 7 of thisNMS scenario. Steps 4 and 5 from in-band scenario in this
case are optional, resources can be aready reserved on the node and there is no real need for policy
instalation. The service is then run and steps 7 and 8 (in-band) are valid for this case. Normal
service termination is through Post-stage, when used resources are reclaimed and the service goes
in gep 12 (in-band) to state terminate. Step 15 (in-band) isvalid if the code is not behaving
properly and service will be forced in state terminate.. Actualy at this case this can be done by
security framework or Element Management System if it has more information on proper service
behaviour.

19. Through this step the Element Manager System can control service state and set the service to the
state Stop, Suspend, Terminate or Run.

20. Steps 20 to 25 are shown in the scenario to cover other possible service states. The request for state
changing is coming from the NMS or EM'S, marked as step 8 and 19 in this scenario. In step 20 the
request is sent to stop the service. This date is similar to the state terminate but the code is not
removed from the system.

21. The stopped service can get to the run state through the step 21, through state Pre-Stage.

22.In this step the stopped service has to change to state terminate if requested. The code module used
to provide the service is removed.

23. Step 23 changes the state of the service to suspended. In this case service won’t run any more but
no resources are reclaimed at this time. Change to state run doesn’t require any additional checks
from the ANN subsystems. This change should be indicated by back arrow, but is omitted in the
figure. The security framework is responsible to watch the possible policy change and change the
service state to the stopped state if the security policies regarding the service provided are changed.
Status in management system about service status also has to be updated.

24. A suspended service can change to the state terminate if the management system requests this
action. At thistime all the resources have to be reclaimed and installed service code modules
removed from the system.

25.This step is added for the sake of the completeness. The service can be set to the state terminate
while running through Post-stage. All used resources have to be reclaimed by the system.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 163

3.6.4 Composition

Composition of services will be covered if necessary in the next stages of the ASP development so at
this stage only composition block and some connections to the Security block and RCF are shown on
the picture but not explained in the scenario.

3.7 ASSOCIATION BETWEEN ASP AND FAIN ENTERPRISE MODEL

In this section a mapping of ASP to the FAIN Enterprise model (Figure 6) is elaborated. It analyses
mainly the roles and reference points to which the ASP and its activity are mapped.

3.7.1 Mapping ASP to FAIN Enterprise model Actors

The functionality of the ASP can be mapped to the Network Infrastructure Provider (NIP) of the FAIN
Enterprise model. The NIP is the entity that offers a basic platform to the Active Network Service
Providers (NSPs), who can then build their own services on top of it. We consider the ability to
dynamically provide active code for the implementation of new services abasic facility of the active
network, thus we believe that the ASP can be mapped to the NIP. Furthermore, the ASP is a generic
mechanism for the injection of service code, so mapping it to the NIP alows usto have asingle
mechanism for code provision. Otherwise, it would be necessary to have different ASP systems for
each NSP. The other actors who want to install their code in the network, the SP and the NSP, have to
implement some higher-level mechanisms of their own and use the ASP facility of the NIP to do the
actua injection of the active code in the system.

3.7.2 Mapping FAIN enterprise model RPs to ASP functions

The reference points of the Enterprise Model, which are directly related to the ASP, are RP3 and RP7.
Since the interdomain RP7 has not been covered in detall in the FAIN Enterprise Moddl, the ASP
functions can be mapped only to RP3. We should aso mention that the FAIN Management System is
also owned by the NIP, so al interactions between the ASP and the PBNM system are considered as
internal to the NIP and hence don’'t map to any of the reference points.

3.7.2.1 RP3

The functiondity of the ASP which can be mapped to this reference point is the following: A new
service can be registered and its corresponding implementation can be stored in the code
repository, from where it can be retrieved and installed by the ASP system.

Additiona requirements for the service can be given, like dependencies on other services or code
modules, requirements for specific types of Execution Environments.

Information about services, which exist in the system can be retrieved.

The actua injection of the code is done on behalf of the NSP or the SP who wants to install their
own service in the active nodes.

We should also mention that the actua request for the installation of the active code is sent from the
user to the management system, so there is not a direct interaction of the user with the ASP system in
this reference point.

3.8 FURTHER ISSUES

Some issues for the implementation of the ASP system, as well as for consideration in the next phase
of the project are presented below.

ASP platform

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 164

In the scope of FAIN a variety of Execution Environments will be developed (DPE-based, MA -
based, High Performance). The active code for each different EE will have its own format,
however the digtribution of the code can be independent. Our initia god is to implemert asingle
ASP system for al the types of EEs indde FAIN. Mobile Agents provide a flexible solution for
the provision of services and they will be used in the initid implementation of the ASP system. As
the project evolves and the different Execution Environments are developed, if new issues arise
which demand the existence of other EE-specific mechanisms for the provision of services, we
will proceed with the implementation of EE-specific ASP components.

Caching mechanisms

The initid implementation of ASP will contain a smple caching scheme, where each active node
will cache localy recently used code and upon a request for code ingtalation it will first lookup in
the locd cache and if the code does not exist then it will lookup in the central code repository.

In order to improve performance, more advanced caching schemes can be used in future versions
of ASP. For example code caching can be distributed in the network, with each active node having
knowledge of the contents stored in the caches of its neighbouring nodes.

Code Dependency and Versioning check

The checks made to resolve the dependency of an active service on additional code modules, as
well as requirements for specific versions of protocols or services can become very complex. In
theinitia implementation and testing of the ASP system, there will not be an immediate need for
very sophigticated dependency and versioning mechanisms. Dependencies and version-specific
reguirements will be contained in the service requirements entry in the service registry.

Registry Update

The mechanisms for the update of the code registry are left for the implementation. The registry
could be updated either synchronoudly, after checking the contents of the code stacks and the local
caches of the different active nodes, or asynchronoudy, when a new service or protocol isinstalled
on an active node, or a service is removed from the code stack or local cache of a node.

4 CONCLUSIONS

This document has provided an initial outline of the case studies that are to be used to evaluate the
overal FAIN approach and associated architecture. The work documented here has focused in
particular on the development of case studies associated with policy based network management and
the dynamic provisioning of servicesin an active networking domain (asinitialy presented in the
original technical annex). The case studies themselves have been based around the enterprise model
developed in WP2. That is, the same key actors and roles have been re-used here and the scenarios
showing their more detailed interaction presented.

Work is currently on-going in the development of prototypes that realise these case studies. Initia
successes have aready been developed, e.g. prototyping of the VPN scenario, showing that the
components as specified here and their interaction scenarios, are both meaningful and realisablein
an active networking environment. Thiswork is of course on-going and as such it islikely that the
prototypes will undergo further refinements and enhancements as the work on FAIN progresses.
As such, it is expected that the prototypes and the scenarios that they support will evolve into a
more complete final FAIN demondtration. This will both highlight the success of the genera
overall approach, i.e. that the FAIN architecture is sufficiently well defined (through generic
components and interfaces between the different actors) so as to support a variety of different
services and management capabilities in a dynamic (active) manner, as well as to show the overal
benefits of an active networking approach for service provisioning and network management.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 165

5 REFERENCES

[1] N. Damianou, N. Dulay, E. Lupu, M. Sloman, ‘The Ponder Policy Specification Language,
Policy Workshop 2001, HP Labs, Bristol, January 2001

[2] Telecom Operations Map - http://mwww.tmforum.org/publications/tel ops

[3] “High Avalability Desgn For Embedded Systems’, Wind River Systems
http://www.wrs.com/productshtml/cirrus-wp.html

[4 R. Yavatkar, D. Pendarakis, R. Guerin, “A Framework for Policy-based Admission Control” —
RFC 2753, January 2000

[5 J Bacon, K. Moody, J. Bates, R. Hayton, Ch. Ma, A. McNeil, O. Seidd, M. Spiteri, “Generic
Support for Distributed Applications’, IEEE Computer, March 2000.

[6] M. Stevens, W. Weiss, H. Mahon, B. Moore, J. Srassner, G. Waters, A. Weterinen, J. Wheeler,
“Policy Framework”, IETF draft, September 1999.

[7] S. Denazis, ‘AN Reference Architecture’, R23 Audit document, Dec 2000

[8] E. Lupu, M. Sloman, “Conflict Analysis for Management Policies’, Proceedings of the 5"
International Symposium on Integrated Network Management IM’97, San Diego, Chapman &
Hal, May 1997

[9] M. Sloman, E. Lupu, ‘Policy Specification for Programmable Networks', IWAN 99, Berlin, June
1999

[10] E. Lupu, “A Role-Based Framework for Distributed System Management”, Departement of
Computing, Imperid College, July 1998.

[11] K. Ho Chan, D. Durham, S. Gai, K. McCloghrie, F. Reichmeyer, J. Sdigson, A. Smith, R.
Y avatkar, “ COPS Usage for Policy Provisioning”, Internet Draft, October 2000.

[12] “Interoperable Naming Service Specification”, Object Management Group, November 2000

[13] K. McCloghrie, M. Fine, J. Sdligson, K. Chan, S. Hahn, R. Sahita A. Smith, F. Reichmeyer,
“Structure of Policy Provisioning Information (SPP1)”, Internet Draft, January 2001.

[14] M. Fine, K. McCloghrie, J. Sdigson, K. Chan, S. Hahn, R. Sahita, A. Smith, F. Reichmeyer,
“Framework Policy Information Base", Internet Draft, November 2000

[15] M. Blaze, J. Feigenbaum, J. Lacy, ‘Decentralised Trust Management’, IEEE Symposium on
Security and Privacy, Oakland CA, May 1996

[16] IETF “The Java LDAP Application Program Interface”, draft-ietf-ldapext-ldap-java-api-13.txt,
Feb 2001.

[17] IETF *Policy Core Information Model -- Version 1 Specification”, RFC3060, Feb 2001.
[18] CORVALZ2 Project, see http://www.opengroup.org/projects/corval 2/

[19] I. Schieferdecker: An Approach for Performance Tests of CORBA based Systems. - Workshop on
Testing Non-Functional Software Requirements at ConQuest’' 99, Nuremberg (Germany), Sept.
1999.

[20] I. Schieferdecker, M. Li, A. Rennoch: Incremental Testing at System Reference Points. - The IFIP
13th Intern. Conf. on Testing of Communicating Systems, Ottawa (Canada), Aug. 2 - Sept. 1,
2000.

[21] I. Schieferdecker, M. Li: Functional Tests for Component Based Distributed Systems. - First
Intern. Conf. on Software Testing (1st ICSTEST 2000), Bonn (Germany), April 5-7, 2000.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 166

[22] Th. Walter, |. Schieferdecker, J. Grabowski, H. Konig: Test Architectures for Distributed Systems
- State of the Art and Beyond (Invited Paper).- IFIP 11th International Workshop on Testing of
Communicating Systems (IWTCS98), Tomsk (Russia), Sept. 1998.

[23] Information technology — Open Systems Interconnection — Conformance Testing M ethodology
and Framework — Part 3: The Tree and Tabular Combined Notation (TTCN), ISO/IEC 9646-3
1997 (E).

[24] Lukas et. d., FAIN Workpackage 3 interna report R23.1 " Node Architecture Project Review",
Jan. 2001.

[25] BANG project ddiverable "Deliverable 7: Requirements and Specification of the Open
Programmable IP Router API, V2", March 31, 2000.

[26] Y. Bernet, et. a., “Interoperation of RSVP/Intserv and Diffserv networks’, Internet Draft
< draft-ietf-isdl-Diffserv-rsvp-02.txt>, June 1999

[27] Diana Rawlins et.d., "RSVP Policy Control Criteria PIB", <draft-rawlins-rsvppcc-pib-00.txt>,
November 16, 2000.

[28] M. Fine et.d., "Differentiated Services Quality of Service Policy Information Base', <draft-ietf-
diffserv-pib-02.txt>, Nov. 2000.

[29] D. Gabrijelcic, E Mocilar, A. Savanovic, ‘ Security Framework for Active Networks and FAIN
Security Architecture’, Dec 2000

[30] IETF “PCIM extensions’, draft-ietf-policy-pcim-ext-00.txt, February 2001
[31] IP VPN Information Model: draft-iyer-ipvpr-infomode-00.txt

[32] Common Information Model (CIMm) Core Model. Version 24
http://www.dmtf.org/spec/rel ease/Whitepapers/DSP0111.doc

[33] “XML Schema Pat 0. Prime” W3C Proposed Recommendation, 30 March
http://www.w3.org/TR/xmlschema-0/

[34 DMTF, “XML As a Representation for Management Information”, Sept 1998
http://www.dmtf.org/spec/xmlw.html

[35] DMTF, “CIM Core Policy Modd”, May 12, 2000.
http://www.dmtf .org/spec/rel ease/\Whitepapers/DSP0108.doc

[36] “Extensble Markup Language (XML) 1.0 (Second Edition)” W3C Proposed Recommendation, 6
Ocotober 2000. http://www.w3.0rg/TR/2000/REC-xml-20001006

[37] D. Awduche, J. Macolm, J. Agogbua, M. O'Dél, J. McManus. “Requirements for Traffic
Engineering Over MPLS’ — RFC 2702

[38] Internet Draft, “Policy QoS Information Model” <draft-ietf-policy-gos-info-model-03.txt>. April
2001.

[39] SOAPRPC http://www.soaprpc.com
[40] XML-RPC http://www.xml-rpc.com
[41] ILOG Rules— http://www.ilog.com/products/rules
[42] Grasshopper - www.grasshopper.de

[43] The Mobile Agent System Interoperability Facility, 1997. ftp:/ftp.omg.org/pub/docs/orbos/98-
03-09.pdf.gz

[44] The FIPA home page, www.fipa.org
[45] World Wide Web Consortium — http://www.w3.org
[46] Resource Description Framework — http://www.w3.org/RDF

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 167

[47] XML-Schema — http://www.w3.org/XML/Schema

[48] Document Object Model (DOM) — http://www.w3.0rg/DOM

[49] SAX 2.0: The smple API for XML - http://www.megginson.com/SAX/

[50] XML Spy — http://www.xmlspy.com

[51] XML Software - http://www.xmlsoftware.com/

[52] XML Software: XML parsers - http://www.xml software.com/parsers/

[53] Java APl for XML Processing - http://java.sun.com/xml/download.html

[54] Java XML Parser: Crimson - http://xml.apache.org/crimson/

[55] Xaan - http://xml.apache.org/xa an/index.html

[56] Java Naming and Directory Interface - http://java.sun.com/j2se/1.3/docs/quide/[ndi/

[57] Policy Standards and IETF Terminology -
http://www .stardust.com/gos/whitepapers| PHighway vol 2paper/polstandardsl ETFterm 04.htm

[58] Simple Object Access Protocol (SOAP) - http://xml.apache.org/soap/
[59] Apache SOAP - http://xml.apache.org/soap/

[60] SOAP for Java - hitp://www.al phaworks.ibm.com/tech/soap4j

[61] Apache SOAP Features - http://xml.apache.org/soap/features.html

[62] The Mobile Agent System Interoperability Facility, 1997 — ftp://ftp.omg.org/pub/docs/orbos/98-
03-09.pdf.gz

[63] AdventNet: The Internet Management Infrastructure Company — http://adventnet.com

[64] Java Naming and Directory Interface API -
http://java.sun.com/j2se/1.3/docs/qui def/jndi/spec/jndi/jndi.5.html

[65] “CORBA Natification Service”, OMG TC Document, November 1998

[66] R. Kawamura, R. Stadler, "Active distributed network management for IP networks',
Programmable and Active Networks Seminar at Networking 2000, Paris, May 17, 2000.

[67] D. Raz, Y. Shavitt, "Active Networks for efficient distributed network management”, |IEEE
Communications Magazine, pp. 138-143, March, 2000

[68] M. Feridun, "Didributed management with mobile components', Programmable and Active
Networks Seminar at Networking 2000, Peris, May 17, 2000.

[69] A. Kulkarni, G.J. Minden, V. Frogt, JB. Evans, "Survivability of Active Networking Services',
Active Networks, First International Working Conference, IWAN’ 99, Berlin, June 30 — July 2,
1999, Proceedings.

[70] D. Putzolu, S. Bakshi, "The Phoenix Framework: a practica architecture for programmable
networks', IEEE Communications Magazine, pp. 160-165, March, 2000.

[71] D. Raz, Y. Shavitt, "New models and algorithms for programmable networks", Technical Report
ITD-99-38382S, Lucent Technologies, November 1999.

[72] J. Kornblum, D. Raz, Y Shavitt, “The active process interaction with its environment”, The
second International Working Conference on Active Networks (IWAN2000), Tokyo, Japan,
October 16-18, 2000, Proceedings

[73] S. F. Bush, “Active Virtual Network Management Prediction”, Trans-European Research and
Education Networking Association (TERENA) 2001, Antalya, Turkey, May 14-17, 2001

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 168

[74] M. Brunner, “A Service Management Toolkit for Active Networks’, IFIP/IEEE International
Symposium on Network Operations and Management (NOMS 2000), Hawaii, USA, 2000

[75] S. Berson, B. Braden, L. Riciulli, “Introduction to the ABone” www.isi.eduw/abone/into.html

[76] M. Blaze, J. Feigenbaum, J. loannidis, A. Keromytis, ‘ The KeyNote Trust-Management System
Verson 2, RFC 2704, September 1999

[77] “Tivoly Distributed Monitoring Whitepaper”, Tivoli Systems.
[78] Boyle, J., Cohen, R., Durham, D., Herzog, S., Rga, R., Sastry, A., "The COPS (Common Open
Policy Service) Protocol”, IETF RFC 2748, January 2000.

[79] P. Lin, S. Denazis, J. Vicente, M. Suzuki, JP. Redlich, F. Cuervo, J. Biswas, W. Wang, K. Miki,
J. Gutierrez: “ Programming Interfaces for IP Netwarks, A White Paper.” P1520/TS/1P-001, June
1990.

[80] J. Biswas, J. Vicente, M. Kounavis, D. Villela, M. Lerner, S. Yoshizawa, S. Denazis. “Proposa
for IP L-Interface.” P1520/TS/IPO13, January, 2000

[81] M. Raguparan, J. Vivente: “L-Interface Specification for IP devices” P1520/TS/1P-014, duly,
2000

[82] Peterson, L., ‘NodeOS Interface Specification’, AN NodeOS Working Group, Jan. 2001
[83] S.Blakeet.d., “An Architecture for Differentiated Services’, RFC2475, December 1998.

[84] R. Braden (ed.), L. Zhang, S. Berson, S. Herzog, S. Jamin, “Resource ReSerVation Protocol
(RSVP) -- Verson 1 Functiona SpecificationRFC 2205, September 1997.

[85] C. Goh, ‘A Generic Approach to Policy Description in System Management’, Proceedings of the
8 th IFIP/IEEE International Workshop on Distributes Systems Operations and Management
(DSOM) 1997

[86] G. Kotonya and |. Sommerville, ‘ Requirements Engineering - Processes and Techniques': John
Wiley, 1998

[87] P. F. Linington, ‘An ODP View of Roles, Policies, and Communities, Policy Workshop 1999,
HP- Laboratories, Bristol, November 1999

[88] J. D. Moffett and M. S. Sloman, ‘Policy Hierarchies for Distributed Systems Management’ |IEEE
Journa on Selected Areas in Communication, vol. 11, pp. 1404-1414, 1993

[89] R. Wies, ‘Using a Classfication of Management Policies for Policy Specification and Policy
Transformation’, Proceedings of the IFIP/IEEE International Symposium on Integrated Network
Management ‘95, Santa Barbara, CA, USA.

[90] A.Carzanga, D.S. Rosenblum, A. Wolf, “Interfaces and Algorithms for a wide-Area Event
Notification Service”

[91] M. Brunner, J. Quitteck, “Policy Framework Core Info Model Extensons’, IETF Dradft,
November 2000

[92] D. Marriot, M. Sloman, “Implementation of a Management Agent for Interpreting Obligation
Policy”, Imperid College Department of Computing, April 1996

[93] D. Rawlins, A. KulKarni, K. H. Chan, D. Dult, “Framework of COPS-PR Policy Information
Base for Accounting Usage”, draft-ietf-rap-acct-fr-pib-00.txt, December 2000

[94] K. Suga, Y. Sako, T. Aimoto, “GR-2000: a Gigabit Router for a Guaranteed Network”, Hitachi
Review Val. 48 (1999), No. 4

[95] Savanovic Arso, Gabrijelcic Dusan, and Mocilar Franci. Initia Security Requirements in FAIN.
November 2000, https://face.ee.ucl .ac.uk/bscw/bscw.cqi/d27990/WP3-JSI S-001-123- 1 nt-
Sec Reg V1.0.pdf. Document in FAIN BSCW server

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 169

[96] Savanovic Arso, Gabrijelcic Dusan, and Mocilar Franci. Security framework for Active Networks
and FAIN Security Architecture. November 2000,
https.//face.ee.ucl.ac.uk/bscw/bscw.cgi/d55707/WP3-JSI S-002-123-Int-sec_framew archit.pdf.
Document in FAIN BSCW server

[97] Michagl Hicks and Scott Nettles. Active retworking means evolution (or enhanced extensibility
required), Proceedings of the Second International Working Conference on Active Networks. oktober
2000, http://flashed.cis.upenn.edu/.

[98] FAIN: Future Active IP Networks. Jan 2000, http://face.ee.ucl.ac.uk/fain/. Technical Annex

[99] Desktop Management Task Force, “Enabling your product for managesability with MIF files”
Nov. 1994.

[100] A. van Hoff, H. Partovi, T. Thai. “The Open Software Description Format (OSD),” Microsoft
Corp. and Marimba, Inc., 1997. http://www.w3.0rg/TR/NOTE-OSD.html.

[101] T. Spdlink et d., Evaluation Network Processors in IP Forwarding, Technica Report TR-626-
00, Princeton University, 2000.

[102] T. Egawa, StreamCode: A Hardware-oriented Capsule-type High-performance Active
Network, in Proceedings of Stockholm

[103] FAIN Deliverable D1-Requirements Analysis & Overal Architecture
[104] FAIN Deliverable D2-Initial Active Network and Active Node Architecture

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 170

6 APPENDIX A : R25

6.1 INTRODUCTION

This report provides an introduction to the issues involved in network management, specificaly in the
context of active networks. It summarises current non-active approaches, architectures, tools and
protocols for network management. An overview of existing work in applying active networks for
network management is given and an initia outline of the key issues that are to be addressed in FAIN
in gpplying active networks for policy based network management are provided. This report thus
provides the background information for the WP4 case study on policy based network management, as
well as a source for the initial issues that are to be resolved in realising this case study.

6.2 INITIAL SUMMARY OF EXISTING NETWORK MANAGEMENT APPROACHES

6.2.1 Existing Network Management Approaches

In this section we provide an outline of the way in which "traditiona” network management has been
done. In particular we identify architectures and approaches that have been used to perform network
management. Specifically, we consider TMN, TMF/NMF, TINA and the IETF/DMTF policy based
network management approaches. We aso identify the limitations with these approaches and provide
arguments for the adoption of the more dynamic approach that can be achieved via active networks.

We aso provide a summary of existing policy based network management approaches, tools and
protocols that are currently used for network management together with their advantages and
disadvantages.

6.2.1.1 TMN

The Telecommunications Management Network (TMN) supports management activities associated
with telecommunication networks which consst of many types of andogue and digita
telecommunication equipment and associated support equipment. The basis for TMN is the distributed
network management. TMN supports numerous operating systems for telecommunication
management. Each operating system has management functions which interact with potentialy remote
network elements. A TMN may provide management functions and communication to another TMN.
InITU-T M.3010 [45], there are three sub-architectures of TMN.

6.2.1.1.1 TMN Functional Architecture

This architecture describes the gppropriate distribution of functionaity within the TMN. In this
architecture, TMN has six functiond blocks including the Operations System Function (OSF),
Network Element Function (NEF), Workstation Function (WSF), Mediation Function (MF), Q
Adapter Function (QAF), for management.

An example of the WSF is a user interface. The QAF can be considered as a kind of gateway for
connecting between TMN and non-TMN entities. The MF acts on information passing between an
OSF and NEF (or QAF). This function may include storage, adaptation, filtering and so on. NEF is a
functiona block which communicates with the TMN for the purpose of monitoring and control. The
NEF provides the tdecommunications and support functions required by telecommunications
networks. OSF is the telecommunication management function block. OSF processes information
related to the telecommunication management for the purpose of monitoring and controlling
telecommunication function including management functions.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 171

The kinds of communication with each other are also defined as reference points in this architecture,
namely the q, f, x reference point (seein [45]). The x reference point is the interface between OSFs of
two TMNs or between the OSF of a TMN and the equivalent OSF-like functionality of another
network.

Concerning the OSF, the architecture classifies the following layer structure.

® Business management layer: This layer is concerned with the network planning and
agreements between operators. BML functions have more to do with setting and tracking the
overal goals than with implementation details.

® Service management layer: This layer provides the customer interface. Some of the main
functions of this layer are for service order handling, accounting, fault reporting, maintaining
statistical data (e.g. QoS) for provided network services to customers etc. The SML aso provides
interaction with service providers and between services. The SML does not include the
management of physical entities.

® Network management layer: This layer manages network (end-to-end network) configuration
using information provided by network eement management. The functions of this layer are to
control and coordinate the network view of all network elements within this scope or domain, to
maintain network capability and data about the network, to interact with the service management
layer, and so on.

® Network Element management layer: This layer manages each network element on an
individual or group basis and supports an abstraction of the functions provided by the network
management layer. This layer has one or more element OSFs and/or MF. The network element
management layer is refered to as the Element Manager.

Besides these layers, the Network Element Function is added as Network Element Layer in TMN
management layer. These layers condtitute a hierarchical structure in a TMN. The upper layer will use
lower layer interfaces or functions to manage the layer.

Moreover, examples of interaction between multiple TMNs are considered in [45]. One example is
that OSFsin service management layer communicate with each other via an x reference point. Another
example is that an OSF in service management layer in a TMN communicates with OSFs in service,
network, and element management layer in another TMN.

6.2.1.1.2 TMN Information Architecture

This architecture is based on an object-oriented approach and gives the rationale for the application of
OSl system management principles to the TMN principles. The information for network management
is defined usng GDMO template and ASN.1in ITU-T standards.

6.2.1.1.3 TMN Physical Architecture

This architecture is a physical image based on functional Bock in telecommunication management.
Figure 56 shows an example of a smplified physical architecture. One function block is defined in
several physical devices, e.g. OSF may be implementedin more than one OS. Thereisa DCN (Data
Communication Network) between the MD and NE (or QA). The DCN is the network used for
interacting between MD and NE (or QA). There are also DCNs between MD and OS. The DCN aso
connects with QA and/or NE. Both DCN connect with WS for providing information to user. The
reference point between the function block in the functiona architecture for TMN is implemented as
an interface.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 172

; oS |

! XIFIQ i

X i F :
~O—— DCN O— WS

i IF E -

: +Q3 : DCN: Data Communication

L Q MD | Network

i L : MD: Mediation Device

1 ﬁ / / QX I

| X XIFIQ, F ! NE: Network Element
- DCN o= ws H OS: Operation System

E Q. % \O\X/F/QX i WS: Workstation

! ! QA: Q Adaptor

! QA H NE H QA ” NE

H___-

Figure 56 : Physical Architecture of TMN

6.2.1.2 TMF

TeleManagement Forum (TMF - formerly NMF) and its member companies is intended to identify,
create, develop, and implement real world solutions that automate and streamline telecom operations.
In other words, seek the most effective ways to improve public networks and services management.

The Telemanagement Forum activities are structured in programs with the overal program
development being guided by the TM Forum Strategic Plan — a living document that represents a
collective vison of likely trends and developments in the communications industry over the next two
to three years. The major program areas include the Process Automation Programs and the Technology
Integration Programs which are both supported by specific projects called Catalyst Projects.

The TeleManagement Forum’ s Process Automation Programs are based on the following :
Telecom Operations Map Team
Service Assurance Program
Service Fulfilment Program

TeleManagement Forum’'s Telecom Operations Map is the de facto industry view of essentia
processes required for the fulfilment, quality assurance and billing of telecom services.

TeleManagement Forum's Service Fulfilment Program’'s primary purpose is to enable flow-
through automation from the customer to the network elements and end-to-end process flow for
interfaces required for assurance and billing for services requested by the customer.

TeleManagement Forum’'s Service Assurance Program aims to identify common components of
Service Level Agreements and takes a process-oriented view of the SLA process.

The TeeManagement Forum’s Technology Integration Programs aim to provide development
spoecifications dedling with the integration of information technology (such as between the
CMIP/GDMO and CORBA technologies) or with the use of specific technologies such as work flow
engines.

The TeleManagement Forum has always taken a pragmatic approach in its conclusions: real world and
product solutions are saught, as specifically claimed in the introduction of the Catayst projects. This
entails the use of aready existing and quite mature technologies and products.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 173

Unfortunately, the recent developments in the telecommunication arena have shown that customer
requirements change rapidly with increasing demands on the infrastructure and services and protocols
to be supported there. The process of standardization, development, and deployments of new protocols
being a laborious and drawn out one. A representative example of thisis the deployment of RSV P and
IPv6, which has been widely recognised as useful, however, their retwork-wide deployment has ill
not taken place. This is primarily due to the problems that would be incurred when deploying such
protocols across the globa network. Specifically, their network-wide deployment would require the
subgtitution and updating of software in thousands of routers and potentialy millions of hosts. As a
result, many innovative applications that would require features of new protocols can not currently be
supported. We note here that these new protocols might also be management protocols. Hence, a
framework to support such network infrastructure dynamism is required. Unfortunetaly, the TMF work
does not lend itsdf to such dynamism. Instead it relies upon standardised and widdly available
protocols such as CMIP and SNMP for management, and does not cater for new and innovative
application specific management approaches and protocoals.

The above considerations lead to the conclusion that dynamica network infrastructures were required
to expedite and facilitate the deployment and management of new network protocol software, thereby
helping to solve the problems in today’ s networks. Active networks represent one viable way in which
the dynamicity of the network infrastructure can be supported directly.

6.2.1.3 TINA

The TINA Consortium [24] was formed in 1993. Its intention was to define a common architecture
upon which next generation telecommunication services could be built. The architecture proposed
logically separated high level applications from the physical infrastructure, e.g. the network resources,
used by those applications. Central to the architecture was object-oriented distributed architectures
such as the Object Management Groups [28] and the support of Distributed Processing Environments
(DPE).

The architecture itself was defined through specifically identified components, clear separation points
called Reference Points and guidelines on how to structure applications so that they could be easily
integratd into the TINA architecture. To help in this regard, specific languages [29] were developed to
help overcome some of the limitations of Interface Definition Languages (IDL) for describing the
syntactic aspects of distributed systems.

TINA was divided into the following sub-architectures:

Computing Architecture [25] defines modeling concepts and the issues related to the DPE. The
DPE resides in heterogeneous pieces of equipment, and, by hiding their distribution, makes them
function as a single system for applications. The TINA DPE is based on OMG's CORBA.

Service Architecture [26] defines a set of principles for providing services. It uses a notion of
session to offer a coherent view of the various events and relationships taking place during the
provision of services. In particular the access, ser vice and communication sessions aredefined.
The access session represents mechanisms to support access to services (service sessions) that
have been subscribed to. The service session includes functiondity to execute and control and
manage sessons, i.e. it alows control of the communication session. The communication session
controls communication and network resources required to establish end to end connections.

Network Architecture [27] describes a generic, technology-independent model for setting up
connections and managing telecommunication networks. It inherits concepts used in ITU-T and
other standards bodies. It extends these concepts to integrate network control and management
software for different network technologies.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 174

6.2.1.3.1 TINA Network Management Discussion

The TINA architecture offers certain components that can be applied directly for network
management. Unfortunately, the full TINA architecture - the network architecture in particular - is
seen by some as being too heavyweight for most applications and services. The architecture is suited
for applications that require full end-end control and management of multimedia flows as might be
needed in a multimedia conferencing application. For less complex systems, e.g. based around Internet
technologies, the architecture offers insufficient insight into how best network management might be
achieved from the service or network perspective.

As a result, it has often been the case that subsets of the overall TINA architecture have been
implemented. This was typically the case for the Service Architecture and the service session which
suggested that services could be constructed through feature sets. Many felt that the structuring
imposed by feature sets was too redtrictive, hence they implemented their services differently, i.e. not
through feature sets.

Whilst the full TINA architecture was not completely accepted by the telecommunications and
software industry more widely, many of the ideas that were contained within the TINA architecture
were seen as useful, and as such are currently being re-used in other areas. An example of thisisthe
adoption of components and reference points from the service architecture, namely: access session
related components used to ensure the secure access, personalisation and subsegquent usage of
(telecommunication) services. Specificaly, the OMG Telecommunication Service Access and
Subscription [30] work has adopted components that bear a direct counterpart to those existing in the
TINA Service Architecture.

Recent works [31,32] have aso shown how one such realisation of the TINA architecture [33] have
been extended with specific components that allow for direct relations between service and network
level management systems to be made. This work was based upon the exchange of trouble tickets
between CORBA and TMN implementations via appropriate gateways of service and network level
management systems respectively. Of particular relevance to FAIN was how TINA service level
components were extended to include service level agreements made on both the services and
networks that those services make use of. These agreements were subsequently used to ensure
amongst other things, that service qudity could be enforced, or when this was not possible, that
appropriate discounts were given to the affected users.

6.2.1.4 IETF/DMTF

The use of policies for network management has recently been introduced to the Internet community.
However, for the deployment of Policy Based Network Management Systems in the Internet, a
standardisation process is required, to ensure the interoperability between equipment from different
vendors and PBNM systems from different developers. Both the Internet Engineering Task Force
(IETF) and the Distributed Management Task Force (DMTF) are currently working for the definition
of standards for Policy Based Network Management. The DMTF is mainly focused on the
representation of policies and the specification of a corresponding information model and schema. The
IETF is dso working in that field, in co-operation with DMTF, while also trying to define a genera
framework for a PBNM system, as well as a protocol that could be used for implementing a PBNM
system.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 175

6.2.1.4.1 DMTF work on Policy Based Network Management

The DMTF has adopted the Directory Enabled Network (DEN) specification. The purpose of DEN is
the mapping of network services to a directory. The directory objects can represent networks/subnets,
services, devices, applications, users or locations. The relationships of these objects are also defined
and managed in the directory. The management data can be accessed through ties to the directory
objects. In this way we have a single model for the access to the objects, enabling the interoperability
of different management systems. Thus the final goal of DEN is the use of a single directory as a
centralised repository, that stores the relationship of users and applications and their relationship to
network services, in order to enable management interoperability and information sharing.

The DMTF has defined the Common Information Model (CIM) management schema, which consists
of an object-oriented model for the representation of the information that will be stored in the directory
of a DEN-enabled network.. The CIM is structured into three layers. The core model captures notions
that are common to all areas of management. The common model captures notions that are common to
particular management areas, but independent of a particular technology or implementation. The
common areas are system, applications and devices. The third layer of the CIM are the extension
schemas, which represent technol ogy-specific extensions of the common model.

The CIM is an information model for genera management information, that does not have a direct
relation with policy based network management. Policy-related work is done in the DMTF by the
Service Level Agreement (SLA) Working Group. This group is working in association with the IETF
policy workgroup, to extend the CIM syntax and metaschema, to alow the definition and association
of policies, rules and expressions. These changes will extend the CIM core modd, alowing for a
further domain-specific speciaisation by the common model, which subclasses the core model.

Except the information modd of policies, the DMTF SLA group will aso ded with other policy
issues, like mechanisms for conflict resolution, the specification of priority and ordering of rules and
expressions, authorisation and motivation policies, mechanism for management of policies and rules
across multiple policy domains and linkage with events and models to alow detection and response to
Policy and Service Level Agreement violations.

So far the SLA working group has not produced any documents that are publicly available.

6.2.1.4.2 IETF work on Policy Based Network Management

The main work of the IETF concerning Policy Based Network Management is done by the IETF
Policy Framework (policy) workgroup. The primary goa of this workgroup is to provide a framework
for the representation, management, sharing and reusability of policy information in a vendor-
independent, interoperalde and scalable manner. The next step is the definition of a core information
mode and schema, which will be an extensible information model and schema for genera policy
representation, according to the specified framework. This core information model and schema will
then be extended to provide a mechanism for traffic management and QoS provision.

The objectives of the policy workgroup are the identification of representative use cases for PBNM,
the definition of a framework for intracdomain policy definition and administration, the specification
of an information model based on the CIM/DEN mode, for the representation of policies. This
information mode will be refined for representing signaled and provisoned QoS. The policy
framework workgroup will also co-operate with other IETF workgroups that have policy-related work.

The policy workgroup will not try to define a specific protocol for policy based management, or
include schema attributes or classes that are vendor-specific. However the schema that isdefined could
be extended by vendors.

6.2.1.4.2.1 PBNM Architecture

The IETF policy workgroup has specified the following components for a policy based network
management architecture:

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 176

Policy Specification

Policy
Management Tool
| Repository Access Protocol

Policy Repository
(Database,
Directory, etc)

| Repository Access Protocol
Policy Consumer

Protocol for configuring Policy Targets

Policy Target

Figure 57 - IETF Policy Based Network Management Architecture
This architecture identifies four functional components
Policy Management T ool

With this tool the administrator can define new policies for the system, edit existing ones, or smply
view the palicies which exist in the network. The definition of policies may be done in a higher level
language, which offers abstractions to the administrator. In this case, the tool aso performs a
trandation of these high level policies, to a set of policy rules that can be interpreted by the policy
consumer. The information model and schema, aso defined by the IETF, specify the format of the

policy rules.

Before storing a new policy, the policy management tool must check if the policy is syntacticaly
correct. A globa conflict mechanism aso exists, to check if the new policy conflicts with other
existing ones. This can happen when two policies have conditions that can be true a the same time,
while the actions they trigger are contradicting. This conflict check is not complete, as it can check
only statical conditions. For a rule that contains time-based or more dynamica conditions a run-time
check is required. This work is done in another component.

Policy Repository

The policy repository is used for the storage of policies, after they have been defined and validated by
the policy management tool. There should also exist a protocol that enables read and write access to
the directory.

The general framework does not require a specific implementation for the policy repository, or the
repository access protocol. However, the current work of the IETF includes the use of a directory
server, with the LDAPv3 protocol for access. The policies are stored in a format compliant with the
CIM (Common Information Standard) specification by the DMTF.

Policy Consumer

The policy consumer is the component that retrieves policies from the directory, evaluates them and
sends the necessary commands to the policy target. Of course the evaluation of certain policies may
also be done on the policy target, if it is capable of understanding policies. The distribution of the
policy evaluation process between the consumer and the target aso depends on the conditions of a
policy. For example if the target is policy-aware and the policy condition concerns only the specific
device, the evauation can be done on the policy target. If however the condition is time-based or
depends on the overall state of the network, then the evaluation should be done by the consumer.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 177

Additionaly the policy consumer performs a loca conflict detection check, checking only those
devices that are controlled by the specific consumer. The policy consumer aso checks if the resources
needed for a specific policy are available in adl the controlled devices

A policy consumer can be integrated into a policy target, or it may exist in another device. However
thereis aneed for at least one consumer in every administrative domain.

Policy Target

The policy target is the managed device, where the policy is finaly enforced. The policy target may be
policy-aware (able to interpret policy) or policy-unaware. In the case that the target does not
understand the policy information model, then the interpretation of the policy must be done on a
higher level, ether by the policy consumer or by a policy-aware proxy. The policy will be interpreted
by the proxy or consumer, which will then have to communicate with the target using a mechanism
supported by the device, i.e. use SNMP to access the MIB of the device, or even use telnet commands.
Policy-aware devices may aso vary, according to the level of support they have for policies. For
example a policy-aware may be able to interpret only a portion of the information model. So some
policies can be interpreted directly by the policy target, while others will have to be interpreted by the
policy consumer.

There is a need for a transport protocol, used for the communication between the policy consumer and
the policy target, so that the consumer can send policy rules or configuration information to the target,
or read configuration and state information from the device. There is not a requirement for a specific
protocol for this operation, however the COPS protocol, defined by the IETF Resource Allocation
Protocol (rap) workgroup, is becoming the standard.

6.2.1.4.2.2 Policy Representation

The language used for the specification of policies has a format of “if (condition) then (action)”. It is
possible to combine multiple conditions using and/or.

Policy rules are mapped to policy classes, defined in the policy information model. This means that for
al supported actions and conditions the corresponding classes should dso exist in the information
model. The current model defines two hierarchies of object classes. structural classes representing
policy information and control of policies, and association classes that indicate how instances of the
structural classes are related to each other. The current information model contains classes that support
only time-based and packet-based (based on packet header fields) conditions.

There is al'so a schema that defines the mapping of the policy classes to a directory that uses LDAPv3
as its access protocol. The main issue here is the mapping of the relationship hierarchy between the
classes, to a form suitable for storage in a directory. In order to avoid implementation
incompatibilities, a common core schema is defined, for the mapping of policies to a directory. This
schema is based on the CIM specifications and is being developed by the IETF policy workgroup in
association with the DMTF SLA workgroup.

The policy information modd is being extended, to add support for new features. There is an extension
for the use of a policy based management system for admission control during QoS signaling. There
is ds0 an information modd for reporting device capabilities, so that the policy consumer can
determine the capabilities of the policy target.

We should mention that the work on the policy information model and schema is ill under progress
and no fina results exist in the form of a standard.

6.2.1.4.2.3 Policy Documents
The policy workgroup has not provided any RFCs, however there exist the following Internet drafts:

Policy Framework LDAP Core Schema
Policy Core Information Modd - Version 1 Specification

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 178

QoS Policy Schema

Policy Framework QoS Information Model

Information Model for Describing Network Device QoS Mechanisms
Policy Terminology

6.2.1.4.3 IETF Resource Allocation Protocol workgroup

An important goad of policy based network management is the provison of Quality of Service.
Because of that, the co-operation between the policy based management system and QoS provisioning
protocols is required. The IETF Resource Allocation Protocol (RAP) workgroup is working to provide
a scaable policy control model for the Resource Reservation Protocol (RSVP). The purpose of this
workgroup is the definition of a protocol for use among RSV P-capable network nodes and policy
servers. For this purpose it will aso be required to provide extensions to RSVP for policy control.

This workgroup has specified the Common Open Policy Service (COPS) protocol for the
communication between a Policy Decision Point (PDP) and a Policy Enforcement Point (PEP). There
is dso a definition for the usage of COPS for policy provisoning transactions. This workgroup will

aso dedl with the object syntax for carrying policy information.

QoS provision is done using policy data elements contained in RSV P messages. These data € ements
are processed by the policy based management system, to determine if the reservation request will be
granted.

The Resource Allocation Protocol Workgroup has provided the following RFCs :

Signdled Preemption Priority Policy Element (RFC 2751)

Identity Representation for RSVP (RFC 2752)

A Framework for Policy-based Admission Control (RFC 2753)

The COPS (Common Open Policy Service) Protocol (RFC 2748)

COPS usage for RSVP (RFC 2749)

RSVP Extensions for Policy Control (RFC 2750)

Application and Sub Application Identity Policy Element for Use with RSVP (RFC 2872)
There are dso the following Internet drafts

Definitions of Managed Objects for Common Open Policy Service (COPS) Protocol Clients

COPS Usage for Policy Provisioning

Structure of Policy Provisioning Information (SPP1)

Framework Policy Information Base

Identity Representation for RSVP

Signalled Preemption Priority Policy Element

The Policy Device Auxiliary MIB

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 179

6.2.1.4.4 Discussion on DMTF Policy Based Network Management

DMTF work on Policy Based Network management is mainly focused on the representation of
policies and the integration of the policy information model and schema with the CIM standard, which
has also been specified by the DMTF. In the IETF, the Policy Framework workgroup is working on a
policy information model, in co-operation with the DMTF, while aso defining a framework for a
PBNM system and identifying the necessary functional components. The Resource Allocation
Protocol workgroup has defined the COPS protocol, which can be used for the communication
between a Policy Decision Point and a Policy Enforcement Point, and it has also defined a framework
for the use of COPS for RSV P admission control.

The policies that can be defined are limited by the current information model, which includes only
classes for the representation of policy conditions based only on time and on packet headers. In the
case that we need to specify different types of conditions, like conditions based on the status of the
node or the network, it is required to extend the core information model. However to enforce such
policies, we may aso need to modify the information moded. This can happen, because a policy based
on the status of a certain link for example, may be ether too complex (contain multiple conditions),
thus requiring more processing time for its evaluation, or too much device-specific, reducing the
reusability. In such cases, a possible solution would be to create two separate policies, with an
association between them, so that the first policy (based on the link status) is evaluated by the policy
server, causing the deployment of the corresponding policy to the target, according to the link status.
However such associations are not possible with the existing information mode.

According to the policy framework, policies are defined or modified by an administrative tool and the
intervention of the administrator is always required. If we want to create more dynamic policies, to
enable for example a sdf-configuring network, modifications may be required to the policy
information model and architecture.

For the storage of policies, an LDAPv3 directory using the CIM schemais used. This solution is good
when there are not many updates on the directory, while there are frequent accesses. In the case where
write operations are more frequent, the performance of LDAP drops. Additionaly a mechanism for
communicating changes in the directory is aso needed, which does not currently exist in LDAP. This
may be solved by the IETF by extending LDAP with the necessary natifications Alternatively, a
representation of policiesin alanguage like XML might be more lightweight.

6.2.2 Policy Based Network Management Approaches

Policy Based Network Management is arelatively new field with the first commercial PBNM tools
making their appearance in the IT market. The main objective of these tools is the management of IP
networks, namely the configuration of these networks and aso the provision of Quality of Service. In
this document we will make an overview of these commercial PBNM products and we will identify
any possible limitations, concerning the possible use of such tools for the management of an active
network.

6.2.2.1 Policy Based Network Management Tools

In all the commercial PBNM products, policy definition is done through a graphical user interface.

Firgt the administrator selects the device or group of devices to which the policy will be applied. Then
he can select from a menu of supported condition types and supply the necessary parameters. Then he
can select from the supported actions. The PBNM tool identifies the selected devices, to check their
capabilities and present to the user menus with only those conditions and actions that are supported by
all the devices. The policy defined by the user has an “if (condition) then (action)” syntax. Thiskind of
format is also used by the IETF.

The administrator can also create “roles’ for network devices or interfaces and associate a set of
policies with each role, so that when a new device isintroduced in the network it can be assigned an
existing role. In this way the configuration of the network is made easier.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 180

The conditions supported by the commercid tools mainly fal into two large categories: time-based
conditions and packet-based conditions (based on the packet header). The packet conditions may be
specified on various layers. Layer 1 conditions can be based on a physical port or avirtua/logical port.
Layer 2 conditions can include source/destination VLAN/MAC addresses. Layer 3 conditions examine
the source or destination. | P address, group of addresses or subnet, the protocol type, or DiffServiTOS
marking. Layer 4 conditions involve source/destination TCP/UDP ports. Finally we can have Layer 5,
or higher conditions based on HTTP/FTP headers or on specific applications. Of course not al PBNM
tools support the full range of these conditions. Additionally the managed devices must have the
corresponding capabilities to enforce these policies.

The actions that can be taken, when the conditions of a policy are satisfied, include the configuration
of the queuing mechanism on the router, traffic coloring, denia of service to the specific flow,
prioritization of traffic. Aswith policy conditions, the actions also depend on the capabilities of the
managed devices.

After the definition of anew policy, the policy is checked for possible conflicts with other existing
policies. If there is no such problem, it is stored in the policy repository. For the implementation of the
policy repository, the commercial PBNM tools have adopted various solutions. Some of them use a
directory, accessed using the LDAP protocol, others use a database or aflat file. In the case where a
directory is used, the PBNM tools follow different approaches in the format and the use of the
directory.

Another use of Policy Based Network Management is the provision of Quality of Service. Some
commercial tools have support for the RSVP protocol and for DiffServ, in order to deliver QoS.

The format of the policy rules, that is the format in which the policies are stored in the directory and
the format in which policies are transferred to the target devices, is aso not common among the
different products. Some of the tools use the CIM schema for storage of the rules in the directory. For
the transport of policy rules, when the COPS protocol is used, there is also a corresponding
information model defined by the IETF. In generd, there is not much information about such specific
implementation details.

For the configuration of the network devices according to the specified policies, a variety of protocols
are used. Most of the PBNM developers use the COPS protocol for communication with the devices. If
a device does not support COPS, a COPS proxy agent is used for the configuration. SNMP is aso used
for device configuration, while in some cases CLI (Command-line interface) commands are still used.
However COPS is the emerging standard and in the future dl tools will support it.

Table 3 summarises the features of the existing policy based managemet tools.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Dedliverable D3

Page 181

Database|Configuration|Device support Policy Advantages Disadvantages
support [Protocols conditions
Allot LDAP COPS, CLI Allot, Cisco Layer 1, 3, 4, 5+,|Active feedback|Proprietary.
time based mechanism
Cisco Flat-file [CLI Cisco, Hitachi, Lucent|Layer 3, 4 Can import the|No CIM or LDAP. No
topology from Cisco|COPS support yet.No
application .Defineltime-based conditions
policies on a per-
interface basis
Extreme LDAP COPS Cisco and other Layer 1, 2|Supports integration|No device discovery.
(partialy), 3[with a WinNT[No time-based
(partially), 4 environment conditions.
HP ? COPS HP switches, Cisco, [Layer 1, 2 (no|RSVP capabilities|No LDAP support. No
Intel, Nortel routers [VLAN) 3, 4, 5+|and use of COPSfor|device discovery. No
and timebased [policy provision queuing configuration.
IPHighway |? COPS and CLI |Cisco routersand any|Layer 1, 3, 4 and|RSVP capabilities [Focused on COPS|
COPS device time based devices
Lucent LDAP LDAP, SNMP,[Cisco LAN routers,(Layer 3,4, time[Extended use of|Limited set of
(CIM COPS (but not |Lucent switches. based conditions |[LDAP. Can define|conditions and actions.
schema) |used) policies based on[No COPS application.
particular hosts and
users, can translate a
user's MAC addressto
an | P-based policy.
Nortel Oracle SNMP, CLI Cisco and Nortel Layers 1-4, time-|No specia advantage[No LDAP and COPS
database based
Orchestream |Oracle SNMP, CLI and|Cisco, Lucent, Xedia|Layer 3, 4 and|Network topology[No COPS. No support|
database |TACACS+ time based discovery. Special|for Layer 2 conditions.
emphasis on Diffserv
Spectrum LDAP CLI,SNMP Cabletron switches|Layers 1-4 and|Largest range of|Lack of multidevice
and routers time-based conditions. Significant|management. No COPS

IP and IPX support.
Latest CIM
specifications.
Topology aware

support yet.

Table 3 - Summary of features of existing policy based management tools.

6.2.2.1.1 Conclusions on Existing Policy Based Management Tools

The existing policy based management tools are commercial products and consequently are targeted at
the management of existing business networks. This means that their primary concern is the delivery
of afunctional PBNM system that can be used by customers, without necessarily focusing on specific
standards or trying to provide an open solution. We can observe that aimost al the developers of
PBNM systems are also manufacturers of network devices, whose main aim is to provide a good
management platform for their own products. Even in the case where support for multivendor
equipment exists, some additiona features offered are proprietary. The use of COPS will make it
easier to support equipment from different vendors, since a set of common capabilities will be
standardized.

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 182

The definition and the modification of the policies require the manua intervention of the
administrator. The system administrator should monitor the status of the network, using a network
management application and then use the PBNM tool to define or modify policies, according to the
dtatus of the network. Using the commercia toolsit is not possible to provide a higher degree of
automation in the configuration of the network, where the intervention of the administrator would be
less frequent.

The conditions available by al PBNM tools belong to two main categories: time-based and packet-
based. It is not possible to define policies based on more dynamic conditions, like the status of the
node or the network. In this way the policies that can be defined are less flexible, since they cannot
adapt to the status of the network.

The policy conditions and actions available by each tool are dependent on the capabilities of the
supported devices. This means that the set of supported actions and conditions is limited to those
available by the supported devices and it is not possible to add new features without modification of
the PBNM application. So if these tools were to be used for the management of a network that
introduces new managed resources, for example if we wanted to manage the resources allocated to a
specific execution environment, it would not be possible to take advantage of the new resources.

The commercia Policy Based Management tools are focused on the management of business IP
networks. Using these tools it is possible to manage the configuration of a network and provide some
Quiality of Service. However these products are limited to the needs of current IP networks and they
would require modifications in order to manage a network with additional features, i.e. an active
network. Another drawback is the fact that each tool supports a specific set of hardware devices and
the introduction of a new device is not feasible, if it does not belong to the list of supported devices.

6.2.2.2 Policy Based Network Management Protocols

The protocols we consider here take place in the well-known three-tier architecture for Policy Based
Network Management (PBNM) Systems. On top of the architecture we have the Information Storage
Entity (ISE), a database or a directory, which is linked to the user console and may be aso to other
databases congtituting a distributed directory. The ISE alows the user the deployment of management
policies. One level below the ISE we have the Decision Making Entity (DME). The I SE and the DME
interact themselves by means of a directory/database protocol. Representative examples of such a
protocol are LDAP and SQL. In the present document we pay attention only to LDAP because the
push it has received fram the Internet community. Finally on the bottom of the architecture we have
the Enforcement Entity (EE). The EE interacts with the DME by means of a policy protocol properly
said. Among severa dternatives (SNMP, COPS, CLI, HTTP), COPS is by far the most appropriate
and hence is the one that has been considered in the document.

6.2.2.2.1 Lightweight Directory Access Protocol (LDAP)

In 1988 the CCITT created the X.500 standard which organises directory entries in a hierarchical name
space capable of supporting large amounts of information. It also defines powerful mechanisms to
make retrieving of information easier. The communication between the directory client and the
directory server is supported on the full OSl stack; specifically, the application level protocal is caled
Directory Access Protocol (DAP).

The above characteristics make X.500 a powerful directory support service but at the same time
requiring resources that quite often are unavailable in many small environments. Therefore a more
portable alternative was required. Specificaly, attention was paid on the DAP; a lightweight version of
it was proposed and termed LDAP. The basis of the complexity reduction of LDAP versus DAP is that
it uses TCP/IP instead of the full OSI protocol stack and also omits some X.500 operations and
features.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 183

LDAP has been evolved through three versions up to now. The most widespread used was version 2
which is defined in [1] and completed by [2],[3],[4].[5]. LDAP version 3 is a proposed standard and is
described in [6] and its accompanying RFCs [7],[8],[9],[10]. An API in C language for the LDAP
client, covered by [11], has become a de facto standard. Findly it is aso worth mentioning the
reference [12] for implementation details of LDAP.

6.2.2.2.1.1 The LDAP client-server model

The LDAP s a communications protocol. That is, it defines the transport and format of messages
issued by a LDAP client to a LDAP server to retrieve, store, modify information in a X.500 structured
directory. The LDAP client interacts with the LDAP server through the set of primitives, that will be
highlighted hereafter, on top of the TCP/IP protocol. For the LDAP server to interact with the
directory there are two aternatives as depicted in the figure. The first aternative is based on the use of
a conventional X.500 server and the second aternative is through direct interaction with the directory.
The first approach makes the LDAP server ssimpler than the second because it acts only like a gateway
but the drawback is that it requires a X.500 server that is not always available. But in both cases only
the LDAP subset of the X.500 directory service capabilities is used. Therefore the implementation of
the LDAP server is transparent to the LDAP client

LDAP LDAP X.500 X.500
Client TCPIP Server og Server Directory
LDAP Server as agateway of anX.500 Server
LDAP LDAP
Client TCPIP Server

Stand-aloneLDAPServer

Figure 58 - Different implementations of the LDAP Server

6.2.2.2.1.2 The LDAP architecture

LDAP defines the syntax and semantics of the information exchanged between the client and the
server. This information is structured in messages specifying the operations requested by a client
(search, modify, delete, etc) and the responses from the server. Also, LDAP covers security related
issues. All of these aspects constitute the LDAP architecture which is described in terms of a model
consgting in four viewpoints, namely, Information Model, Naming Modd, Functiond Mode and
Security Model

6.2.2.2.1.3 LDAP Information Model

The information model in LDAP is object oriented. Object classes are specified by what is called a
Schema. The schema defines object classes and hence their inheritance relationships with other object
classes and also the position of each class in the Directory Information Tree (DIT). The attributes
characterising each class are also specified. In order to ensure interoperability between different
servers, many common schema must be standardised (is the same case as in MIBs of management
systems).

The attributes of the above mentioned classes must have specific syntax. LDAP specifies many of
these syntax as well as the behaviour of the attributes during the search process (i.e. lexicographic
ordering enabled or disabled, case sensitivity, spaces/dashes ignored or not).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 184

The information following that modd is physicaly stored in the directory. The information storage
unit is called an Entry. The entry can consist in one or many object classes.

6.2.2.2.1.4 LDAP Naming Model

The LDAP naming model defines how entries are identified and organised. Entries are organised in a
tree-like structure called the Directory Information Tree (DIT). This tree alows each entry to be
characterised by its Digtinguished Name (DN) together with the concatenation of Relative
Distinguished Names (RDN) encountered from each specific entry to the root of the. The RDN for
each entry is the pair <attribute-name = attribute-value> or even the sequence of several of such pairs.

The scheme for postioning entries into the DIT may follow any kind of criteria For instance,
geographical, organisational and a combination of the two may be the basis.

An LDAP directory can be distributed. This means that a particular server must not store the entire
DIT. Therefore, the LDAP servers need to be linked in some way in order to form a distributed
directory that contains the entire DIT. This is accomplished by means of what is caled Referras. A
referrd is like a pointer available in a given server, pointing to another server that contains a part of
the DIT. The information of the referra is contained in the value of an attribute (ref) defined in an
object class (referra). This value adopts the format of an URL (the URL of the required LDAP
server). When an application uses LDAP to request information from a server that only contains a
referral for such information, the LDAP URL for that information is passed to the client, which takes
the responsibility to contact the new server to retrieve such information. By the way, thisis unlike both
DCE and X.500 where the server takes such responsibility.

6.2.2.2.1.5 LDAP Functional Model

It defines the commands that can be issued from the LDAP client to the server. These commands can
be grouped in three categories. Query, Update and Authentication. Commands belonging to any of
these categories point to one or several entries of the DIT. The selection mechanism foreseen in LDAP
is like the one used in CMIP but even more flexible. To perform a search the following parameters
must be specified:

Base object: the DN of the DIT from which the search is started

Scope: specifies the depth of the search from the Base. It can be specified as baseObject
(only the base object is examined), singleLevel (only the child of the base object is
examined) and wholeSubtree.

Filter: Boolean combinations of attribute value assertions (AVAS) to refine the search
process

Attributes to return; Selects the attributes to be inspected

Limits: specifies upperbounds for the time and size of the search.

6.2.2.2.1.6 LDAP Security Model

The LDAP security mode covers authentication, integrity and confidentiality aspects in different
levels that can be negotiated at the establishment of the connection between the client and the server.

6.2.2.2.2 The Common Open Policy Service (COPS) Protocol

The IETF Resource Allocation Protocol (RAP) Working Group has developed COPS as a policy
protocol for use in Policy Based Network Management (PBNM) systems. It was developed in contrast
to traditiona network management protocols like SNMP, which was found incapable to efficiently
support PBNM. The COPS protocol stack can be conceptually divided into three distinct layers: the
base protocol, the client-type usage directives and the policy data representation.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 185

The base protocol defines the communication mechanism for facilitating the exchange of policy
information between a Policy Decision Point (PDP) and its associated Policy Enforcement Points
(PEP). The PEP (each PEP) takes the role of client and the PDP is the server. Unlike SNMP, COPSin
based on TCP connections and is a stateful protocol, that basically means that the server keeps track of
the state of the client (or clients), reacting appropriately, in an unsolicited manner, when necessary.
COPS base protocal is defined in [13].

The COPS huilt-in concept of client-types leaves room for adding a second layer of client-specific
directives and expansions, namely COPS-RSVP [14], COPS-PR [15] and COPSMPLS [16]. COPS
RSVP is foreseen when using an outsourcing PBNM model and the RSVP protocol is used as te
signalling mechanism. On the other hand, COPS-PR is foreseen for use in a provisoning PBNM
model. COPSMPLS is dso for a provisoning mode, managing an MPLS network and its traffic
engineering functionality. The main differences are due to the different messages between the client
and the server and also to the different information carried by these messages. For instance COPS
RSVP may re-use policy data objects defined in RSVP whilst COPS-PR requires an ad-hoc Policy
Information Base (PIB).

As mentioned before, COPS is quite flexible in the sense that it can support objects defined in other
contexts or its specific ones. As described in [15], each client supports a non-overlapping and
independent PIB. However, some policy rule classes are common to dl client types and replicated in
each. Reference [17] presents the PIB classes that are common to all clients that provision policy,
using COPS for provisoning. In this context is aso relevant to mention a Management Information
Base (MIB) containing objects for managing COPS client devices [18],[19], where the relationship
between device interfaces and policy combinations are aso included.

6.2.2.2.2.1 The COPS base protocol
The COPS protocol has the following characteristics:

The protocol employs a client/server model where the PEP sends requests, updates, and deletes to
the remote PDP and the PDP returns decisions back to the PEP.

The protocol uses TCP as its transport protocol for reliable exchange of messages between policy
clients and a server. Therefore, no additiond mechanisms are necessary for reliable
communication between a server and its clients.

The protocol is extensible in that it is designed to leverage off sdlf-identifying objects and can
support diverse client specific information without requiring modifications to the COPS protocol
itself.

COPS provides message level security for authentication, replay protection, and message integrity.
COPS can also reuse existing protocols for security such as IPSEC, TLS or CMS to authenticate
and secure the channel between the PEP and the PDP.

The protocol is stateful in two main aspects. (1) Request/Decision state is shared between client
and server and (2) State from various events (Request/Decision pairs) may be inter-associated.
By (1) we mean that requests from the client PEP are installed or remembered by the remote PDP
until they are explicitly deleted by the PEP. At the same time, Decisions from the remote PDP can
be generated asynchronoudy at any time for a currently installed request state. By (2) we mean
that the server may respond to new queries differently because of previoudy ingaled
Request/Decision state(s) that are related. Additionaly, the protocol is stateful in that it alows
the server to push configuration information to the client, and then allows the server to remove
such gtate from the client when it is no longer applicable.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 186

6.2.2.2.2.2 The Protocol Information Model

The protocol information model is defined through describing the message formats and objects
exchanged between the PEP and remote PDP. Each COPS message consists of the COPS header
followed by a number of typed objects. All the objects follow the same abject format; each object
consigts of one or more 32-bit words with a four-octet header.

6.2.2.2.2.3 The Protocol Functional Model

The protocol functional model is defined through basic messages exchanged between a PEP and a
remote PDP as well astheir contents.

6.2.2.2.2.4 Security Considerations

The COPS protocol provides an Integrity object that can achieve authentication, message integrity, and
replay prevention. All COPS implementations must support the COPS Integrity object and its
mechanisms. To ensure the client (PEP) is communicating with the correct policy server (PDP)
requires authentication of the PEP and PDP using a shared secret, and consistent proof that the
connection remains vaid. The shared secret minimaly requires manua configuration of keys
(identified by a Key 1D) shared between the PEP and its PDP. The key is used in conjunction with the
contents of a COPS message to calculate a message digest that is part of the Integrity object. The
Integrity object is then used to validate all COPS messages sent over the TCP connection between a
PEP and PDP.

The COPS Integrity object also provides sequence numbers to avoid replay attacks. The PDP chooses
the initial sequence number for the PEP and the PEP chooses the initial sequence number for the PDP.
These initial numbers are then incremented with each successive message sent over the connection in
the corresponding direction. The initial sequence numbers should be chosen such that they are
monotonically increasing and never repeat for a particular key.

Security between the client (PEP) and server (PDP) may be provided by IP Security (IPSEC).
Transport Layer Security (TLS) may be used for both connection-level validation and privacy [20] as
well as Cryptographic Message Syntax (CMS) [21].

6.3 INITIAL SUMMARY OF ACTIVE NETWORK BASED APPROACHES TO NETWORK
MANAGEMENT

This section identifies the benefits of active networking based upon the limitations given previoudy in
section 7.2. We also identify the potential problems or issues that might arise when we use active
networks for network management, e.g. managing networks where new protocols can be deployed on
the fly; issues of security; requiring management of the networks as well as management of the active
nodes etc.

6.3.1 Virtual Active Private Networks

The Virtual Active Network (VAN) isakey concept in the management architecture for active
networks, which has been proposed in [34]. The VAN is the entity that the active network provider
makes available to a service provider. Consisting of virtual active nodes interconnected by virtua
links, the VAN provides the platform on which a service provider installs a service.

The main ideas of this concept, including some FAIN specific modifications, are briefly described in
the following paragraphs.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 187

6.3.1.1 Actors

Customer / End User Domain

t Service Developer Domain
Active Service Provider
; - | Service & Service Mgmt.
Domaln Software

?

AN Providir Domain

AN Infrastructure

Figure 59 - Actors for Service Creation in Active Networks
In the context of service creation on active networks, we consider the following four actors (Figure).

An active network provider owns the active network infrastructure. The active network provider
furnishes an environment on which the service provider can independently install and manage a
service.

A service provider offers a service to a customer. The service runs on an active network. The
service provider also manages this service. The service implementation may be bought from a
service developer.

A service developer isan actor that develops service implementations, e.g. a software house. The
implementation may be sold to a service provider.

A customer uses a service made available by a service provider.

6.3.1.2 VAN Management

The Virtua Active Network concept ams at providing a powerful generic service abstraction to the
service providers. A Virtua Active Network consists of virtual active nodes interconnected by virtual
links. Virtua active nodes are adso caled Execution Environments (EES), following the terminology of
the AN working group. A virtua active node has resources attached to it in form of processing time
and memory, provided by the underlying active networking platform. Similarly, a virtua link has
bandwidth dlocated to it. A single physical active node can run severd virtua active nodes belonging
to different VANSs, and a single physical network link can support several virtua links for different
VANSs[35].

The VAN is a generic service abstraction. In this context, generic means that the VAN is not aware of
the services running on top of it. As a result, the management system of the active network provider is
not involved in the management of the service running on top of a VAN. It solely manages and
supervises the VANs. The VAN is the only object that is negotiated between the active network
provider and the service provider. As a consequence, management complexity is reduced from an
active network provider's point of view.

The VAN is aso the entity of isolation between services. The operating system of a physical active
node must provide means to efficiently alocate resources to an EE (virtual active node), and to control
and enforce the consumption of the alocated resources according to the contract between service
provider and active network provider.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 188

6.3.1.3 Implications on FAIN Node Architecture

The VAN concept makes a clear separation between management EE that works on the management
plane and service provider EE, which works on the data transfer as well as on the signalling/control
plane. Only these two types of EE exist in the VAN architecture.

. Active VAN Mgmt. and
Active .
Service Service Node
Mgmt. Configuration
Execution Environment Management EE
7 N
_,/'/ ‘\\
.'/ N
Service Service | @ e Service A :
Provider Provider Provider etwo
» . . -
Node Operating System
Hardware

Figure 60 - Active Network Node Architecure

The tasks of the management EE are limited to node configuration and the management of VANSs in
the active network provider’'s domain. Note that in this context VAN management means the creation,
modification, monitoring, and termination of virtua active networks. The management EE is not
concerned with the management of active services running in the VANS.

In the VAN architecture a service and the corresponding service management run in the same
instantiation of a service provider EE.

The VAN concept strictly isolates different VANSs from each other. A misbehaving service provider
can not affect other service providers.

6.3.1.4 Implications on Node Operating System

In order to provide VANS, the node operating system, handles resource alocation for the different
EEs. The resources are allocated in a way to fulfil the contract between service provider and network
provider. The node operating system isolates the EEs from each other, and supervises resource usage
for each EE.

Management EE and customer EE have totdly different requirements for the underlying node
operating system. A Management EE which works on the management plane may need to provide a
rich interface to network management software. We may think of the management EE as a Java
Virtual machine. The service provider EEs on the other hand need to work on the data path in order to
perform computation on active packets. As a consequence performance is of magjor importance to the
service provider EE. We think that it would be useful to run management and service provider EES on
separate hardware and node operating systems.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 189

6.3.1.5 Benefits for FAIN
Generic Abstraction

The VAN abstraction is service-independent. A provider is not concerned with the services and the
corresponding management running on VANS. The VAN is the only object that a provider has to
negotiate with a service provider. It is also the only entity according to which active network resources
have to be alocated and enforced in order to isolate service providers from each other.

Clear Separation between Execution Environments

The tasks of the two different types of execution environments (EE) are clearly separated. The
management EE works on the management plane, whereas the service provider EE works on the data
transfer and on the signaling/control planes. The management EE has privileged access to the
underlying node operating system.

Flexible Service Abstraction

The service provider can flexibly select the VAN topology. Between the two extreme cases—a VAN
spanning over the al active network nodes of a network provider and a VAN consisting of one virtua
link through the physical network — any topology is possible.

Services Managed by Service Providers

Through the introduction of the VAN concept, services are isolated from each other. This enables
services that are managed by the service provider, because even a misbehaving service does not affect
other services. As a consequence, management complexity is reduced from an active network
provider’s point of view.

Fine-grained Resource Allocation

Since a VAN is a collection of computation, communication, and storage resources on active nodes, a
service provider can fine-tune the usage of each resource on each node separately.

6.3.1.6 Challenges
| solation of VANS versus Performance

An important challenge in active networking is to trade-off security versus performance. For security
and in order to guarantee the quality of the VAN, it isimportant to strictly isolate the VANs. However,
it has to be investigated whether weakening this isolation for certain services would save resource

usage.
Interaction of Management and Customer Execution Environments

As stated earlier in this report, the management execution environment (EE) and the customer EE have
totally different requirements. The management EE works on the management plane, whereas the
customer EE are supposed to work in the data transfer and signalling/control plane. Therefore, we
think that the EEs should run on separate environments (hardware, operating system). However
signaling between the two types of EEs is required. It remains to be investigated, how this could be
done best.

6.3.2 EXxisting Policy Based Network Management Approaches

In order to make an efficient distribution of the active network management tasks between users and
operators, it is necessary to make the most of the active nodes computational capabilities to alow the
downloaded applications to accomplish control functions on the data flows.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 190

The policy-based network management architectures fit this objective best. They permit active code to
establish its own management policies while still maintaining a suitable control level over the

resources. Enhanced mechanisms are provided to assure the policies defined by applications do not
jeopardize the operator-imposed management policies.

Active networks go further since they facilitate the development of “elastic” architectures which are
able to increase the management functionalities by means of code downloads into the active nodes,
and al without service interruption. In this way system flexibility grows as new types of policies can
be defined to adapt the management system to evolving requirements of such a dynamic environment.

In this section we demonstrate the “elastic” management architecture for the policy-based network
management for active networks, especially in the scope of security, where severa aspects of interest
for the FAIN project are collected.

6.3.2.1 GENERAL ARCHITECTURE COMPONENTS DISTRIBUTION

The policy-based management system architecture defined by IETF [39] distinguishes the following
essential e ements:

The Policy Repository, where policies are stored.
The Policy Consumer or policy decision point, where decisions for policies are made.
The Policy Target or policy enforcement point, where policies are executed.

The Policy Management Application, where conflicts are detected.

Two general approaches to distribute these components among the functional blocks building up the
active node architecture are outlined in [4Q].

In the first one, the policy decison point and policy enforcement point are placed in the Node
Operating System (NodeOS) whereas policies are stored in a database independent of the enforcement
engine. Either the Execution Environments (EE) or the NodeOS can define their own resource access
policies, even though the EE cannot circumvent the policies defined by the NodeOS. Including the
policy decision point into the NodeOS compels the EE to inform it about access policies, since the
NodeOS is responsible for scheduling of resources assigned to the EE in accordance to those policies.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3

Page 191

NodeOS

Policy
Management

Policy
Decision Point

4 Policy

A 4 Database

Policy Enforcement Point

BTN

Physical Resources (bandwidth, CPU cicles...)

Figure 61 - “ Tighten” management architecture

The second proposed model [40] relies on sharing the responsibility of the policy enforcement
between the NodeOS and the EE. In order to enable the EE to enforce the policies, it has to have its

own database and its “ enforcement engine”.

Copyright & 2000/2001 FAIN Consortium

May 2001

FAIN Deliverable D3 Page 192

Policy EE2
) Managem.]
Policy]
Decision Point - .
Policy
DB L]
| Policy Enforcement Point |

EE1 Logical{Resources ™ EE2

Log

Rsc

Policy
Management

Policy
Decision Point |Séus

<«

A

Policy

)\ 4 Database

Policy Enforcement Point
~

OO

Physical Resources (bendwidth, CPU cicles ..)

Figure 62 - “ Scattered” management architecture

Thus, the policy is enforced in two levels. The EE grants access to resources and services under its
control according to its own policy. When the EE requests the NodeOS resources and services, the
NodeOS will enforce its access policy on the resources. To avoid as much as possible the conflict
between managed policies in both levels, the NodeOS establishes a set of initial policies for the EE.

This kind of gplitting up would favour the smplification of the development of the network
management system and would facilitate a suitable distribution of the FCAPS functiondities, e.g.
according to performance requirements.

37 Eault Configuration A ccounting Performance and Security functions.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 193

6.3.2.2 ELASTIC NETWORK MANAGEMENT ARCHITECTURE APPROACH

The dastic architecture approach [36] outline an open extensible solution for a management system
design. It gives the downloaded code the chance to control the available resources. The am of this
dtrategy is to alow the applications to extend the basic management functionalities integrated within
the node.

In contrast to using general policies, this approach suggests to make the most of the specific
knowledge that clients have about their applications, e.g. through considering communication patterns,
making feasible the ingtalation of application-specific policies within the node. In this way, rapid
decisons can be made to modify the behaviour of the local components according to the status
information, which is very important in multimedia and other large distributed systems.

This solution has been developed for programmable networks which separate data paths from control
paths. Hence the conclusions can be also valid for the “ discrete” -approach active networks [41].

The fact of having active code managing the resources to be assigned by means of policies has been
discussed and accepted in other active network fora®, which eventualy could contribute to the
consensus on the essential services within an active network.

6.3.2.2.1 Establishing application-specific policies

When considering the proposal in [36], we have to take into account that the model andised in the
document doesn’'t distinguish between “policy enforcement point” and “policy data’. On the contrary,
the policy is embedded into the code itsdlf.

The concrete mechanism to establish an application-specific management policy liesin the injection of
pieces of code by the active code itself in the core of the network management and control system. The
management system is ready to accept dynamic load of management code, extending the basic
functiondlities.

To make feasible policy migration to different network nodes, the code must be able to send agents
towards remote management systems so that the process is repeated. In this way, the policies
convenient for the application could be established throughout a whole path.

In a smilar vein, it would be possible to issue a new active packet from the active node. This packet
would carry the policy data addressed to other active nodes in the path.

Code piece installed in the
management architecture.

migrate

> ...

Figure 63 - Policy migration

Bsee “Active Nets Strawman Security Architecture Working Session Notes”
http://www.ittc.ukans.edu/~ansecure

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 194

6.3.2.2.2 Resource partition

In order to face the QoS requirements of certain applications, the elastic architecture considers the
resource reservation in advance (in the line of the Integrated Services models), by creating small
virtua networks (caled netlets) which offer the possbility of sharing the available resources and
establishing different policy levels over them.

In this way, when an application arrives at the light virtua network, it has al the resources previoudy
reserved available. At first, the code arriving at a netlet does not have any restriction to access its
assigned resources, being alowed to handle them as required. The netlets need to be isolated enough
to avoid improper behaviour of the system, e.g. excessive consumption of resources that could affect
others.

6.3.2.2.3 Extending the management capabilities

An éadtic architecture bears not only the incluson of new management policies but also the dynamic
loading of new code, able to provide extra functiondity to the network management system. The am
is to “enable clients to program al aspects of network control in a controlled fashion. This is done by
dynamically injecting code into the various entities that constitute the network control system”[38].

6.3.2.3 The Seraphim architecture

The policy-based security management system devel oped in the Seraphim project deals with severa
ideas that have aready been presented, and applies them within the scope of an active network
architecture.

6.3.2.3.1 Active Capabilities

Seraphim enables the extension of its security mechanisms by alowing the active code to dynamically
ingal its own application-specific security functions. These code fragments, which are encapsulated
inside active packets, have been named active capabilities (AC).

An AC isableto carry not only the active code, but aso the security policies customised for a
particular application and even, the code needed to make a policy decision. Hence, the user “can” (in
some way) establish security policies in the active node.

Credentials Active Code Policy

Figure 64 - Active Capability

6.3.2.3.2 Policy Framework

The active node has a framework to store, get and evaluate policies. Besides, every node has an
eval uation/enforcement engine responsible for the execution of the policies loaded into the database.
The dements have been digtributed following the second model given above (the “scattered”
architecture modd!).

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 195

ANTS CANES

EE EE [°
Mangnt \ \ T
EE
>

!
0

Node Resources

Figure 65 - Seraphim security architecture

A policy database and an enforcement engine - aso known as a reference monitor - are included
within the active node kernel. Nevertheess, the execution environment could hold its own policy
database and enforcement engine, in case it would like to handle additional restrictions. In this case,
the NodeOS should guarantee that the policy database within the EE is coherent with the node policy.

Again, it must be noticed that the policy framework is itself reconfigurable through the direct injection
of code.

In order to make quite sure that the AC carries well-formed expressions, the system includes an AC
management infrastructure, with an administrator in charge of checking that the AC cannot
compromise the system operation.

6.3.2.3.3 Administration Issues

Seraphim uses a centralized administration tool. Whenever there is a policy change, the administration
component attends to the matter of disseminating the new policies (ACs) to the active nodes, revoking
the previous ones. In this way, the network operators can manage the essentia active network

capabilitiesin an easy way.

6.4 INITIAL ISSUES IN PoLicY BASED NETWORK MANAGEMENT

We have outlined some essentid questions in the development of a policy-based network management
system for active networks. Flexibility and extendibility are indispensable requirements to build up a
system able to adapt itself to new management mechanisms.

The need for establishing application-specific policies is one crucia area for the success of active
networks for network management. It is likely that to realise this will require maintaining a database in
the active node, with the aim of reducing the network management traffic. In the same way, it is
convenient to include aso the policy decision point into the active node. This is in accordance with the
IETF work which supports policy decision points lying in the same device as the policy enforcement
point when the device has enough processing capacity.

However, it should be noted that the introduction of new policies into the management system
(performed by the active code) must be carefully controlled in order to avoid the execution of actions
not alowed by the operator-defined policies.

Certain conflicts between both types of policies, caled "modality conflicts', which arise "when severa
policies with modalities of opposite sign refer to the same subjects, actions and targets’ [37], can be
detected by means of syntactic analysis and resolved setting priorities for every policy.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 196

However, severa conflicts derive not from the policy structure but from the policy meaning. To
handle these conflicts, it is necessary to specify which policies can coexist in the system. That is done
in metagpolicies terms. Metapolicies express semantic incompatibilities among policies [44], as for
example, "there should be no policy authorising a manager to retract policies of which he isthe
subject”. In summary, metapolicies can be avaluable tool to detect and evaluate which policies
established by the active code could be included without risk in the active node management system.

Findly, the use of metapolicies should be considered as a node mechanism of protection against the

attack of malicious active packets trying the establishment of forged policies. Metapolicies could be

adso a means of unifying the handling of application-specific policies for the whole range of

management functionalities.

6.5 R25 REFERENCES

[1] RFC 1777 Lightweight Directory Access Protocol

[2] RFC 1778 A String Representation of Standard Attribute Syntaxes

[3] RFC 1779 A String Representation of Distinguished Names

[4] RFC 1959 An LDAP URL format

[5] RFC 1960 A String Representation of LDAP Search Filters

[6] RFC 2251 Lightweight Directory Access Protocol (v3)

[7 RFC 2252 Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions

[8] RFC 2253 Lightweight Directory Access Protocol (v3):UTF-8 String Representation of
Distinguished Names

[9] RFC 2254 The String Representation of LDAP Search Filters

[10] RFC 2255 The LDAP URL Format

[11] RFC 1823 The LDAP Application Program Interface

[12] http://www.openldap.org/

[13] RFC 2748 The COPS (Common Open Policy Service) Protocol, January 2000

[14] RFC 2749 COPS usage for RSVP, January 2000-08-30

[15] <draft-ietf-rap-pr-04.txt> COPS Usage for Policy provisioning (COPS-PR), August 2000

[16] <draft-franr-mpls-cops-00.txt> COPS Usage for MPLS/Traffic Engineering, July 2000

[17] <draft-ietf-rap-frameworkpib-01.txt> Framework Policy Information Base, July 2000

[18] <draft-ietf-rap-pol-aux-mib-00.txt > The Policy Device Auxiliary MIB, July 2000.

[19] <draft-ietf-rap-cops-client-mib-03.txt> Definitions of Managed Objects for COPS protocol
clients, May 2000

[20] <draft-jwalker-cops-tls-00.txt> COPS over TLS, May 2000
[21] <draft-jwaker-cops-cms-00.txt> CMS over COPS, May 2000
[22] Policy Framework Working Group: (http://www.ietf.org/html.charters/policycharter.html)

[23] Resource Allocation Protocol Working Group: (http://www.ietf.org/html.charters/rap-
charter.html)

[24] TINA-C, www.tinac.com
[25] TINA-C, Distributed Processing Environment, December 1994.
[26] TINA-C, Service Architecture, verson 5.0, 16 June 1997.

Copyright & 2000/2001 FAIN Consortium May 2001

FAIN Deliverable D3 Page 197

[27] TINA-C, Network Resource Architecture, Verson 3.0, February 1997.

[28] The Common Object Request Broker Architecture and Specification: Revison 2.3, Object
Management Group, Inc., Framingham MA., July 1998.

[29] TINA-C, TINA Object Definition Language MANUAL, version 2.3, July 1996.
[30] OMG Teecommunication Service Access and Subscription, telecom/00-02-02, www.omg.org

[31] R.O. Sinnott, T. Gringdl, M. Tschichholz, W. Vortisch, Supporting Service Qudity Assurance
via Trouble Management, Proceedings of Third International Conference on Management of
Multimedia Networks and Services 2000, September 26-28, 2000, Fortaleza- Ceara, Brazil.

[32] R.O. Sinnott, D. Dragan, T. Gringd, J. Hal, M. Tschichholz, W. Vortisch, Integrated Trouble
Management to Support Service Quality Assurance in a Multi-Provider Context, Proceedings of 7th
International Conference on Intelligence in Services and Networks, Athens, Greece, February 2000.

[33] Moreinformation under www.fokus.gmd.de/research/cc/platin/

[34] M. Brunner, “Service Management in a Telecom Environment based on Active Network
Technology”, ETH Zurich, TIK-Schriftenreihe No. 34, Diss. ETH Zurich No. 13433, November,
1999.

[35] M. Brunner, R. Stadler, “Service Management in Multi-Party Active Networks’, |IEEE
Communications Magazine, Vol. 38(3), 2000.

[36] H. Bos, “Application-Specific Policiess Beyond the Doman Boundaries’. IFIP/IEEE
Integrated Management Symposium, Boston, May 1999 http://www.ee.ucl.ac.uk/iliaboti/papers/

[377 M. Soman and E. Lupu, “Policy Specification for Programmable Networks’. Extended
verson of paper in Proceedings of First International Working Conference on Active Networks
(IWAN’'99), Berlin, June 1999. Ed. S. Covaci published by Springer-Verlag Lecture Notes in
Computer Science.

[38] H. Bos, “Open Extensible Network Control”. Journal of Network and Systems Management,
Voal. 8, No.1, March 2000.

[39] H. Mahon et a, “Requirements for a Policy Management System”. Internet draft, October
1999.

[40] J Smith et al, “Activating Networks: A Progress Report”. IEEE Computer, Vol. 32, No. 4,
April 1999.

[41] D. Tennenhouse and D. Wetherall, “Towards aun Active Network Architecture’. Computer
Communication, Val. 26, No. 2, April 1996.

[42] Z.Liu, PNadurg, S. Yi, T. Qian, R. H. Campbell, M. Dennis Mickunas, “An Agent Based
Architecture for Supporting Application Level Security”. DARPA Information Survivability
Conference and Exposition. Hilton Head |dand, <, January 2000.
http://choices.cs.uiuc.edu/Security/seraphim/papers/

[43] D. Mariot and M. Sloman. “Implementation of a Management Agent for Interpreting
Obligation Policy”. IEEE/IFIP 7th International Workshop on Distributed Systems Operations and
Management (DSOM 96), L’ Aquila, Italy, 28-30 October 1996.

[44] E. Lupu, “A Role-Based Framework for Distributed Systems Management”. Imperial College
of Science, University of London.

[45] ITU-T Recommendation M.3010 Principles for a Telecommunications management network
(05/96).

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 198

7 APPENDIX B: POLICY BASED MANAGEMENT INFORMATION
MODEL

7.1 FAIN PoLicy BASED MANAGEMENT INFORMATION MODEL

The inheritance tree detailed here is basically that of the PCIM extensions draft [75]. However, there
are some new FAIN-specific classes. More classes or properties can be defined and added to the tree,
either FAIN-specific or domain specific. Basically, domain-specific extensons to the information
modd will be sub-classes of PolicylmplicitVariable and PolicyVaue classes. However, in case all

conditions, action or rules of a specific domain have a common property, new domain-specific rule,
actions or conditions subclasses might be added.

7.1.1 Classes Inheritance Hierarchy
ManagedElement (abstract)

+--Policy (abstract)
|

| +---PolicySet (abstract — PCIMe)
|11

| | +---PolicyGroup

|1

| | +--PolicyRule

| | I

| | +--- fainPolicyRul e
| |

| +---PolicyCondition (abstract)
Il

| | +--PolicyTimePeriodCondition
|11

| | +--VendorPolicyCondition
|11

| | +--SimplePolicyCondition
|1 I

]| +--- fainSimplePolicyCondition
| | +--CompoundPolicyCondition
| | I

| +---CompoundFilterCondition
N

| +---PolicyAction (abstract).

Il 1
| | +--VendorPolicyAction

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 199

|11

| | +--SimplePolicyAction

|11 I

Il | +--- fainSimplePolicyAction
| | +--CompoundPolicyAction

|

| +---PolicyVariable (abstract)

|11

| | +--PolicyExplicitVariable

|11

| | +--PolicylmplicitVariable (abstract)
I

| | +--(subtree of more specific classes)
| +---PolicyValue (abstract)

||

| +---(subtree of more specific classes)

+--Collection (abstract -- newly referenced)

|
| +--PolicyRoleCollection

I
+--ManagedSystemElement (abstract)
I
+--L ogical Element (abstract)
I
+--System (abstract)
I
+--AdminDomain (abstract)

+---Reusabl ePolicyContainer (Io mismo que el PolicyRoleCollection)

I
+---PolicyRepository (deprecated)

7.1.2 Aggregation Classes Inheritance Hierarchy

[unrooted]

+---PolicyComponent (abstract)

|
| +---PolicySetComponent (abstract -- new - 4.3)

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 200

+---CompoundedPolicyCondition (abstract -- new - 4.7.1)

|
+---PolicyGroupl nPolicyGroup (moved - 4.3)

I
+---PolicyRulelnPolicyGroup (moved - 4.3)

I
+---PolicyGroupl nPolicyRule (new - 4.3)

I
+---PolicyRulelnPolicyRule (new - 4.3)

I
+---PolicyConditioninPolicyRule (moved - 4.7.1)

I
+---PolicyConditionInPolicyCondition (new - 4.7.1)

+---PolicyRuleValidityPeriod

+---CompoundedPolicyAction (abstract -- new - 4.7.2)

I
+---PolicyActioninPolicyRule (moved-4.7.2)

I
+---PolicyActionlnPolicyAction (new - 4.7.2)

| +---PolicyVariablelnSimplePolicyCondition (new - 4.8.2)

| +---PolicyValuelnSimplePolicyCondition (new - 4.8.2)

+---Dependency (abstract)

| +--PolicylnSystem (abstract)

| +---PolicyGrouplnSystem

| +---PolicyRulelnSystem

| +---ReusablePolicy (new - 4.2)

| +---PolicyConditionlnPolicyRepository (deprecated - 4.2)

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 201

| | +--PolicyActionlnPolicyRepository (deprecated - 4.2)
|
| +--PolicyVaueConstraintinVariable (new - 4.8)

|
| +---PolicyRoleCollectionlnSystem (new - 4.6.2)

I

+---Component (abstract)
|

| +--SystemComponent

|
+---PolicyContainerlnPolicyContainer (new - 4.2)

|
|
| +--PolicyRepositorylnPolicyRepository (deprecated - 4.2)
|

+---MemberOfCollection (newly referenced)

I
+--- ElementInPolicyRoleCollection (new - 4.6.2)

7.1.3 FAIN Specific Classes Description

In this section a detail definition of new classes, and modifications of existing ones, in FAIN
Information Model is given. To see the definition and detail description of classes defined in PCIM,
PCIMe and CIM Core Mode and their properties see [62] [75]and [77] respectively.

Pol i cy (abstract)
NAMVE Pol i cy
DESCRI PTI ON An abstract class with four properties for describing a

policy-rel ated instance.

DERI VED FROM ManagedE!l enent
ABSTRACT TRUE
PROPERTI ES CommonNanme (CN)

Pol i cyKeywor ds[]
/1 Caption (inherited)
/1 Description (inherited)

In the FAIN project we will add some FAIN specific keywords, to be used in the PolicyKeyword
property, to those suggested by the IETF [62]. These keywords will categorised some FAIN policies
such as. Delegation, Fault, Monitoring, ...

Pol i cySet (abstract)

NAVE Pol i cySet
DESCRI PTI ON An abstract class that represents a set of policies

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 202

that forma coherent set. The set of contained
policies has a comon deci sion strategy and a conmmon
set of policy roles. Subclasses include PolicyG oup

and Pol i cyRul e.

DERI VED FROM Pol i cy

ABSTRACT TRUE

PROPERTI ES Pol i cyDeci si onStr at egy
Pol i cyRol es

In FAIN we will extend the possible values of the PolicyDecisonStrategy property with an Atomic
option. Previous possible values were: £ matching, All matching. This will dlow to easily define
atomic sets of policies.

The PolicyRoles property can be used to identify the PEP that has to enforce the policy.

fai nPol i cyRul e

NAMVE Pol i cyRul e

DESCRI PTI ON The central class for representing the "If Condition
then Action" semantics associated with a policy rule in FAN

DERI VED FROM Pol i cyRul e

ABSTRACT FALSE

PROPERTI ES Userlnfo

The fainPolicyRule adds the UserInfo property to those define by the IETF. This property is necessary
to be able to check the functionality that has been delegated to that user. The Userlnfo property will be
aset of strings containing security-related information of that user (e.g. login and password).

fai nSi npl ePol i cyCondi tion

NAME Si npl ePol i cyCondi ti on
DERI VED FROM Pol i cyCondi ti on
ABSTRACT Fal se

PROPERTI ES Eval uat i onMet hod

The fanSimplePolicyCondition adds a new property: EvaluationMethod. This property adds more
flexibility to the IETF proposa which by default uses the MATCH evaluation method, see [75].

The property will be a string whose value represent the EvauationMethod to be applied to that simple
policy condition. Possible values, as well as the necessity of this property, will be evaluated and added
asthe FAIN Information Modd is defined.

fai nSi npl ePol i cyActi on
NAVE Si npl ePol i cyAction
DESCRI PTI ON A subcl ass of PolicyAction that introduces the notion
of "SET variable TO val ue".

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 203

DERI VED FROM Pol i cyAction
ABSTRACT FALSE
PROPERTI ES Enf or cenent Met hod

The philosophy of this property is exactly that of the EvaluationMethod property within the
fainSimplePolicyCondition class. It aimsto extend the by-default “ SET variable to value” enforcement
method of the IETF.

7.1.3.1 Simple Policy Example

The rule that we are going to give as an example is a very smple rule from the VPN Policy
Information Model proposed by the IETF in [76].

Theruleis: if “SourcelP=147.83.106.172" then ipvpnPolicyFirewalAction=1
Possble vaues of ipvpnPolicyFirewdlAction ae Allow=0, Allow&Log=1, Allow&Alarm=2,
Deny=3, Deny& Log=4, Deny& Alarm=5.
The instances of classes that will be sent in the XML file are™:
fai nPol i cyRul ef
Caption: “VPN Firewal ling Rule”
Description: *“
ConmmonNane: “i pvpnPol i cyFirewal | Rul e”

Pol i cyKeywor ds[]: " CONFI GURATI ON’
Pol i cyDeci sionStrategy: “Al Matchi ng”

PolicyRol es: “”
Enabl ed: “enabl ed”

Condi ti onLi st Type: “CNF”

Rul eUsage: ”

Mandat ory: TRUE
SequencedActions: “Don’t care”
ExecutionStrategy: 1 (Do Al)
Userlnfo: “NetMgr”, “passwd”

Pol i cyRul el nSyst em{
Ant ecedent: FAI N_System
Dependent : i pvpnPolicyFirewal | Rul e

}

fai nSi npl ePol i cyCondi tion {
Caption: “VPN Firewal ling Condition”
Description: “
CormmonNarre: “ Sour cel PCondi ti on”
Pol i cyKeywor ds[]: " CONFI GURATI ON’

39 The XML mapping will be addressed as FAIN progresses and is not described here.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 204

Eval uati onMet hod: “ MATCH’

Pol i cyCondi ti onl nPol i cyRul e {
Par t Corponent : “ Sour cel PCondi ti on”
G oupNunber: 1
Condi ti onNegat ed: FALSE
G oupConponent: “i pvpnPol i cyFi rewal | Rul e”

Pol i cySour cel PVari abl e {
Caption: “Source IP Variable”
Description: “...”
CommonNane: *“ Sour cel PVari abl e”
Pol i cyKeywor ds[]: " CONFI GURATI ON'
Val ueTypes[]: “Policyl Pv4Addr Val ue”, “Policyl Pv6Addr Val ue”

Pol i cyVari abl el nSi npl ePol i cyCondi ti on {
Par t Conponent : “ Sour cel PVari abl e”
G oupConponent : “ Sour cel PCondi ti on”

Pol i cyl Pv4Addr Val ue {
Caption: “IPv4 Val ue”
Descri ption:
CommonNane: “1 Pv4Addr Val ue”
Pol i cyKeywor ds[]: " CONFlI GURATI ON’
| Pv4Addr Li st[] ="147. 83. 106. 172"

Pol i cyVal uel nSi npl ePol i cyCondi tion {
Part Component : “| Pv4Addr Val ue”
G oupConponent : “ Sour cel PCondi ti on”

fai nSi npl ePol i cyAction {
Caption: “VPN Firewal | ing Action”
Descri ption:
CommonNane: “i pvpnPol i cyFirewal | Action”
Pol i cyKeywor ds[]: " CONFlI GURATI ON’
Enf orcenment Strat egy: “SET”

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 205

Action: “1”

Pol i cyActionl nPol i cyRul e {

Part Conponent : “i pvpnPol i cyFi rewal | Acti on”

G oupConponent :
ActionOder: 1
}

“i pvpnPol i cyFirewal | Rul e”

7.1.3.2 FAIN Policy Domains

7.1.3.2.1 Delegation Domain

When an active node is unable to accommodate all the requests for resource alocation that it may
receive, the management system may have to decide to accommodate part or al of the requested
resources to a neighbouring node. What is required, is an entity that is delegated the responsibility to
enforce a delegation policy to the other node. For example, an intelligent agent can be delegated the
access rights from an active node, so that it can instruct another node to accept the incoming traffic.

Alternatively, it may be a requirement from the management system that a customer is delegated part
of the entire management responsibility, in order to run its active service.

In either case management by delegation is necessary.

Part of the classes that can help visualise the management by delegation are:

fainCustomer|DVariable
NAME

fainCustomerIDVariable

DESCRIPTION The ID of the Customer to whom the delegation is made
VALUELIST PolicyStringValue

DERIVED FROM PolicylmplicitVariable

ABSTRACT FALSE

PROPERTIES CustomerCredential

fainSubjectl DVariable
NAME

fainSubjectIDVariable

DESCRIPTION The ID of the entity that delegates authorities to the Customer
VALUE LIST PolicyStringValue

DERIVED FROM PolicylmplicitVariable

ABSTRACT FALSE

PROPERTIES fainCustomer|DV ariable

fainTargetlDVariable
NAME

fainTargetIDVariable

DESCRIPTION The ID of the target that the Customer will access

VALUE LIST PolicyStringValue

DERIVED FROM PolicylmplicitVariable

ABSTRACT FALSE

PROPERTIES fainSubjectI DV ariable, fainCustomerIDVariable
fainTimePeriod

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 206

NAME fainTimePeriod

DESCRIPTION The range of calendar dates on which the delegation will be made
VALUE LIST STRING

DERIVED FROM TimePeriod

fainDelegatedResour ces

NAME fainDel egatedResources
DESCRIPTION A list of references to resources
DERIVED FROM Resources

ABSTRACT FALSE

PROPERTIES fainResourceNameVariable

fainResour ceNameVariable

NAME fainResourceNameV ariable

DESCRIPTION The name of the resource

VALUELIST STRING

DERIVED FROM fainDel egatedResources

ABSTRACT FALSE

PROPERTIES fainCustomerIDVariable, fainTargetIDVariable, fainTimePeriod,

fainDel egationRestriction

fainDelegationRestriction
NAME DelegationRestriction
DESCRIPTION acomplex type expressing access restrictionsto the delegated resources

(e.g. max BW = X, only event monitoring, etc)

DERIVED FROM fainDel egatedResources
ABSTRACT FALSE
PROPERTIES fainTargetlDVariable, fainTimePeriod, fainResourceNameV ariable

fainDelegationAction

NAME fainDelegationAction

DESCRIPTION Specifies the delegation parameters to be configured for a Customer.
DERIVED FROM fainSimplePolicyAction

ABSTRACT FALSE

PROPERTIES fainCustomerIDVariable, fainSubjectiDVariable, fainTargetlDVariable,

fainTimePeriod

fainAllowAccessAction

NAME fainAllowAccessAction

DESCRIPTION Allows the Customer access to the Target

DERIVED FROM fainDelegationAction

ABSTRACT FALSE

PROPERTIES CustomerCredential, fainSubjectIDVariable, fainTargetlDVariable, fainTimePeriod,

yes, yes+log, yes+alarm
fainDelegateResour cesAction
NAME fainDelegateResourcesAction

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 207

DESCRIPTION Instructs the Target which resources to grant the Customer
DERIVED FROM fainDelegationAction

ABSTRACT FALSE

PROPERTIES fainCustomerIDVariable, fainTargetIDVariable, fainTimePeriod,

fainResourceNameVariable

fainDisallowAccessAction

NAME Disallow Access Action

DESCRIPTION Disallows the Customer access to the Target

DERIVED FROM fainDelegationAction

ABSTRACT FALSE

PROPERTIES CustomerCredential, fainTarget| DV ariable, fainTimePeriod, yes, yes+log, yes+alarm

7.1.3.2.2 Monitoring Domain

Monitoring policies would be set in the policy-based management architecture designed in FAIN in
order to obtain relevant values of the policy targets and report them to: the interested PDPs, a higher
network management level, or a customer (when allowed).

The conditions that might trigger the enforcement of one monitoring policy, and therefore the report of
the requested values can be either a time condition, a specific value of a property or no condition A
monitoring policy with no condition, would be interpreted as a “command’, te condition should be
enforced immediately and only once.

The policy condition classes dready defined in the FAIN Information Modd (i.e.
smplePolicyCondition, compoundPolicyCondition, PolicyTimePeriodCondition, PolicyVariable and
PolicyValue classes and sub-classes) will fit our requirements for Monitoring policies.

The PolicyTimePeriodCondition class dlows to specify time conditions on monitoring policies.
Furthermore, PolicyExplicitVariable and policyVaue classes are adequate to indicate a condition
based on the value of a property of a class, either if it isa policy repository class or a PIB class. Only,
in some cases will anew PolicyVaue sub-class need to be defined.

We will have one single action class, that might be sub-classed if considered necessary. The class will
have a lit of properties whose vaues should be reported, as well as a destination property, which
might optionaly carry the specific PDP to which this report should be sent, and an Eventld, which
describes the kind of content of the properties being reported.

7.1.3.2.2.1 FAIN Monitoring Specific Classes Description
In this section a detail definition of new classesin FAIN Monitoring Information Modd is given.

fainMonitoringAction
NAME fainMonitoringAction
DESCRIPTION Thisclass specifies the properties to be reported and the type of properties being reported.
Optionally, a specific destination can be specified as well.
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES ExplicitVariableList [ref policyExplicitVariable [0..n]]
Destination
Eventld

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 208

The property Destination

This property is optional. When introduced, it specifies a concrete PDP to which the monitoring report
should be sent. The Destination value will be a string containing the Codel D of the PDP.

NAME Destination
DESCRIPTION The concrete PDP to which the monitoring report should be sent.
SYNTAX String

The property Eventld

Identifies the monitoring event being sent. Monitoring events will be classified depending on the
content of the properties monitored (e.g. computational resources, forwarding resources, VESs,...).

NAME EventlD
DESCRIPTION Identifies the type of monitoring event.
SYNTAX String

7.1.3.2.3 Service Domain

The domain of Service Policies in the FAIN policy information model has the purpose to support
generic policies related with the management of services. These poalicies should be generic and
service-independent. Policies which are entirely service-specific and require more detailed knowledge
of the parameters of a service should be defined using a new service-specific policy domain, with the
corresponding information model. An example of such service-specific policies are those that belong
to the VPN policy domain.

The generic functions which are related to the management of a service can be split into two
categories. In the first category we have the provision of computational resources to a service. The
FAIN Resource Control Framework (RCF) at the rode level will provide the ability to dlocate both
network and computational resources on a per-service granularity. Taking advantage of the RCF
interface the PBANEM system will be able to assign specific CPU processing power, memory and
disk space to a srvice. The conditions of the computational resource allocation policies will contain a
service identifier. For this reason a class that identifies a specific service is required from the
information model. The corresponding actions will be the adlocation of a certain amount of CPU power
or memory. To support these actions the information model should contain classes for the processing
power and memory which are alocated to a service. An example for such a policy would be “if service
= X then allocate 10% of CPU power”.

The second category of service policies contains policies which are related to the management of
active code. These are policies that can request the installation, removal, suspension and resumption of
a particular service code module. Additionally a service may request to install a new code module, or
remove an existing one.

The following classes will be needed for the FAIN Service Policy Domain
Servicel DVariable

NAME ServicelDVariable

DESCRIPTION Theidentifier of an active service

ALLOWED VALUE TYPES: PolicyStringValue

DERIVED FROM PolicylmplicitVariable

ABSTRACT FALSE

PROPERTIES (none)

fainServiceCPUAIllocationAction

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 209

NAME fainServiceCPUAIllocationAction
DESCRIPTION This class specifies the CPU percentage to be allocated to a single service
DERIVED FROM fainSimplePolicyAction

ABSTRACT FALSE
PROPERTIES CPUPercentage

Property CPUPercentage
NAME CPUPercentage
DESCRIPTION The percentage of total CPU power to be allocated.
SYNTAX Integer

fainServiceM emor yAllocationAction

NAME fainServiceMemoryAllocationAction
DESCRIPTION This class specifies the memory to be allocated to a service
DERIVED FROM fainSimplePolicyAction

ABSTRACT FALSE
PROPERTIES MemorySize

Property MemorySize

NAME MemorySize
DESCRIPTION The total memory (in KB) to be allocated
SYNTAX Integer
fainServiceStatusChangeAction
NAME fainServiceStatusChangeAction
DESCRIPTION This classis used to change the status of a service in an active node.

It can install, suspend, resume or remove a service from an active node.
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES Serviceld

Property Serviceld

NAME Serviceld
DESCRIPTION Anidentifier for the specified service
SYNTAX String

Property Action

NAME Action

DESCRIPTION The action to be performed on the specified service
SYNTAX Integer

VALUES Integer(ENUM)

{"Install"=0;" Suspend"=1;"Resume"=2;"Remove"=3; }
fainServiceCodeUpdateAction

This action can be used in a service-specific policy, where a service can request the update of
its code modules.

NAME fainServiceCodeUpdateAction
DESCRIPTION This action updates a service code module

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 210

DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES Codeld

Action
Property Codeld
NAME Codeld
DESCRIPTION Identifier for the code module
SYNTAX String
Property Action
NAME Action
DESCRIPTION The action to be performed on the specified code module
SYNTAX Integer
VALUES Integer(ENUM)

{"Install"=0; "Remove"'=1; }

7.1.3.2.3.1 Example

We present a simple example for a policy which dlocates a specific percentage of CPU power to a
service. “If service=multicast then allocate 20% CPU processing power “

fainPolicyRulg{
Caption: “Percentage of CPU”
Description: “The policy defines the percentage of the CPU given to an application”
CommonName: “PercentageCPUPolicyRule”
PolicyKeywords[]: "SERVICE”
PolicyDecisionStrategy: “All Matching”
PolicyRoles: “CPU consumption”
Enabled: “enabled”
ConditionListType: “CNF”
RuleUsage: " CPU reservation”
Mandatory: TRUE
SequencedActions: “Mandatory”
ExecutionStrategy: 1 (Do All)
UserInfo: “NetMgr”, “passwd”

}

PolicyRulelnSystem{
Antecedent: FAIN_System
Dependent: PercentageCPUPolicyRule

}

fainSimplePolicyCondition {
Caption: “Service Condition”
Description: “...”
CommonName: “ ServiceCondition”
PolicyKeywords[]: "SERVICE”
EvaluationMethod: “MATCH”

}

PolicyConditionlnPolicyRule {
PartComponent: “ ServiceCondition”
GroupNumber: 1
ConditionNegated: FALSE
GroupComponent: “PercentageCPUPolicylRule”

PolicyServiceVariable {

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 211

Caption: “Service Variable”
Description: “...”

CommonName: “ServiceVariable”
PolicyKeywords[]: "SERVICE”"
ValueTypes[]: “fainServiceldVariable”,

PolicyV ariablelnSimplePolicyCondition {
PartComponent: “ ServiceVariable”
GroupComponent: “ ServiceCondition”

}

PolicyStringValue {
Caption: “Service ld Value”
Description: “”
CommonName: “ServiceldValue”
PolicyKeywords[]: "SERVICE”
PolicyString="multicast”

PolicyV aluelnSimplePolicyCondition {
PartComponent: “ ServiceldValue”
GroupComponent: “ ServiceldCondition”

fainSimplePolicyAction {
Caption: “CPU Reservation Action”
Description: “...”
CommonName: “fainServiceCPUAllocationAction”
PolicyKeywords[]: " Service”
EnforcementStrategy: “ SET”
CPUPercentage: “20”

}

PolicyActionlinPolicyRule {
PartComponent: “fainServiceCPUAIlocationAction”
GroupComponent: “PercentageCPUPolicyRule”
ActionOrder: 1

7.1.3.2.4 VPN Domain

VPN policies would be set in the policy-based management architecture designed in FAIN to create,
modify or remove a VPN for a user.

The conditions that might trigger the enforcement of a VPN policy, and therefore the creation,
modification or remova of a VPN, can be either a time condition, a flow filter condition, a specific
value of a network property or no condition..

The policy condition classes dready defined in the FAIN Information Modd, i.e
simplePolicyCondition, compoundPolicyCondition, Policy TimePeriodCondition,
compoundFilterCondition, PolicyVariable and PolicyValue classes and sub-classes) will fit our
requirements for VPN policies both a element level, as well as a network level with some
refinements. For example, different tunnels with the same IPSec parameters can be specified in the
network level policy, usng a compoundFilterCondition which contains a list of fainSimpleConditions
dl contaning [PSource variables and values. Setting the property isMirrored of the
CompoundFilterCondition class to true, we indicate that IPSec tunnels should be created between all
these IPs in both directions.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 212

The PolicyTimePeriodCondition class alows to specify time conditions on VPN policies.
Furthermore, PolicyExplicitVariable and policyVaue classes are adequate to indicate a condition
based on the value of a property of a class, either a policy repository class or a PIB class. Only, in
some cases will a new PolicyVdue sub-class need to be defined. Findly, the
compoundFilterCondition can be used to specify flow filter conditions for the creation of a VPN.

We will have two policy actions classes specific to the network level, which will be mapped into
another two policy action classes specific of the eement level. We will aso have a policy action class
which will be used at both the network level and the element level. The actions defined are related to
three VPN related domains, security based on 1PSec, paths with certain QoS based on MPLS, and a
firewalling action.

All action classes are based on the VPN Information model draft proposed by the IETF with small
modifications in order to adapt them to our specific needs. These action classes will be detailed

described in the section below, as well as the mapping between the network level policies and the
element leve policies when needed.

7.1.3.2.4.1 FAIN VPN Specific Classes Description

In this section a detailed definition of new classes in FAIN VPN Information Modd is given, as well
as issues related with the mapping between the network and element level policies where appropriate.

7.1.3.2.4.1.1IPSec

Network Level: fainVPNIPSecAction
NAME fainl PSecAction
DESCRIPTION Thisclass specifies the properties of the IPSec tunnel or tunnels requested.
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES IsEncrypted

IsAuthenticated
IPSecAuthPref

| PSecEncPref
IPDHGroupPref
IKEAuthPref

IKEENcPref
IKEDHGroupPref
IKEPeerAuthM ethodPref

The property IsEncrypted

This property is an enumerated type with four possible values: 0, 1, 2, 3. The “0” means no encryption;
“1” encryption in the specified direction; “2” encryption in the mirrored direction; and “3” encryption
in both directions.

NAME IsEncrypted
DESCRIPTION Indicates whether encryption should be applied in the tunnel.
SYNTAX Integer

The property IsAuthenticated

This property is an enumerated type with four possible values. 0, 1, 2, 3. The “0" means no
authentication; “1” authentication in the specified direction; “2" authentication in the mirrored
direction; and “3" authentication in both directions.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 213

NAME IsAuthenticated
DESCRIPTION Indicates whether authentication should be applied in the tunnel.
SYNTAX Integer

The property | PSecAuthPr ef

The value of this property, if present, specifies the IPSec authentication algorithm preferred by the
User.

NAME I PSecAuthPref
DESCRIPTION Indicates the preferred | PSec Authentication algorithm
SYNTAX String

The property | PSecEncPr ef
The value of this property, if present, specifies the IPSec encryption agorithm preferred by the User.

NAME IPSecAuthPref
DESCRIPTION Indicates the preferred | PSec encryption algorithm
SYNTAX String

The property | PSecDHGroupPr ef
The value of this property, if present, specifies the |PSec Diffie-Hellman group preferred by the User.

NAME |PSecDHGroupPref
DESCRIPTION Indicates the preferred | PSec Diffie-Hellman group.
SYNTAX String

The property IKEAuthPref
The value of this property, if present, specifies the IKE authentication algorithm preferred by the User.

NAME IKEAuthPref
DESCRIPTION Indicates the preferred |KE Authentication algorithm
SYNTAX String

The property IKEENCPr ef
The value of this property, if present, specifies the IKE encryption agorithm preferred by the User.

NAME IKEAuthPref
DESCRIPTION indicates the preferred IKE encryption algorithm
SYNTAX String

The property IKEDHGroupPr ef
The value of this property, if present, specifies the IKE Diffie-Hellman group preferred by the User.

NAME IKEDHGroupPref
DESCRIPTION indicates the preferred IKE Diffie-Hellman group.
SYNTAX String

The property | KEPeer AuthM ethodPr ef

This property is an enumerated type with six possible values, that shows the IKE peer authentication
method preferred by the User :

1: Pre-shared key
2. DSS signatures
3. RSA signatures

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 214

4: Encryption with RSA
5: Revised encryption with RSA

6: Kerberos
NAME |KEPeerAuthM ethodPref
DESCRIPTION Indicates the preferred IKE peer authentication method.
SYNTAX Integer

Element Level: fainl PSecAction
NAME fainipvpnEncryptionAction
DESCRIPTION Thisclass specifies the necessary properties for the creation of an |PSec tunnel.
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES VPNId
IkeAuthentication
IkeEncryption
IkeDHGroup
IkeTimeout
IkeTrafficBasedExpiry
| PSecAuthentication
IPSecEncryption
IPSecDHGroup
| PSecTimeout
| PSecTrafficBasedExpiry
| kePeer AuthenticationMethod

VPNId

The VPNId property value indicates to the element level to which VPN this tunnel has to be created.
NAME VPNId
DESCRIPTION Indicates the VPN that contains the requested tunnel.
SYNTAX String

The property IkeAuthentication
The property specifies the authentication agorithm to be used.

NAME IkeAuthentication
DESCRIPTION The property that specifies the authentication algorithm
SYNTAX String

The property IkeEncryption

The property specifies the encryption algorithm to be used.
NAME IkeEncryption
DESCRIPTION The property that specifies the encryption algorithm
SYNTAX String

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 215

The property IkeDHGroup
The property specifies the DHGroup to be used during IKE negotiations

NAME IkeDHGroup
DESCRIPTION The property that specifies the DHGroup to be used during IKE negotiations
SYNTAX String

The property IkeTimeout

The property specifies the IKE Timeout to be used.
NAME IkeTimeout
DESCRIPTION The property that specifies the IKE timeout
SYNTAX I nteger

The property IkeTrafficBasedExpiry

The property specifies the IKE Traffic based expiry to be used.

NAME IkeTrafficBasedExpiry
DESCRIPTION The property that specifies the IKE traffic based expiry to be used
SYNTAX I nteger

The property |PSECAuthentication
The property specifies the authentication algorithm to be used.

NAME IPSECA uthentication
DESCRIPTION The property that specifies the authentication algorithm
SYNTAX String

The property IPSECEncryption
The property specifies the encryption algorithm to be used.
NAME IPSECEncryption
DESCRIPTION The property that specifies the encryption algorithm
SYNTAX String
The property IPSECDHGroup
The property specifies the DHGroup to be used during IPSEC negotiations
NAME IPSECDHGroup
DESCRIPTION The property that specifies the DHGroup to be used during the Phase || negotiations
SYNTAX String

The property IPSECTimeout
The property specifies the IPSEC Key Timeout to be used.

NAME IPSECTimeout
DESCRIPTION The property that specifies the IPSEC Key timeout
SYNTAX I nteger

The property IPSECTrafficBasedExpiry
The property specifies the IPSEC Traffic based Key expiry to be used.

NAME IPSECTrafficBasedExpiry
DESCRIPTION The property that specifies the IPSEC traffic based Key expiry to be used
SYNTAX Integer

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 216

The property IkePeer AuthenticationM ethod

The method used by the Ike peers to authenticate each other. It is an enumerated value with seven
possible vaues:

- 0- agpecia value which indicates that this particular proposal should be repeated once for each
authentication method that corresponds to the credentials installed on the machine. For example, if the
system has a pre-shared key and a certificate, a proposal list could be constructed which includes a
proposa that specifies pre-shared key and proposals for any of the public-key authentication methods.

1 - Pre-shared key
- 2- DSS signatures
- 3- RSA signatures
- 4 - Encryption with RSA
- 5- Revised encryption with RSA
- 6 - Kerberos (issue with assigning number)

NAME | kePeerAuthenticationMethod

DESCRIPTION The property that specifies the method used by the I ke peers to authenticate each other
SYNTAX integer

7.1.3.2.4.1.2 Mapping between network and element level IPSec policies

Since one network level 1PSec policy can specify severa 1PSec tunnels with the same characteristics.
This network level policy has to be trandated to one element level policy for each tunnd that should
be sent to the appropriate PBANEM node to be enforced correctly. This will imply a mapping of the
policy conditions and policy actions.

The policy condition mapping is straightforward if the network level policy specifies just one 1PSec
tunnel. When the network level policy specifies severa IPSec tunnels, the mapping of the policy
condition should be made by making one element level policy, with the correspondent source and
destination | P address pair, for each IPSec tunnel requested.

The mapping of the network level policy action to the element level 1PSec policy action does not
depend on the number of tunnels requested at the network level policy, just on the property values.

The network level has to add to the element level policy action the property VPNId that indicates the
VPN to which that IPSec tunnel hasto be added. Moreover, the User can introduce a seriesof requests
in the network level policy for its IPSec tunnels. It can determine whether it wants encryption,
authentication or both, in the tunnel, or the preferred algorithms to be used at the different levels of the
IPSec tunnel creation.

If the network level policy action indicates that either encryption or authentication is not desired, the
element level policy action properties IPSecAuthentication or IPSecEncryption would be set to the
values NoAuth or NoEnc respectively.

If the User does not specify a preferred algorithm, the network level can choose the agorithms to be
used in the IPSec tunnd creation based on the algorithms supported by its routers. Furthermore, if the
network level policy specifies several IPSec tunnels, with no preferred agorithm, each tunnel can be
crested with different algorithms depending on the agorithms supported by the routers implied in the
creation of each tunnel.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 217

On the other hand, if the User expresses in the network level policy their desire to use some concrete
dgorithms, the network level has to check whether the involve routers support these agorithms or
whether they can be extended to support them. Based on this information, the network level has to take
a decison. If extenson of the agorithms supported by the router is needed, the network level
management system has to request the ingtalation of these agorithms in the routers through the
correspondent interactions with the ASP system. Finadly, if one concrete algorithm is requested by the
user and accepted by the network level, it would be mapped to dement level policies introducing the
agorithm to be used in the appropriate element level policy action property.

Element level timeout and traffic based expiry property values are set by the element level according
to its necessities and preferences.

7.1.3.2.4.2 FAIN MPLS Specific Classes Description
Network L evel: fainVPNM PL SAction
NAME fainVPNMPLSAction
DESCRIPTION Thisclass specifies the properties of MPLS L SPs requested.
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES ResourceClassAffinity
QoSClass
RequestedBW
ActionMode
The property Resour ceClassAffinity

This property alows the user to indicate a special kind of resource class that he explicitly desires or
rejects to be used in the creation of the LSP. A User may specify that it desires the LSP to be created
over OC-48 links.

The syntax of the property is a string of the form:
<resource-class, affinity>; <resource-class, affinity>; ..
where &ffinity is a boolean that when set to 1 indicates desired, O indicates rejected.

NAME ResourceClassAffinity
DESCRIPTION Indicates concrete resource classes desired or rejected.
SYNTAX String

The property QoSClass

This property is an enumerated type with three possible values: O, 1, 2. The different values will
indicate a different class of QoS of the LSP requested (i.e. (2)gold, (1)siver or (0)bronze).

NAME QoSClass
DESCRIPTION Indicates the QoS class.
SYNTAX Integer

The property RequestedBW
Indicates the token rate desired for this LSP.

NAME RequestedBW
DESCRIPTION Indicates the token rate desired for this L SP.
SYNTAX Integer

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 218

The property ActionM ode

This property is an enumerated type with three possible vaues: 0, 1, 2. The different values will
indicate the action to be applied in the L SP requested (i.e. (O)create, (1)remove or (2)update).

NAME ActionMode
DESCRIPTION Indicates the action to be applied on the L SP.
SYNTAX Integer

Element Level: fainipvpnPolicyTrafficTrunkAction
NAME fainipvpnPolicyTrafficTrunkAction
DESCRIPTION Thisclass specifies the properties of an MPLS L SP requested.
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES VPNId
ipvpnTrafficTrunk [ref mplsPolicy TrafficTrunk[0..n]]
ipvpnRouteSpecification[ref mplsPolicyRouteSpec [0..n]]
ipvpnTrafficProfile [ref qosPolicyPRTrfcProf[0..n]]
ipvpnFEC [ref mplsPolicyFEC [0..1]]
ActionMode
The property VPNId

The VPNId property value indicates to the element level to which VPN the LSP pertains.

NAME VPNId
DESCRIPTION Indicates the VPN that contains the requested L SP.
SYNTAX String

The property ipvpnTrafficTrunk

This property is a reference to the mplsPolicy TrafficTrunk class (reference to classes is the way usd by
CIM to express complex types in properties).

The mplsPolicy TrafficTrunk class and its properties are described below.

mplsPolicyTrafficTrunk
NAME mplsPolicyTrafficTrunk
DESCRIPTION A classwith several properties for describing an MPL S traffic trunk.
DERIVED FROM LogicalElement
ABSTRACT False
PROPERTIES mpResourceClassAffinity,
mpPreemption,
mpPriority,
mpResilience,
mpTrafficProportion,
mpReopti mizationFreq,

Roles

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 219

The property mpResour ceClassAffinity

This property dlows the user to indicate a specid kind of resource class that they explicitly desire or
wish to rgject being used in the creation of the LSP. A User may specify that they desires the LSP to
be created over OC-48 links.

The syntax of the property is astring of the form:
<resource-class, affinity>; <resource-class, affinity>; ..
where affinity is a boolean that when set to 1 indicates desired, O indicates rejected.

NAME mpResourceClassAffinity
DESCRIPTION Indicates concrete resource classes desired or rejected.
SYNTAX String

The property mpPreemption

The preemption attribute (see [82]) determines whether a traffic trunk can preempt another traffic
trunk from a given path, and whether it can be preempted by another traffic trunk. Preemption can be
used to assure that high priority traffic trunks can always be routed through relatively favourable paths
within a differentiated services environment. Preemption can adso be used to implement various
prioritized restoration policies following fault events.

The preemption property can take one of four values, with the following semantics:
1. preemptor-enabled: can preempt lower priority preemptable
traffic trunks
2. non-preemptor: cannot preempt other traffic trunks
3. preemptable: can be preempted by higher priority preemptor-
enabled traffic trunks
4. non-preemptable: cannot be preempted.

It is trivid to see that some of the preemptive modes are mutually exclusive. Using the numbering
scheme depicted above, the feasible preemptive mode combinations for a given traffic trunk are as
follows:

(1, 3), (1, 4), (2,3), and (2, 4). The (2, 4) combination should be the defauilt.

A traffic trunk, say "A", can preempt another traffic trunk, say "B", only if *al* of the following five
conditions hold:

1. "A" has aréatively higher priority than "B"

2."A" contends for aresource utilized by "B"

3. The resource cannot concurrently accommodate "A" and "B"
based on certain decision criteria

4."A" is preemptor enabled

5."B" is preemptable.

NAME mpPreemption
DESCRIPTION Contains preemptability information
SYNTAX Integer (MUST be in the range 1-4)

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 220

The property mpPriority

The priority of a traffic trunk is described by this property. The priority property defines the relative
importance of traffic trunks. If a constraint-based routing framework is used with MPLS, priorities can
be used to determine the order in which path selection is done for traffic trunks a connection
establishment and under fault scenarios. Priorities are dso important in implementations permitting
preemption because they can be used to impose a partial order on the set of traffic trunks according to
which preemptive policies can ke gpplied. The priority of a traffic trunk, along with its preemptability
information (see the description of the mpPreemption property in the previous section), determines
when it will preempt and/or be preempted by other traffic trunks.

NAME mpPriority
DESCRIPTION Priority for thistraffic trunk.
SYNTAX Integer

The property mpResilience
The mpResilience property indicates the recovery procedure to be applied to traffic trunks whose paths
are impacted by faults. More specificaly, it contains a boolean value that determines whether the
target traffic trunk isto be rerouted or not when segments of its path fail.

NAME mpResilience

DESCRIPTION If set to true, thistraffic trunk should be rerouted in case of failure.

SYNTAX boolean

The property mpTrafficProportion

This property is used to indicate the relative proportion of traffic to be carried by paralé traffic trunks.
This enables one to perform load distribution across multiple pardld traffic trunks between two nodes.
In many practical situations, the aggregate traffic between two nodes may be such that no single link
can carry the load. In this case, the only feasible solution is to appropriately divide the aggregate
traffic into sub-streams and route the sub-streams through multiple paths between the two nodes. This
problem can be addressed by instantiating multiple traffic trunks between the two nodes, such that
each traffic trunk carries a proportion of the aggregate traffic. The proportion of traffic carried by each
such trunk is specified by the mpTrafficProportion property.

NAME mpTrafficProportion
DESCRIPTION Proportion of traffic to be carried by this traffic trunk, specified as a percentage from 0 to 100.
SYNTAX Integer

The property mpReoptimizationFreq

Due to changes in network and traffic characteristics, there may be a need to periodically change the
paths of traffic trunks for optimization purposes. This should not be done too frequently as this could
adversely affect the stability of the network. This property indicates how often such reoptimization
should be performed.

NAME mpReoptimizationFreq

DESCRIPTION Indicates how frequently reoptimization should be performed for thistraffic trunk. If the value of
this property is set to zero, thisindicates that reoptimization should not be performed.

SYNTAX Integer
The property Roles

The Roles property specifies the set of roles this TT may have. This property is defined in the CIM
Core Information model and therefore its definition is not repeated here. See PCIM [62] for an
explanation of how roles are used.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 221

The property ipvpnRouteSpecification
This property is a reference to the mplsPolicyRouteSpec class (reference to classes is the way usd by
CIM to express complex types in properties).
The mplsPolicyRouteSpec class and its properties are described below.
fainmplsPolicyRouteSpec
NAME fai nmplsPolicyRouteSpec
DESCRIPTION A class describing an MPL S route specification.
DERIVED FROM mplsPolicyRouteSpec
ABSTRACT False
PROPERTIES mplngresslPAddress,
MpEgressl PAddress,
interMandatoryNodes
The property mplngressl PAddress
Ingress | P address for this MPL S route.
NAME mpl ngressl PAddress
DESCRIPTION Ingress | P address for this MPL S route.
SYNTAX string
The property mpEgressl PAddress
Egress | P address for this MPLS route.
NAME mpEgress| PAddress
DESCRIPTION Egress|P address for this MPL S route.
SYNTAX string
The property inter Mandator yNodes

IP address of mandatory nodes where the L SP should be created upon. This property has been add to
the mplsPolicyRouteSpec class in order to alow the network level to indicate a concrete route for the
LSP.

NAME interMandatoryNodes
DESCRIPTION Intermediate mandatory hops.
SYNTAX string
The property ipvpnTrafficProfile
This property is a reference to the qosPolicyPRTrfcProf class (reference to classes is the way usd by
CIM to express complex typesin properties).
The gosPolicyPRTrfcProf class and its properties are described below.

gosPolicyPRTrfcProf

NAME gosPolicyPRTrfcProf

DERIVED FROM gpsPolicyTrfcProf

ABSTRACT False

PROPERTIES gpPRRate,
gpPRNormalBurst,
gpPREXxcessBurst

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 222

The Property gpPRRate

This is a non-negative integer that defines the token rate in kilobits per second. A rate of zero means
that al packetswill be out of profile. The attribute is defined as follows:

NAME gpPRRate
SYNTAX Integer (must be non-negative)

The Property qpPRNormalBur st

This attribute is an integer that defines the normal size of a burst measured in bytes. The attribute is
defined asfollows:

NAME gpPRNormalBurst

SYNTAX Integer (must be non-negative)

The Property qpPREXxcessBur st

This attribute is an integer that defines the excess size of a burst measured in bytes. The attribute is

defined as follows:
NAME qpPREXxcessBurst
SYNTAX Integer (must be non-negative)

The property ipvpnFEC

This property is a reference to the mplsPolicyFEC class (reference to classes is the way used by CIM
to express complex typesin properties).

The mplsPolicyFEC class and its properties are described below.

mplsPolicyFEC

The mplsPolicyFEC specifies the Forwarding Equivalence Class of an LSP. The FECs may differ
depending on the application of MPLS. This class does not have any property. The filter is specified
through the mplsFECFilterSet association that associates a FilterList [77]with this class.

NAME mplsPolicyFEC

DESCRIPTION A Forwarding Equivalence Class of a Traffic Trunk of an LSP
DERIVED FROM Policy

ABSTRACT FALSE

PROPERTIES

The property ActionM ode

This property is an enumerated type with three possible vaues. 0, 1, 2. The different vaues will
indicate the action to be applied in the LSP requested (i.e. (0) create, (1) remove or (2) update).

NAME ActionMode
DESCRIPTION Indicates the action to be applied on the L SP.
SYNTAX Integer

7.1.3.2.4.2.1 Mapping between network and element level MPLS policies.

The mapping of MPLS policy conditions at the network level and the element level follows the same
guiddines as the IPSec policy conditions.

The mapping of the MPLS policy actions is quite smple as well. The mpResourceClassAffinity
property can be mapped directly from the network level ResourceClassAffinity property.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 223

The network level QoSClass property controls the value of some concrete element level properties that
deal with the QoS of the LSP created. The value of these element level properties has to be set by the
network management level according to the network operator policy and knowledge. These values are:
mpPreemption, mpPriority, mpReslience, mpReoptimizationFreg, gpPRNormaBurst and
gpPREXxcessBurst. The better QoS class chosen, the better values these attributes will have. For
example, with GOLD QoS class, the LSP created for the User will be able to preempt other traffic
trunks, will not be preemptable by other trunks, will have a high priority, will be recoverable if a fault
occurs (mpResilience), it could be optimised periodicdly, and findly it will have better burst and
excess-burst parameters.

The mpTrafficProportion property will be set by the network level according to the topology and
network resource information it has.

The RequestedBW parameter will be mapped directly with the gpRate property of the
gosPolicyPRTrfcProf class. The ActionMode property at the network leve is directly mappedto the
ActionMode property of the element level.

The policy condition compoundFilterCondition at the network level, dong with the topology and
resource information available at the network management system, will be used to set the values of the
mplsPolicyFEC, mplngressiPAddress and mpEgressiPAddress a the element level. The network
management system can also specify a concrete route for the LSP to be created. In such a case, it will
use the InterMandatoryNodes property to specify that route.

7.1.3.2.4.3 Firewall
Network and Element level: fainipvpnPolicyFirewall Action

This action is applicable a both network and element level. The only difference is that the policy
condition can specify different flows to which the same firewall action can be applied. While at the
element level, one element level policy should be created for each router that has to act as a firewall
and apply these firewall actions.

NAME fainipvpnPolicyFirewall Action
DESCRIPTION Thisclass specifiesafirewall to be applied to aVPN.
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES VPNId
Action
The property Action

The action defines the type of firewall action to be enforced. It is an enumerated property with six
possible values:

"Allow"=0
“Allow&Log"'=1
"Allow& Alarm"=2
"Deny"=3
"Deny&Log'=4

- "Deny&Alarm" =5

NAME Action
DESCRIPTION The firewall action to be enforced
SYNTAX I nteger

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 224

7.1.3.2.5 QoS Domain

A policy domain is designed to support the QoS Mgmt. Delegation scenario using the multi-PDP
PBANEM architecture. It is derived from the core FAIN information model by adding class
definitions which are scenario- specific.

The scenario makes use of active technology and tries to manage the resource allocation on a per-
customer basis. The overhead of the management is delegated to individuad customers to fulfill
individua users bandwidth needs. Policy system modules (e.g. a QoS PDP) can be dynamicdly
provisoned via interfaces with the service provisoning framework. It aims to demonstrate the
advantages of active networking to ease the network bandwidth management procedure.

In this scenario, a policy domain is supposed to support the following functions.

QoS provisoning: Intserv and Diffserv is supported, therefore the QoS policy information model
[83] is considered a standard model and will be reused and extended, if necessary.

Delegation: a network is partitioned into virtual networks, management of virtual resources are
delegated to customers according to SLASs. Policies are defined and transferred from network
managers to network elements, and perform partitioning and set-up delegation parameters, e.g.
customer credential for authentication.

Provision: the policy system modules will be dynamicdly downloaded and updated, if possble.
Policies need to specify how this can be done for those QoS modules such as an Diffserv PDP, its
traffic conditioning blocks, metering block, etc.

In the following, classes are defined according to these function categories.

7.1.3.2.5.1 QoS Policy

The class hierarchy of QoS policies within FAIN policy core information model is depicted as below.
The proposed extensions are highlighted.

[ManagedElement] (abstract)

I+--Po| icy (abstract)

-PolicyAction (abstract)
---fainSimplePoalicyAction
|+---fai nQoSPolicyRSVPSimpleAction

---fainQoSPolicyDiscardAction

|
+---fainQoSPolicyPoliceAction

|

+---fainQoSPolicy ShapeActionAction
|

+

I

+

I

I

I

+

I

+---fainQoSPolicy AdmissionAction
|

I

|

| +--fainQoSPolicyRSVPAdmissionAction
I

+---fainQosPolicyPHBA ction (abstract)

I
+---fainQoSPolicyBandwidthAction

I
+---fainQoSPolicyCongestionControl Action

-fainQosPolicyTrfcProf (abstract)

I
-+-.
I
|
I
|
I
I
I
I
I
I
I
I
I
|
I
|
I
I
I
I
I
-+-.
I

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 225

+---fainQosPolicy TokenBucket TrfcProf
I

+---fainQosPolicylntServTrfcProf
--PolicyVariable (abstract)

I

+---PolicylmplicitVariable (abstract)

I
+---fainQoSPolicyRSVPVariable

I
+---fainQoSPolicyRSV PSourcel Pv4Variable

|

+---fainQoSPolicyRSV PDestinationl Pv4V ariable
|

+---fainQoSPolicyRSV PSourcel Pv6Variable

I
+---fainQoSPolicyRSV PDestinationl Pv6Variable

[
[
[
| |
| +-
| |
[
[l
[
[
[
[
[
[
[
| |
|
| | I

|| +---fainQoSPolicyRSV PSourcePortVariable

[I

| +---fainQoSPolicyRSV PDestinationPortVariable
[I

|| +---fainQoSPolicyRSV Pl PProtocol Variable

[I

|] +---fainQoSPolicyRSVPIPVersionVariable

|| +---fainQoSPolicyRSVPDCLASSVariable

[I

I +---fainQoSPolicyRSV PStyleVariable

| | I

I +---fainQoSPolicyRSVPDIntServVariable

[I

|| +---fainQoSPolicyRSV PM essageTypeV ariable
[l I

| +---fainQoSPolicyRSV PPreemptionPriorityVariable
[I

|] +---fainQoSPolicyRSV PPreemptionDef PriorityVariable
[I

| +---fainQoSPolicyRSVPUserVariable

[I

I +---fainQoSPolicyRSVPApplicationVariable

| |
| |
[
| +-
[
[
[
[

|+---fai nQoSPolicyRSVPAuthMethodV ariable
--PolicyValue (abstract)

L---fai nQoSPolicyDNValue
|+-—-fai nQoSPolicyAttributeValue

Figure 66 - QoS Poalicy Class Hierarchy

For a more detailed description of each class and its properties, refer to [83].
7.1.3.2.5.2 Delegation Policy

fainNetPartitionAction

NAME

fainNetPartitionAction

DESCRIPTION This class specifies the partitioned network configuration to be allocated to a customer

DERIVED FROM

fainSimplePolicyAction

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 226

ABSTRACT FALSE
PROPERTIES topologyVirtualNet, bandwidthVirtual Net

fainElementPartitionAction
NAME fainElementPartitionAction
DESCRIPTION Thisclass specifies the partitioned element configuration to be all ocated to a customer
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES idVirtualNet, idInterface, idOutputQuque, bandwidthPercentage, priority
fainDelegationAction
NAME fainDelegationAction
DESCRIPTION Thisclass specifies the del egation parameters to be configured for a customer
DERIVED FROM fainSimplePolicyAction
ABSTRACT FALSE
PROPERTIES customerCredential, accessControl Enabled
fainCustomerIDVariable
NAME fainCustomerIDVariable
DESCRIPTION Theidentifier of acustomer.
ALLOWED VALUE TYPES: PolicyStringVaue
DERIVED FROM PolicylmplicitVariable
ABSTRACT FALSE
PROPERTIES credential, certificate

7.1.3.2.5.3 Provision Policy
fainQoSPDPProvisionAction
NAME fainQoSPDPProvisionAction
DESCRIPTION This class specifies the additional parameters for deploying, updating and
reconfiguring QoS policy decision modules realizing QoS management
DERIVED FROM fainServiceCodeUpdateAction
ABSTRACT FALSE
PROPERTIES customerCredential, idPEPgroup, idMonitor
fainQoSPEPProvisionAction
NAME fainQoSPEPProvisionAction
DESCRIPTION This class specifies the additional parameters for deploying, updating and
reconfiguring QoS policy enforcement modules realizing QoS configuration
DERIVED FROM fainServiceCodeUpdateAction
ABSTRACT FALSE
PROPERTIES customerCredential, idPDP, idMonitor

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 227

8 APPENDIX C: XML POLICY MAPPING - CODE EXAMPLE

In this appendix, in order to ease the comprehension of how the XML mapping has been done we
provide two examples. The examples are one XML-Schema mapping which will validate a XML
fainPolicyRule.

The rule is given here as an example, is taken from the VPN information model proposed by the IETF
[31], as the example given in chapter 2.4. However, it is dightly more complex than that of chapter
24. The condition of the policy is a CompoundPolicyCondition formed with three
fainSimplePolicyConditions (i.e. flow direction, 1P source and IP destination). The action has 11
properties related with the |PSec protocol.

8.1 XML-SCHEMA EXAMPLE

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://www.ist-fain.org/Schema" xmins="http://www.ist-fain.org/Schema"
xmins:xsd="http://www.w3.0rg/2000/10/XMLSchema">
<xsd:notation name="FAIN-IPSec" public="http://www.ist-fain.org/schemas/FAIN/IPSec"/>
<lk- contents of XML Schema document goes here -->
<xsd:annotation>
<xsd:documentation xml:lang="en">
IPSec in XML Schema example.
</xsd:documentation>
</xsd:annotation>
<xsd:element name="fainPolicyRule" type="fainPolicyRuleType"/>
<xsd:element name="CommonElements">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Caption" type="xsd:string"/>
<xsd:element name="Description" type="xsd:string"/>
<xsd:element name="CommonName" type="xsd:string"/>
<xsd:element name="PolicyKeywords">
<xsd:simpleType>
<xsd:listitemType="PolicyKeywordValue"/>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyActionKeys">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CreationClassName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyActionName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyConditionKeys">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CreationClassName">

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 228

<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyConditionName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyVariableKeys">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CreationClassName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyVariableName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyValueKeys">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CreationClassName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyValueName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="fainPolicyRuleType">
<xsd:sequence>

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 229

<xsd:element ref="CommonElements" minOccurs="0"/>
<xsd:element name="CreationClassName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyRuleName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="PolicyDecisionStrategy ">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="PolicyRoles">
<xsd:simpleType>
<xsd:listitemType="xsd:string"/>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Enabled">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="ConditionListType">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="RuleUsage" type="xsd:string"/>
<xsd:element name="Mandatory" type="xsd:boolean"/>
<xsd:element name="SequencedActions">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="ExecutionStrategy ">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
<xsd:enumeration value="4"/>
</xsd:restriction>
</xsd:simpleType>

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 230

</xsd:element>
<xsd:element name="UserInfo">

<xsd:simpleType>
<xsd:listitemType="xsd:string"/>
</xsd:simpleType>
</xsd:element>
<xsd:element name="ConditionReference" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="PolicyCondition" type="PolicyConditionType"/>
</xsd:sequence>
<xsd:attribute name="GroupNumber" type="xsd:decimal'/>
<xsd:attribute name="ConditionNegated" type="xsd:boolean"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="ActionReference" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="PolicyAction" type="PolicyActionType"/>
</xsd:sequence>
<xsd:attribute name="ActionOrder" type="xsd:decimal"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PolicyConditionType" abstract="true">
<xsd:sequence>
<xsd:element ref="CommonElements" minOccurs="0"/>
<xsd:element ref="PolicyConditionKeys"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CompoundFilterConditionType">
<xsd:complexContent>
<xsd:extension base="PolicyConditionType">
<xsd:sequence>
<xsd:element name="IsMirrored" type="xsd:boolean"/>
<xsd:element name="ConditionReference" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="PolicyCondition" type="PolicyConditionType"/>
</xsd:sequence>
<xsd:attribute name="GroupNumber" type="xsd:decimal"/>
<xsd:attribute name="ConditionNegated" type="xsd:boolean"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="fainSimplePolicyConditionType">
<xsd:complexContent>
<xsd:extension base="PolicyConditionType">
<xsd:sequence>
<xsd:element name="EvaluationMethod" type="xsd:string"/>

<xsd:element name="PolicyVariable" type="PolicyVariableType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="PolicyValue" type="PolicyValueType" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="PolicyVariableType">
<xsd:sequence>
<xsd:element ref="CommonElements" minOccurs="0"/>
<xsd:element ref="PolicyVariableKeys"/>
<xsd:element name="ValueTypes">
<xsd:simpleType>
<xsd:listitemType="xsd:string"/>
</xsd:simpleType>

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 231

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="PolicyValueType">
<xsd:sequence>
<xsd:element ref="CommonElements" minOccurs="0"/>
<xsd:element ref="PolicyValueKeys"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PolicyStringValueType">
<xsd:complexContent>
<xsd:extension base="PolicyValueType">
<xsd:sequence>
<xsd:element name="StringList">
<xsd:simpleType>
<xsd:listitemType="xsd:string"/>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="PolicylPv4ValueType">
<xsd:complexContent>
<xsd:extension base="PolicyValueType">
<xsd:sequence>
<xsd:element name="IPv4AddrList'>
<xsd:simpleType>
<xsd:listitemType="IPv4Addr"/>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="IPv4Addr">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\[0-255].[0-255].[0-255].[0-255]/[0-32]"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="PolicyActionType" abstract="true">
<xsd:sequence>
<xsd:element ref="CommonElements" minOccurs="0"/>
<xsd:element ref="PolicyActionKeys"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CompoundActionType">
<xsd:complexContent>
<xsd:extension base="PolicyActionType">
<xsd:sequence>
<xsd:element name="SequencedActions">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="ExecutionStrategy">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
<xsd:enumeration value="4"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="ActionReference" minOccurs="0" maxOccurs="unbounded">

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 232

<xsd:complexType>
<xsd:sequence>

<xsd:element name="PolicyAction" type="PolicyActionType"/>

</xsd:sequence>
<xsd:attribute name="ActionOrder" type="xsd:decimal"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="fainSimplePolicyActionType" abstract="true">
<xsd:complexContent>
<xsd:extension base="PolicyActionType">
<xsd:sequence>
<xsd:element name="EnforcementStrategy" type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="EncActionType">
<xsd:complexContent>
<xsd:extension base="fainSimplePolicyActionType">
<xsd:sequence>
<xsd:element name="lkeAuthentication" type="xsd:string"/>
<xsd:element name="IkeEncryption" type="xsd:string"/>
<xsd:element name="lkeDHGroup" type="xsd:string"/>
<xsd:element name="lkeTimeout" type="xsd:integer"/>
<xsd:element name="IkeTrafficBasedExpiry" type="xsd:integer"/>
<xsd:element name="IPSecAuthentication" type="xsd:string"/>
<xsd:element name="IPSecEncryption" type="xsd:string"/>
<xsd:element name="IPSecDHGroup" type="xsd:string"/>
<xsd:element name="IPSecTimeout" type="xsd:integer"/>
<xsd:element name="IPSecTrafficBasedExpiry" type="xsd:integer"/>
<xsd:element name="lkePeerAuthenticationMethod">
<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
<xsd:enumeration value="4"/>
<xsd:enumeration value="5"/>
<xsd:enumeration value="6"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="PolicyKeywordValue">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="UNKNOWN'/>
<xsd:enumeration value="CONFIGURATION"/>
<xsd:enumeration value="USAGE'/>
<xsd:enumeration value="SECURITY"/>
<xsd:enumeration value="SERVICE"/>
<xsd:enumeration value="MOTIVATIONAL"/>
<xsd:enumeration value="INSTALLATION"/>
<xsd:enumeration value="EVENT"/>
<xsd:enumeration value="DELEGATION"/>
<xsd:enumeration value="FAULT'/>
<xsd:enumeration value="MONITORING"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 233

8.2 XML PoLIcY INSTANCE MAPPING

<?xml version="1.0" encoding="UTF-8"?>
<k- edited with XML Spy v3.5 NT beta 4 build Jan 12 2001 (http://www.xmlIspy.com) by Alexander Falk (Altova, Inc.) -->
<a:fainPolicyRule xmins:a="http://www.ist-fain.org/Schema" xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-
instance" xsi:schemalocation="http://www.ist-fain.org/Schema
IPSec_in_XML.xsd">
<CreationClassName Key="true">fainPolicyRule</CreationClassName>
<PolicyRuleName Key="true">IPSecPolicy</PolicyRuleName>
<PolicyDecisionStrategy >2</PolicyDecisionStrategy >
<PoalicyRoles>VPN</PolicyRoles>
<Enabled>1</Enabled>
<ConditionListType>2</ConditionListType>
<RuleUsage>VPNCreation</RuleUsage>
<Mandatory>true</Mandatory>
<SequencedActions>3</SequencedActions>
<ExecutionStrategy >3</ExecutionStrategy >
<UserInfo>Admin admpass</Userinfo>
<ConditionReference GroupNumber="1" ConditionNegated="false">
<PolicyCondition xsi:type="a:CompoundFilterConditionType">
<a:PolicyConditionKeys>
<CreationClassName Key="true">CompoundFilterCondition</CreationClassName>
<PolicyConditionName Key="true">VPNFilterCondition</PolicyConditionName>
</a:PolicyConditionKeys>
<IsMirrored>false</IsMirrored>

<ConditionReference GroupNumber="1" ConditionNegated="false">
<PolicyCondition xsi:type="a:fainSimplePolicyConditionType">
<a:PolicyConditionKeys>
<CreationClassName Key="true">fainSimplePolicyCondition</CreationClassName >
<PalicyConditionName Key="true">FlowDirectionCondition</PolicyConditionName>
</a:PolicyConditionKeys>
<EvaluationMethod>Match</EvaluationMethod>
<PolicyVariable>
<a:PolicyVariableKeys>
<CreationClassName Key="true">PolicyFlowDirectionVariable</CreationClassName>
<PolicyVariableName Key="true">FlowVariable</PolicyVariableName >
</a:PolicyVariableKeys>
<ValueTypes>PolicyStringValue</ValueTypes >
</PolicyVariable>
<PolicyValue xsi:type="a:PolicyStringValueType">
<a:PolicyValueKeys>
<CreationClassName Key="true">PolicyStringValue</CreationClassName>
<PolicyValueName Key="true">Direction</PolicyValueName>
</a:PolicyValueKeys>
<StringList>in</StringList>
</PolicyValue>
</PolicyCondition>
</ConditionReference>
<ConditionReference GroupNumber="1" ConditionNegated="false">
<PolicyCondition xsi:type="a:fainSimplePolicyConditionType">
<a:PolicyConditionKeys>
<CreationClassName Key="true">fainSimplePolicyCondition</CreationClassName >
<PolicyConditionName Key="true">IPSourceCondition</PolicyConditonName>
</a:PolicyConditionKeys>
<EvaluationMethod>Match</EvaluationMethod>
<PolicyVariable>
<a:PolicyVariableKeys>
<CreationClassName Key="true">PolicySourcelPVariable</CreationClassName>
<PolicyVariableName Key="true">SrclPVariable</PolicyVariableName>
</a:PolicyVariableKeys>
<ValueTypes>PolicylPv4AddrValue</ValueTypes>
</PolicyVariable>
<PolicyValue xsi:ty pe="a:PolicylPv4ValueType">
<a:PolicyValueKeys>
<CreationClassName Key="true">PolicylPv4AddrValue</CreationClassName>
<PoalicyValueName Key="true">SrclP</PolicyValueName>
</a:PolicyValueKeys>
<IPv4AddrList>147.83.106.0/24</IPv4AddrList>
</PolicyValue>
</PolicyCondition>

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 234

</ConditionReference>
<ConditionReference GroupNumber="1" ConditionNegated="false">

<PolicyCondition xsi:type="a:fainSimplePolicyConditionType">
<a:PolicyConditionKeys>
<CreationClassName Key="true">fainSimplePolicyCondition</CreationClassName >
<PolicyConditionName Key="true">IPDestCondition</PolicyConditionName>
</a:PolicyConditionKeys>
<EvaluationMethod>Match</EvaluationMethod>
<PolicyVariable>
<a:PolicyVariableKeys>
<CreationClassName Key="true">PolicyDestinationIPVariable</CreationClassName>
<PolicyVariableName Key="true">DestIPVariable</PolicyVariableName >
</a:PolicyVariableKeys>
<ValueTypes>PolicylPv4AddrValue</ValueTypes>
</PolicyVariable>
<PolicyValue xsi:type="a:PolicylPv4ValueType">
<a:PolicyValueKeys>
<CreationClassName Key="true">PolicylPv4AddrValue</CreationClassName>
<PolicyValueName Key="true">DestlP</PolicyValueName>
</a:PolicyValueKeys>
<IPv4AddrList>128.40.40.0/24</IPv4AddrList>
</PolicyValue>
</PolicyCondition>
</ConditionReference>
</PolicyCondition>
</ConditionReference>
<ActionReference ActionOrder="1">
<PolicyAction xsi:type="a:EncActionType">
<a:PolicyActionKeys>
<CreationClassName Key="true">fainipvpnEncryptionAction</CreationClassName>
<PolicyActionName Key="true">EncAction</PolicyActionName>
</a:PolicyActionKeys>
<EnforcementStrategy >Set</EnforcementStrategy >
<lkeAuthentication>Authname</IkeAuthentication>
<lkeEncryption>Encname</IkeEncryption>
<lkeDHGroup>DHname</IkeDHGroup>
<lkeTimeout>0</lkeTimeout>
<lkeTrafficBasedExpiry>0</IkeTrafficBasedExpiry>
<IPSecAuthentication>Authname </IPSecAuthentication>
<IPSecEncryption>Encname</IPSecEncryption>
<IPSecDHGroup>Dhname</IPSecDHGroup>
<IPSecTimeout>0</IPSecTimeout>
<IPSecTrafficBasedExpiry>0</IPSecTrafficBasedExpiry>
<lkePeerAuthenticationMethod>1</IkePeerAuthenticationMethod>
</PolicyAction>
</ActionReference>
</a:fainPolicyRule>

8.3 XML EVENT MAPPING - CODE EXAMPLE

In this sub-section we describe, with an example, how the mapping of event classes is made to an
XML-Schema. Moreover, the example of a concrete event in XML is given as well. This XML event
is valid according to the XML-Schema given before. To better understand the syntax of XML and
XML-Schemarefer to [36] and [33] respectively.

8.3.1 XML-Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.ist-fain.org/Schema" xmins:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmins="http://www.ist-fain.org/Schema">

<xsd:notation name="FAIN-IPSec" public="http://www.ist-fain.org/schemas/FAIN/Event"/>
<k- contents of XML Schema document goes here -->
<xsd:annotation>

<xsd:documentation xml:lang="en">

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 235

Event in XML Schema example.
</xsd:documentation>
</xsd:annotation>
<xsd:element name="fainEvent" type="fainEventType"/>
<xsd:element name="EventKeys">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CreationClassName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="EventName">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="xsd:boolean" use="fixed" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="fainEventType" abstract="true">
<xsd:sequence>
<xsd:element ref="EventKeys"/>
<xsd:element name="Resourceldentifier" type="ResourceldType"/>

<xsd:element name="CorrelatedEvents" type="CorrelatedEventsType"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="fainFaultEventType" abstract="true">
<xsd:complexContent>
<xsd:extension base="fainEventType">
<xsd:sequence>
<xsd:element name="probableCause" type="xsd:string"/>
<xsd:element name="perceivedSeverity" type="xsd:string"/>

<xsd:element name="affectedResources" type="ResourceldType" minOccurs="0"/>

</xsd:sequence>

minOccurs="0"

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 236

</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="fainServiceDownEventType">
<xsd:complexContent>
<xsd:extension base="fainFaultEventType">
<xsd:sequence>
<xsd:element name="relatedServiceComponents">
<xsd:simpleType>
<xsd:listitemType="xsd:string"/>
</xsd:simpleType>

</xsd:element>

<xsd:element name="AssociatedVE' type="ResourceldType"/>

<xsd:element name="Additionallnfo" minOccurs="0"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="fainRCReportEventType" abstract="true">
<xsd:complexContent>
<xsd:extension base="fainEventType">
<xsd:sequence>

<xsd:element name="ResourceConsumption"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="fainMonitorEventType" abstract="true">
<xsd:complexContent>
<xsd:extension base="fainEventType">

<xsd:sequence>

type="ResourceConsumptionType"

<xsd:element name="MonitoredValue" type="MonitoredValuesType" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ResourceldType">

<xsd:sequence>

<xsd:element name="Relativeld" type="RelativeldType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="RelativeldType">

<xsd:sequence>

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 237

<xsd:element name="KeyName" type="xsd:string"/>
<xsd:element name="KeyValue" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CorrelatedEventsType">
<xsd:sequence>
<xsd:element ref="EventKeys"/>
<xsd:element name="Resourceldentifier" type="ResourceldType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ResourceConsumptionType">
<xsd:sequence>
<xsd:element name="Resource" type="ResourceldType"/>
<xsd:element name="ConsumptionList" type="Consumption" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Consumption">
<xsd:sequence>
<xsd:element name="ConsumedValue" type="xsd:integer"/>
<xsd:element name="unit" type="xsd:string"/>
<xsd:element name="user" type="ResourceldType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="MonitoredValuesType">
<xsd:sequence>
<xsd:element name="PropertyName" type="xsd:string"/>
<xsd:element name="Value"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

8.3.2 XML Event Example

<?xml version="1.0" encoding="UTF-8"?>
<k- edited with XML Spy v3.5 NT beta 4 build Jan 12 2001 (http://www.xmlspy.com) by Alexander Falk (Altova, Inc.) -->

<a:fainEvent xmins:a="http://www.ist-fain.org/Schema" xmins:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:schemal.ocation="http://www.ist-fain.org/Schema

Event_in_XML.xsd" xsi:type="a:fainServiceDownEventType">
<a:EventKeys>
<CreationClassName Key="true">fainServiceDownEvent</CreationClassName >
<EventName Key="true">MulticastDown</EventName>
</a:EventKeys>
<Resourceldentifier>
<Relativeld>

<KeyName>CreationClassName </KeyName>

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal

Page 238

<KeyValue>MulticastService</KeyValue>
</Relativeld>

<Relativeld>
<KeyName>ServiceName </KeyName>
<KeyValue>MulticastGame </KeyValue>
</Relativeld>
<Relativeld>
<KeyName>VECreationClassName </KeyName>
<KeyValue>VE</KeyValue>
</Relativeld>
<Relativeld>
<KeyName>VEName</KeyName>
<KeyValue>ANN</KeyValue>
</Relativeld>
<Relativeld>
<KeyName>ANNCreationClassName </KeyName>
<KeyValue>ANNClass1</KeyValue>
</Relativeld>
<Relativeld>
<KeyName>ANNCreationClassName </KeyName>
<KeyValue>Nodel</KeyValue>
</Relativeld>
<Relativeld>
<KeyName>PDPCreationClassName </KeyName>
<KeyValue>ServicePDP</KeyValue>
</Relativeld>
<Relativeld>
<KeyName>PDPName</KeyName >
<KeyValue>BarcelonaNodel</KeyValue>
</Relativeld>
</Resourceldentifier>
<probableCause>SoftwareProblem</probableCause>
<perceivedSeverity >Critical</perceivedSeverity>
<relatedServiceComponents>MulticastTopolocyManagerCode</relatedServiceComponents >
<AssociatedVE>
<Relativeld>
<KeyName>VECreationClassName </KeyName>
<KeyValue>VE</KeyValue>
</Relativeld>
<Relativeld>
<KeyName>VEName</KeyName>
<KeyValue>ANN</KeyValue>
</Relativeld>

</AssociatedVE>

Copyright & 2000/2001 FAIN Consortium

May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 239

| </a:fainEvent>

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 240

9 APPENDIX D: DESCRIPTION OF TOOLS

9.1 INTRODUCTION

The most important characteristic of FAIN network management is that it is policy-based, which
means that the tools selection should focus on policies. In order to make the description more clear, we
use the basic policy based architecture given by IETF (shown in Figure 67), so as to ignore the
detailed components given in the FAIN network management architecture, which is actudly the
expansion of |IETF structure.

Policy Specification

l Repository Access Protocol

Policy Management Tools

Protocol for
configuring Policy

Targets Repository Access Protocol

Figure 67- Basic PBNM Architecture given by IETF

The policy architecture as shown in Figure 67 suggests that these aspects as follow should be covered,
from the software tool’ s point of view:

How to represent policy
How to store policy
How to retrieve policy

How to communicate between policy consumer (mainly PDP, therefore PDP will be
used beneath) and policy target (supported by PEP).

Policy storage and retrieval are based on the same implementation technology, so they will be
discussed together. Making afurther step to Figure 67, alittle more detailed can be given.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 241

Natural Language Policy

'

Policy Management Tools

Policy Input &
__Management GUI XML Documents
s v
[XML Based Policy
Policy Rules

Rule-based Policy

Java Classes/IDL

Policy Transport

Policy Target

Figure 68 - Extension of PBNM architecture given in Figure 67

Therefore, four sections will be analysed in the coming paragraphs, which cover:
- Toolsfor policy input
- Toolsfor policy representation
- Toolsfor policy storage and retrieval
- Toolsfor policy transport
- Tools for policy enforcement

9.2 TOOLS FOR POLICY INPUT

In al the commercial PBNM products, policy input or provision is done through a graphical user
interface (GUI). First the administrator selects the device or group of devices to which the policy will
be applied. Then he can select from a menu of supported condition types and supply the necessary
parameters. Then he can select from the supported actions. The PBNM tool identifies the selected
devices, to check their capabilities and present to the user menus with only those conditions and
actions that are supported by all the devices. The policy defined by the user has an “if (condition) then
(action)” syntax. Thiskind of format is aso used by the IETF.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 242

The administrator can aso create “roles’ for network devices or interfaces and associate a set of
policies with each role, so that when a new device is introduced in the network it can be assigned an
exigting role. In this way the configuration of the network is made easier.

As far as the author has known, there isn’t a well-known GUI designing tools specific for user-level
network management policy input. But there are vast visudization software available for easly
designing beautiful GUI.

This chapter only discusses the customer level policy input. XML-based policy input would be
discussed in the next chapter.

9.3 TOOLS FOR POLICY REPRESENTATION

9.3.1 Policy specification

Various specification languages can be used in the context of policies, therefore various policy formats
exist. In the terms of ease of use and final execution of policy, there can be (as shown in Figure 68):

Natural Language format: supported by user-friendly GUI for customer to input or review
policy in easy way. This depends on the design of GUI. This format must be mapping to the
markup language format.

Markup language format: this format can be processed and interpreted by a computer. But it
has not mapped to the program code that can be executed directly. The most famous example
of thiskind of language is XML.

Rule-based format: it interprets the policy as a sequence of rules, in which each ruleisin the
form of a smple condition-action pair. The rules are evauated on specific triggers, such asthe
passage of time or the arrival of a new packet within the network. Policies specified in this
fashion are easier to anayse than policies specified by a markup language or Java classes.
IETF has chosen a rule-based policy representation in its specification. Therefore, rule-based
policy will be focused in the rest of the document. But this format has to be mapped to Java
classes or other program implementation, and aso needs to be stored in an LDAP directory or
database.

Java classes: any policy object must be mapped to the Java object. This mapping should be
done automaticaly.

Natural language format has been discussed above in Section 9.2 Java classes can be generated based
on the interface IDL, which will be covered by other documents. Therefore, the following content of
this section only focuses on the Markup language format and Rule-based format.

9.3.2 Tools for XML based policy representation

9.3.2.1 Brief Rationale for selecting XML as policy syntax

Various specifications for data formats exists, both in their syntax and semantic. To represent policies
accurately and effectively, the syntax, semantic (metadata) and APl for implementation have to be
considered. This sub-section focuses on the syntax representation of policy, to which, widdy used
mark-up language will be used, as mentioned above.

Among al mak-up languages, eXtensible Mark-up Language (XML) is becoming increasingly
adopted as a common syntax for expressing structure in data. XML is particularly suitable as a data
representation mechanism for use in heterogeneous environments. Because XML is based upon an
open industry standard, implementations of XML parsers exist for many platforms, and in many
programming languages. Implementations are available on Unix and in C++ and Java. In addition,
some parser implementations allow access to XML element tree from various different scripting
languages and environments. XML's tree structures alow for context sendtivity and a more direct
mapping to the object model than if flat parameter lists or logic expressions are used.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 243

XML’s ggnificant advantages make it a good choice for policy representation for network
management in FAIN. In policy-based network management environments, the XML representation of
policies could be used to transfer policies between co-operating management platforms. These
management platforms need not necessarily be running the same operating environments, but
interoperability is enabled because of a common understanding of the XML representation of policy.

Furthermore, awide variety of XML supporting tools exist to alow afast PBNM development.

But XML does not provide any semantic for its document, and this is completely up to the users,
which means FAIN needs to define the semantic of XML file used for carrying policy.

9.3.2.2 Semantics for XML-based policy

A document written in XML has to conform to some rules to be understandable and executable. These
rules can basicaly be divided into two categories. Document Type Definition (DTD) and Schema.
Schema is aready a standard st by World Wide Web Consortium (W3C)[45], and is more powerful
and flexible. As such, Schema mode will be used in FAIN. Within the Schema mode, there are till
various specifications, of which Resource Description Framework (RDF)[46] and W3C Schema[47]
are most famous.

9.3.2.2.1 RDF

RDF provides a common basis for expressing semantics in XML documents. It is a functiona layer
above XML. Applications, which dlow programs to combine data logicaly, will be built usng RDF
(and therefore XML) and this will enhance the modularity and extensibility of the policy. One of the
requirements of PBNM in FAIN is to adlow huge amounts of policies to be stored in databases and
existing applications to be put on the network, not just for user browsing, but aso for machine
understanding, i.e., searching, reasoning and analysing. This will need the help of metadata. RDF
alows metadata applications to be combined, and to operate in a common way as the semantics that
they share.

The RDF specifications aso provide a lightweight ontology system to support the exchange of
knowledge on the network, which is aso a requirement for active networks. We intend to look for
RDF specifications specific to PBNM, otherwise, a novel one would be devel oped.

Almogt al the tools supporting XML aso support RDF, so al these tools will be discussed together in
sub-section Error! Reference source not found..
9.3.2.2.2 W3C Schema

XML Schemas express shared vocabularies and alow machines to carry out rules made by people.
They provide a means for defining the structure, content and semantics of XML documents. Numerous
information about W3C Schema is available on WWW, such as [47]. So we will not discussit herein
this document.

9.3.2.2.3 XML API

After the syntax and semantic of the policies have been determined, the next crucial issue to addressis
the implementation of these policies. Applications need to be developed in order b take an XML
document and make its structure and content available to component that needs it, e.g., a PEP or even
anode operating system (NodeOS) in the FAIN architecture. XML APIs are required for this task.

In genera, there are two major types of XML APIs, i.e,
tree-based APIs
event-based APIs.

A tree-based API compiles an XML document into an interna tree structure, and then allows an
gpplication to navigate that tree. A common example is the Document Object Model (DOM)[48].

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 244

On the other hand, an event-based API reports parsing events (such as the start and end of elements)
directly to the application through calbacks, and does not usualy build an interna tree. The
gpplication implements handlers to dea with the different events - much like handling events in a
graphical user interface. The typical one of thistypeis Simple API for XML (SAX)[49].

While DOM APIs are useful for a wide range of applications, they often put a great strain on system
resources, especidly if the document is large. Under very controlled circumstances, it is possible to
construct the tree in a lazy fashion to avoid some of this problem. Furthermore, some applications need
to build their own, different data trees, and it is very inefficient to build a tree of parse nodes, only to
map it onto a new tree.

SAX APl provides a smpler, lower-level access to an XML document. Documents much larger than
available system memory can be parsed, and one can construct specific data structures using callback
event handlers.

The selection of SAX or DOM should depend on the applications or scenarios, therefore both of them
may be used in FAIN.

9.3.2.3 Tools for XML Processing

9.3.2.3.1 XML Browser

When working with XML, we will need to view XML documents. The tool for this purpose is usualy
caled XML browser. XML browsers are generaly driven by style sheets, and are tree-based. They
can be generic ones such as IE5 and Netscape, or application specific ones. XML editors, as shown
below, usualy aso have this functionality.

9.3.2.3.2 XML Editor and XML Spy

For input of XML document, the ordinary text editor works. But if special XML editors are used, less
mistakes will be made. Many XML editors are sensitive to Schemas and/or DTDs and so can enable
user to easly produce well-formed and valid XML documents. Cooktop is a good option, but XML
Spy[50] is more powerful. More XML tools can be found on XMLSOFTWARE[51], which ams to
provide well-organised information, resources, especialy software tools on XML.

XML Spy is the firg true Integrated Development Environment for XML that includes dl maor
aspects of XML in one powerful and easy-to-use product, which can be downloaded free of charge.
XML Spy is centered around a professond validating XML editor that provides five advanced views
on your documents:

An Enhanced Grid View for structured editing.

A Database/Table view that shows repeated elements in a tabular fashion.

A Text View with syntax coloring for low-level work.

A graphical XML Schemadesigns view.

And an integrated Browser View that supports both CSS and XSL style-sheets.

9.3.2.3.3 XML Parser and Sun JAXP

A parser or processor takes an XML document and makes its structure and content available to an
application. Often via a standard interface like SAX or DOM. Basicaly, XML Parser can be divided
into two categories. application/product specific XML parser, such as Oracle XML parser for C/Java,
and generic XML parser.

XML parser also language-ariented. So there are XML parser for C, XML parser for Java, XML
parser for COBOL, XML parser for PL/SQL, €tc.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 245

Generic XML parsers are used in FAIN[52], of which Sun Java APl for XML Processing (JAXP) [98]
is highly appreciated. JAXP enables applications to parse and transform XML documents using a pure
Java API that is independent of a particular XML processor implementation. Depending on the needs
of the application, developers have the flexibility to swap between XML processors (such as high
performance vs. memory conservative parsers) without making application code changes. Thus,
application and tools devel opers can rapidly and easily XML-enable their Java applications.

The reference implementation uses Crimson [54], which was derived from the Java Project X parser
from Sun, asits default XML parser and Xaan [110] asits default XSLT engine. Therefore, JAXP 1.1
aso supports DOM Level 2 and SAX verson 2.0. However, the pluggable architecture of JAXP
alows any XML conformant implementations to be used.

9.3.3 Tools for Rule-based policy representation and reasoning

9.3.3.1 Supportto XML rule representation in ILOG Rules

A rule-based commercia software toolkit called ILOG Rules will be evaluated in FAIN. ILOG
Ruleg41] provides acommon environment for building and managing enterprise-wide business-rule
applications. ILOG Rules provides a common set of tools which includes:

Rule Builder: integrated development environment for developing and debugging
business-rule applications.

Rule Language: customisable and extensible business-rule language, placing business-rule
power in the hands of business users.

Rule Editor: powerful, adaptable Web-enabled and JavaBean components that can be
embedded in applications.

The most important thing is that ILOG Rules aso provides an XML rule representation, which alows
sharing of rules between applications, and generating and processing executable rules using standard
XML tools, such as XSTL, SAX2, DOM, and JDOM. The rule engine APl supports parsing the XML
rule representation. This functionality will be highly used in FAIN.

9.3.3.2 Support of reasoning in ILOG Rules

ILOG rule engines incorporate tempora reasoning and trandition monitoring into rules. Tempora
reasoning may be used to designate a waiting period of a specified duration or until a specified time
within rules. Transition monitoring can be used to test whether certain conditions remain true for either
a specified duration or until a specified time.

9.4 TOOLS FOR POLICY STORAGE AND RETRIEVAL

9.4.1 Overview

After the definition of a new policy (can be in other forms besides XML), the policy is submitted and
stored in the policy repository or database (DB).

For the implementation of the policy repostory, there can be various solutions, which can be
summarised as three categories. directory accessed by LDAP protocol, database accessed by
JDBC/ODBC such as Oracle and Sybase, or aplain text file. In every above case, different approaches
to access them can be applied. Here, some methods or tools supposed to be used in FAIN are
discussed.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 246

9.4.2 LDAP-based directory and JNDI

In FAIN, X.500 based directory and LDAP would be used. Each policy will be an entry in the
directory. However, many different representations of the Policy can be stored for a single Policy
entry. Storing the policies uses an LDAP Schema i.e. storing the individua attributes of the policy
using a suitable schema so that search for policies can be based on their attributes. The name of the
policy is most important, which might be stored separately.

LDAP-based directory software tools exist on many platforms, both for languages and operating
systems. As far as Java language is used, Sun JNDI [101] is avery good selection. Java Naming and
Directory Interface (JNDI) can aso provide applications written in the Java programming language
with a unified interface to multiple naming and directory services, and more powerfully. INDI enables
seamless connectivity to heterogeneous enterprise naming and directory services. Developers can build
powerful and portable directory-enabled applications using this industry standard. Java 2 SDK 1.3
includes JNDI, which supports LDAP v3.

9.4.3 Relational Database Management System and JDBC

Policy can adso be stored in traditiona RDBMS such as Oracle, Sybase, etc. As far as Java
programming language is used, JDBC can be used for the interface. If other languages or platforms are
preferred, ODBC can serve as the interface. Both of them focus on executing raw SQL statements and
retrieving their results. Since Javais widely used and there is the bridge from JDBC to ODBC, we just
discuss JDBC here.

The JDBC API provides universal data access from the Java programming language. Using the JDBC
2.0 API, programmer can access virtualy any data source, from relational databases to spreadsheets
and flat files. JDBC technology aso provides a common base on which tools and aternate interfaces
can be built.

The JDBC 2.0 API includes two packages: the java.sgl package, known as the JDBC 2.0 core API, and
the javax.sgl package, known as the JDBC Standard Extension. The Java 2 SDK, Standard Edition,
includes the JDBC 2.0 core APl and the JDBC-ODBC Bridge. The Java 2 SDK, Enterprise Edition,
includes the JDBC 2.0 core API and aso the JDBC 2.0 Standard Extension.

To use the IDBC API with a particular database management system, a JDBC technology-based driver
is needed to mediate between JDBC technology and the database. JDBC drivers can be of different
types. As far as we know at this time, there can be four categories. JDBC-ODBC bridge plus ODBC
driver, Native-API partly-Java driver, JDBC-Net pure Java driver, and Native-protocol pure Java
driver. The last two driver categories are preferred to access databases from JDBC because of their
high performance.

9.5 TOOLS FOR POLICY TRANSPORT

9.5.1 Common Open Policy Service (COPS) and Vovida.org

The IETF Resource Allocation Protocol (RAP) WG has devel oped the Common Open Policy Service
(COPS) [102] as apalicy protocol for use in PBN management systems. COPSisaquery and response
protocol that can be used to exchange policy information between a policy server and its clients.

Vovida.org is a communications community site dedicated to providing a forum for open source
software used in network environments. It provides quite a lot of application software on Session
Initiation Protocol (SIP), Cisco SIP proxy servers (CSPS), RTP (Realtime Transport Protocol), Media
Gateway Control Protocol (MGCP), etc. It also provides support for Common Open Policy Service
(COPS). Here in this document focus will be given to COPS, which iswhat we will usein PBNM.

All COPS messages are supported. It dso includes COPS extentions to support Policy Provisioning
(COPS-PR).

Its shortcoming is that it doesn't support 1pv6 addresses yet.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 247

9.5.2 Simple Object Access Protocol (SOAP) and Apache SOAP

SOAP[58] is alightweight protocol for exchange of information in a decentralized, distributed
environment. It isan XML based protocol that consists of three parts. an envelope that defines a
framework for describing what isin a message and how to processit, a set of encoding rules for
expressing instances of application-defined datatypes, and a convention for representing remote
procedure calls and responses. SOAP can potentialy be used in combination with a variety of
protocols. All SOAP messages are encoded using XML.

Apache SOAP [59], isanimplementation of the W3C SOAP, is recommended in FAIN. It is based
on, and supersedes, the IBM SOAPAJ implementation[60]. Its main features are described as follow
[61]:

Supports most of the SOAP v1.1 specification Provides server-side infrastructure for
deploying, managing and running SOAP enabled services

Provides client-side API for invoking SOAP services
Release includes full source under the Apache Software License
Supports three encoding styles. SOAP v1.1 Encoding, Literal XML and XMI.

XMI encoding (available when using Java 1.2.2) supports automatic marshalling and
unmarshalling of arbitrary objects

SOAP encoding: built-in support is provided for encoding/decoding primitive types,
Strings, arbitrary JavaBeans (using reflection) and 1-dimensiona arrays of these types.
For ather types user can hand-write encoder/decoder and register with XML-SOAP
runtime.

Literal XML encoding: alows one to send XML eements (DOM org.w3c.dom.Element
objects) as parameters by embedding the literal XML seridization of the DOM tree. No
code needs to be written to support this (see the addressbook demo to see a sample use of

it).
Supports messaging and RPC over two transports: HTTP and SM TP Supports authoring
services in scripting languages

9.5.3 XML-RPC

A reatively smpler protocol - XML-RPC [40] can aso be a option for policy transport between PDP
and PEP.

XML-RPC is a Remote Procedure Calling protocol that works over the Internet, using HTTP as the
transport and XML as the encoding. XML-RPC is designed to be as smple as possible, while allowing
complex data structures to be transmitted, processed and returned. An XML-RPC message is an
HTTP-POST request. The body of the request isin XML. A procedure executes on the server and the
vaue it returns is adso formatted in XML. At present, XML-RPC is used for the policy transport
between network level and element level.

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 248

9.5.4 Mobile agent technology and Grasshopper

The mobile agent paradigm intends to bring an increased performance and flexibility to distributed
systems by promoting "autonomous code migration™ (mobile code moving between places) instead of
traditional RPC (remote procedure cal). With code migration, the actua code or script moves from
place to place and executes localy, achieving lower latency, little need for remote interactions and
highly flexible control. Mobile agent technology is widely used in telecom and network management.
They are very effective as they can take over the burden of the complex interaction mechanisms
between different network players, such as negotiations or new service injection. Mobile agents can
easily represent one of the business roles such as backbone operator, access provider, service provider
or end-user, and act on their behalf, based on established policies.

Based on these advanced features, mobile agent can be used for the policy transport between PDP and
PEP.

Examples of mobile agent platforms are Odyssey (Generd Magic), D’ agent/Agent TCL (Dartmouth
College), Voyager (ObjectSpace), Aglets (IBM) and Grasshopper (IKV++), of which Grasshopper will
be used in FAIN.

Grasshopper [42] is a mobile agent development and runtime platform which is built on top of a
distributed processing environment. This achieves an integration of the traditional client/server
paradigm and mobile agent technology. Grasshopper is implemented in Java, based on the Java 2
specification. Most importantly, Grasshopper has been designed in conformance with the first mobile
agent industry standard given by OMG, namely the Object Management Group's Mobile Agent
System Interoperability Facility (MASIF) [62], which alows interoperability of different mobile agent
platforms and the deployment of mobile agents on CORBA environments. In addition, the latest
Grasshopper verson is aso compliant with the specifications of the Foundation for Intelligent
Physical Agents (FIPA) [44]. Grasshopper is aso the agent platform of choice in multiple internationa
research projects within the European CLIMATE (Cluster for Intelligent Mobile Agents for
Telecommunication Environments).

9.6 TOOLS FOR POLICY ENFORCEMENT

9.6.1 COPS and SOAP

COPS dso provides the functionality of policy enforcement in some extents, which has been shown in
Section 9.5 So does SOAP. Here emphasis is given to the mobile agent based SNMP policy
enforcement. Common Management Information Protocol (CMIP) can also be used by mobile agents.

9.6.2 AdventNet SNMP

AdventNet SNMP V3.2 isaset of Javatools for creating cross platform Java and Web-based SNMP
network management applets and applications. The package can be used to develop SNMP
management applications to manage SNMPv1, SNMPv2c and SNMPv3 agents (i.e. the management
gpplications can be multi-lingua) and talk to agent systems using any of the three versions of the
SNMP protocols at the same time.

AdventNet SNMP V3.2 includes Java classes that implement:
SNMP communication for SNMPv1, SNMPv2c and SNMPv3 protocols

SNMPv3 security as defined in User based Security Modd (USM) and View based
Access Control Modedl (VACM) definitions

MIB support for both SMIv1 and SMIv2 formats so that Java management applications
can take advantage of the information contained in the MIB files

SNMP Applet Server (SAS) to facilitate communication between applets and managed
devices where direct communication is prohibited due to applet security policies

Copyright & 2000/2001 FAIN Consortium May 2001

WP4-UPC-003-R11& 12-Int - FAIN Project Internal Page 249

SNMP Beans Components like SnrmpTarget, SnmpPoller, SnrmpTrapReceiver etc. that
provide enhanced functionality and for usein Java IDE tools.

RMI and CORBA accessto SNMP API for distributed computing support.

9.6.3 Grasshopper based AdventNet SNMP

Based on the given policies, Grasshopper mobile agents bearing the PEPs that are in charge of
corresponding policy as degtinations are created automatically. These mobile agents migrate
themselves to the specific PEPs to enforce the policy.

After arriving at the PEP, mobile agent, also served as SNMP wrapper at this moment, uses SNMP to
fulfil the policy.

After getting the return code of SNMP command execution, mobile agent goes back to PDP to inform
the result, then removes itself automatically.

Here al mobile agent execution environment (i.e. Grasshopper Agency) needed for mobile agent life
cycle is pre-installed on every PEP. If there is not mobile agent EE on the destination EE, active node
mechanism such as ABLE++ can be used to transfer and setting up the MA EE. Agency residesin a
machine next to that element.

A Region Server, which provides the agents with the necessary information and location of the
respective agencies, is also needed.

In addition, wrappers for the SNMP protocol had to be developed to enable the agents to communicate
to the managed eements via SNMP. For smplicity, the functionality of wrapper is aso implemented
by mobile agent, in which Advent SNMP Driver is used.

9.7 CONCLUSION ON TOOLS

Based on the fundamental functiondlity of policy based network management, this section has
proposed an overal description of tools used or supposed to be used in FAIN, which mainly includes.
tools for policy input, tools for policy representation, tools for policy storage and retrievd, tools for
policy transport, and tools for policy enforcement. The relevant software products are aso proposed
and discussed from a more abstract view.

Copyright & 2000/2001 FAIN Consortium May 2001

